首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal bremsstrahlung from the X-ray observed plasma accounts for most of the observed 9.1 cm emission from McMath 12336, an old, spotless active region, on June 2, 1973. This implies that only a small fraction of the emission measure within the active region is in the range around 106 K and below.  相似文献   

2.
Soft X-ray emission from the X-ray source Per X-1 was observed in the 0.4–2 keV energy interval from a rocket borne X-ray detector. Spectral analysis of the data indicates that in the 0.4–2 keV band the X-ray emission from Per X-1 can be fitted either with a power law of slope-(4.8±1.2) or a thermal bremsstrahlung spectrum with akT value of (0.26 ?0.08 +0.12 ) keV. Such a steep spectrum is inconsistent with the spectrum measured above 2 keV. The measured flux in 0.4–2 keV band corresponds to X-ray luminosity of 3×1045 ergs s?1 for Per X-1.  相似文献   

3.
We present a spatial analysis of the soft X‐ray and Hα emissions from the outflow of the starburst galaxy M82. We find that the two emissions are tightly correlated on various scales. The O VII triplet of M82, as resolved by X‐ray grating observations of XMM‐Newton, is dominated by the forbidden line, inconsistent with the thermal prediction. The O VII triplet also shows some spatial variations. We discuss three possible explanations for the observed O VII triplet, including the charge exchange at interfaces between the hot outflow and neutral cool gas, a collisional non‐equilibrium‐ionization recombining plasma, and resonance scattering (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
It is pointed out that the all old supernova remnants are not in general sources of soft X-ray emission. Again it is pointed out that the galactic radio spur (Cetus arc) may be an old supernova remnant but it has already ceased to be a source of X-ray emission. Finally X-ray flux from Vela is ostimated from cooling rate of neutron star by neutrino emission. The results agree approximately with the observed X-ray flux from Vela X.  相似文献   

5.
With the soft X-ray detector (0.2–0.284 keV) aboard the Astronomical Netherlands Satellite (ANS) we have searched for X-ray emission from hot star coronae and peculiar stars. On Sirius ( CMa) and Capella ( Aur) X-ray emission has been measured at 6 and 5 level, respectively, above background. In all other cases the search revealed no evidence for soft X-ray emission. Upper limits to the luminosities of about 25 star coronae (main-sequence stars, (sub)giants, and supergiants) and of 4 peculiar stars ( Sco, Lyr, P Cyg, and Car) have been obtained.Paper presented at the COSPAR/IAU Symposium on Fast Transients in X-and Gamma-Rays, held at Varna, Bulgaria, 29–31 May, 1975.  相似文献   

6.
Temperature and emission measure from goes soft X-ray measurements   总被引:1,自引:0,他引:1  
  相似文献   

7.
Using archival ASCA observations of TT Arietis, X-ray energy spectra and power spectra of the intensity time series are presented for the first time. The energy spectra are well-fitted by a two continuum plasma emission model with temperatures 1 keV and 10 keV. A coherent feature at 0.643 mHz appeared in the power spectra during the observation.  相似文献   

8.
9.
We present the results of measurements of the total X-ray flux from the Andromeda galaxy (M31) in the 3-100 keV band based on data from the RXTE/PCA, INTEGRAL/ISGRI, and SWIFT/BAT space experiments. We show that the total emission from the galaxy has a multicomponent spectrum whose main characteristics are specified by binaries emitting in the optically thick and optically thin regimes. The galaxy’s luminosity at energies 20–100 keV gives about 6% of its total luminosity in the 3–100 keV band. The emissivity of the stellar population in M31 is L 2–20 keV ~ 1.1 × 1029 erg s?1 M ?1 in the 2–20 keV band and L 20–100 keV ~ 8 × 1027 erg s?1 M ?1 in the 20–100 keV band. Since low-mass X-ray binaries at high luminosities pass into a soft state with a small fraction of hard X-ray emission, the detection of individual hard X-ray sources in M31 requires a sensitivity that is tens of times better (up to 10?13 erg s?1 cm?2) than is needed to detect the total hard X-ray emission from the entire galaxy. Allowance for the contribution from the hard spectral component of the galaxy changes the galaxy’s effective Compton temperature approximately by a factor of 2, from ~1.1 to ~2.1 keV.  相似文献   

