首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Radio emission in atmospheric showers is currently interpreted in terms of radiation due to the deviation of the charged particles in the magnetic field of the Earth and to the charge excess (Askaryan effect). Each of these mechanisms has a distinctive polarization. The complex signal patterns can be qualitatively explained as the interference (superposition) of the fields induced by each mechanism. In this work we explicitly and quantitatively test a simple phenomenological model based on this idea. The model is constructed by isolating each of the two components at the simulation level and by making use of approximate symmetries for each of the contributions separately. The results of the model are then checked against full ZHAireS Monte Carlo simulations of the electric field calculated from first principles. We show that the simple model describes radio emission at a few percent level in a wide range of shower-observer geometries and on a shower-by-shower basis. As a consequence, this approach provides a simple method to reduce the computing time needed to accurately predict the electric field of radio pulses emitted from air showers, with many practical applications in experimental situations of interest.  相似文献   

3.
《Astroparticle Physics》2009,30(6):393-411
We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time dependence of the currents. We find that the most important contribution to the pulse is related to the time variation of the currents. For showers forming a sufficiently large angle with the magnetic field, the contribution due to the currents induced by the geo-magnetic field is dominant, but neither the charge excess nor the dipole contribution can be neglected. We find a characteristic bipolar signal. In our calculations, we take into account a realistic index of refraction, whose importance depends on the impact parameter and the inclination. Also very important is the role of the positive ions.  相似文献   

4.
CODALEMA is one of the pioneer experiments dedicated to the radio detection of ultra high energy cosmic rays (UHECR), located at the radio observatory of Nançay (France). The CODALEMA experiment uses both a particle detector array and a radio antenna array. Data from both detection systems have been used to determine the ground coordinates of the core of extensive air showers (EAS). We discuss the observed systematic shift of the core positions determined with these two detection techniques. We show that this shift is due to the charge-excess contribution to the total radio emission of air showers, using the simulation code SELFAS. The dependences of the radio core shift to the primary cosmic ray characteristics are studied in details. The observation of this systematic shift can be considered as an experimental signature of the charge excess contribution.  相似文献   

5.
Results will be shown from the Astroneu array developed and operated in the outskirts of Patras, Greece. An array of 9 scintillator detectors and 3 antennas were deployed to study Extensive Air Showers (EAS) as a tool for calibrating an underwater neutrino telescope, possible other applications in muon tomography, education purposes, and last but not least, for the detection of air showers via their electromagnetic signature. In this work we concentrate to the electromagnetic detection of air showers presenting the operation of the RF system, as well as the analysis of the radio signals captured in coincidence with the scintillator detectors. We demonstrate the adequacy of the method to detect cosmic events even in the presence of high urban electromagnetic background, using noise filters, timing and signal polarization. The results are compared with well understood event reconstruction using the scintillator detectors and are indicating that cosmic showers were detected, proving that such small scale hybrid arrays can operate in strong background noise environments.  相似文献   

6.
We present predictions for the radio pulses emitted by extensive air showers using ZHAireS, an AIRES-based Monte Carlo code that takes into account the full complexity of ultra-high energy cosmic-ray induced shower development in the atmosphere, and allows the calculation of the electric field in both the time and frequency domains. We do not presuppose any emission mechanism and our results are compatible with a superposition of geomagnetic and charge excess radio emission effects. We investigate the polarization of the electric field as well as the effects of the refractive index n and shower geometry on the radio pulses. We show that geometry, coupled to the relativistic effects that appear when using a realistic refractive index n > 1, play a prominent role on the radio emission of air showers.  相似文献   

7.
Measuring radio emission from air showers provides excellent opportunities to directly measure all air shower properties, including the shower development. To exploit this in large-scale experiments, a simple and analytic parameterization of the distribution of the radio signal at ground level is needed. Data taken with the Low-Frequency Array (LOFAR) show a complex two-dimensional pattern of pulse powers, which is sensitive to the shower geometry. Earlier parameterizations of the lateral signal distribution have proven insufficient to describe these data. In this article, we present a parameterization derived from air-shower simulations. We are able to fit the two-dimensional distribution with a double Gaussian, requiring five fit parameters. All parameters show strong correlations with air shower properties, such as the energy of the shower, the arrival direction, and the shower maximum. We successfully apply the parameterization to data taken with LOFAR and discuss implications for air shower experiments.  相似文献   

8.
The Cherenkov radio pulse emitted by hadronic showers of energies in the EeV range in ice is calculated for the first time using full three dimensional simulations of both shower development and the coherent radio pulse emitted as the excess charge develops in the shower. A Monte