10.
We discuss the correlations between the luminosities of radio pulsars in various frequency ranges and the magnetic fields on the light cylinder. These correlations suggest that the observed emission is generated in outer layers of the pulsar magnetospheres by the synchrotron mechanism. To calculate the distribution functions of the relativistic particles in the generation region, we use a model of quasilinear interactions between the waves excited by cyclotron instability and particles of the primary beam and the secondary electron—positron plasma. We derive a formula for calculating the X-ray luminosity L x of radio pulsars. A strong correlation was found between L x and the parameter \(\dot P_{ - 15} /P^{3.5}\), where P is the neutron-star rotation period, in close agreement with this formula. The latter makes it possible to predict the detection of X-ray emission from more than a hundred (114) known radio pulsars. We show that the Lorentz factors of the secondary particles are small (γ p = 1.5–8.5), implying that the magnetic field near the neutron-star surface in these objects is multipolar. It follows from our model that almost all of the millisecond pulsars must emit X-ray synchrotron radiation. This conclusion differs from predictions of other models and can be used to test the theory under consideration. The list of potential X-ray radiators presented here can be used to search for X-ray sources with existing instruments.  相似文献   

11.
Observations using the Bent Crystal Spectrometer instrument on the Solar Maximum Mission show that turbulence and blue-shifted motions are characteristic of the soft X-ray plasma during the impulsive phase of flares, and are coincident with the hard X-ray bursts observed by the Hard X-ray Burst Spectrometer. A method for analysing the Ca xix and Fe xxv spectra characteristic of the impulsive phase is presented. Non-thermal widths and blue-shifted components in the spectral lines of Ca xix and Fe xxv indicate the presence of turbulent velocities exceeding 100 km s-1 and upward motions of 300–400 km s-1.The April 10, May 9, and June 29, 1980 flares are studied. Detailed study of the geometry of the region, inferred from the Flat Crystal Spectrometer measurements and the image of the flare detected by the Hard X-ray Imaging Spectrometer, shows that the April 10 flare has two separated footpoints bright in hard X-rays. Plasma heated to temperatures greater than 107 K rises from the footpoints. During the three minutes in which the evaporation process occurs an energy of 3.7 × 1030 ergs is deposited in the loop. At the end of the evaporation process, the total energy observed in the loop reaches its maximum value of 3 × 1030 ergs. This is consistent with the above figures, allowing for loss by radiation and conduction. Thus the energy input due to the blue-shifted plasma flowing into the flaring loop through the footpoints can account for the thermal and turbulent energy accumulated in this region during the impulsive phase.On leave from Torino University, Italy.  相似文献   

12.
13.
14.
The X-ray spectrum of the quiet Sun in the energy range 2.3–6.9 keV was observed from an Aerobee rocket using an uncollimated graphite crystal spectrometer. These results and spatial measurements made with an onboard modulation collimator are analyzed using solar models. Several methods of estimating coronal temperatures are used in the analysis and all yield results within the range (4±l) × l06K.  相似文献   

15.
Our main goal is to show that the spatial and temporal dynamics of the temperature content for plasma structures in the solar corona can be described quantitatively in principle, which is necessary for understanding the formation mechanisms of soft X-ray emission. An approach based on a consistent modeling of complex data from the CORONAS-F, GOES, and RHESSI satellites is suggested. A basically new element of this approach is the use of time series of monochromatic full-Sun images in the X-ray MgXII 8.42 Å line and EUV lines obtained in the SPIRIT experiment onboard CORONAS-F. Two inversion procedures have been used to determine the volume and column differential emission measures defined by the Stieltjes integral: an optimization one based on a multitemperature parametric model and an iterative one based on the Bayesian theorem, respectively. The calculations with coronal abundances agree with the RHESSI data within the experimental error limits, while those with photospheric abundances give no satisfactory agreement. The relatively cold (with temperature 2–4 MK) and transient (4–10 MK) plasmas are shown to play a significant role in producing soft X-ray emission during flare events and in their energy budget. The spatial electron density and temperature distributions and their time evolution have been obtained for long-duration events that were first observed in the monochromatic MgXII channel and were previously called “spiders.” The method used has allowed us to verify the absolute intercalibration of the fluxes recorded in all experiments and to reference the SPIRIT MgXII images to the solar disk. We also consider possible flare plasma heating mechanisms for impulsive and long-duration (spider) flare events.  相似文献   

16.
The Westerbork Synthesis Radio Telescope (WSRT) 6 cm radio observations of the active region HL 16864 large spot (Strong, Alissandrakis, and Kundu, 1984) are compared with X-ray data obtained from the Flat Crystal Spectrometer (FCS) onboard the Solar Maximum Mission satellite on May 25, 1980. The X-ray data confirm the presence of a temperature depression above the spot umbra in agreement with suggestions obtained from radio data analysis. Significant differences in the spatial distribution of both kinds of emission observed in the corona above this spot are attributed mainly to the strong resonant character of the cyclotron radio radiation. Some differences are also caused by both the relatively low efficiency and the low spatial resolution of the FCS. Deconvolution of X-ray images allows to see the new structures and enhances the mutual correlation between X-ray and radio pictures.  相似文献   

17.
Radiation transfer in a scattering medium in a superstrong magnetic field is considered. Because cross-sections depend on frequency, photons with different energies escape layers with different temperatures and therefore the spectrum of the outgoing radiation differs significantly from the equilibrium blackbody or Bose–Einstein spectrum. It is shown that the emergent spectrum (the photon flux per unit energy band) is flat at low energies. Applications of the result to soft gamma repeaters (SGRs) are discussed. Even though the spectrum is strongly distorted when the radiation propagates through the magnetosphere, a flat segment may be observed in the outgoing spectrum if the surface magnetic field of the neutron star is not too high,   B <1015 G  .  相似文献   

18.
Strong evidence for cooling flows has been found in low-resolution X-ray imaging and spectra of many clusters of galaxies. However, high-resolution X-ray spectra of several clusters from the Reflection Grating Spectrometer on XMM-Newton now show a soft X-ray spectrum inconsistent with a simple cooling flow. The main problem is a lack of the emission lines expected from gas cooling below 1–2 keV. Lines from gas at about 2–3 keV are observed, even in a high-temperature cluster such as A1835, indicating that gas is cooling down to about 2–3 keV, but is not found at lower temperatures. Here we discuss several solutions to the problem: heating, mixing, differential absorption and inhomogeneous metallicity. Continuous or sporadic heating creates further problems, including the targeting of the heat at the cooler gas and also the high total energy required. So far there is no clear observational evidence for widespread heating, or shocks, in cluster cores, except in radio lobes which occupy only part of the volume. Alternatively, if the metals in the intracluster medium are not uniformly spread but are clumped, then little line emission is expected from the gas cooling below 1 keV. The low-metallicity part cools without line emission, whereas the strengths of the soft X-ray lines from the metal-rich gas depend on the mass fraction of that gas and not on the abundance, since soft X-ray line emission dominates the cooling function below 2 keV.  相似文献   

19.
Broadband sensors aboard the Naval Research Laboratory's SOLRAD 11 satellites measured solar emission in the 0.5 to 3 Å, 1 to 8 Å, 8 to 20 Å, 100 to 500 Å, 500 to 800 Å, and 700 to 1030 Å bands between March 1976 and October 1979. Measurements of EUV and soft X-ray emission from a large number of solar flares were obtained. Although solar flare measurements in the soft X-ray bands are continuously made and used as a standard of a flare's geophysical significance, direct measurements of flare EUV emission are quite rare. We present measurements of the X-ray and EUV emission from several flares with special emphasis on the relative EUV response associated with flares in different categories determined by 1 to 8 Å soft X-ray flux. An example of a flare exhibiting an impulsive (nonthermal) phase is included.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 Semptember 1980, Scheveningen, The Netherlands.  相似文献   

20.
During the time period of November 1968 to March 1970, 259 15.4 GHz impulsive microwave bursts have been identified of which 147 had associated 2–12 Å soft X-ray bursts. Average durations, rise times, and decay times for the microwave bursts are 2.9 ± 2.4 min, 0.9 ± 0.8 min, and 2.2 ± 2.1 min, respectively.Total durations and decay times for the X-ray events display a wide range of values from a few minutes to several hours. Rise times for 50 % of the events fell in the range of 2 to 7 min. A significant fraction (32 %) of the X-ray events may exhibit a flux enhancement prior to the main outburst.For 85 % of the flare cases, the X-ray event begins simultaneously with or before the microwave event. In 91 % of the cases the X-ray event peaks later than the microwave event. The average delay is 3.0 ± 1.9 min with 50 % of cases in the range of 0 to 4 min.The X-ray flux increases are significantly correlated with the microwave flux, increases, having a correlation coefficient of 0.43 (> 99.9 % confident).This work was supported in part by the Office of Naval Research under contract NOOO14-68-A-0196-0009 and the National Aeronautics and Space Administration through grant NGL-16-001-002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号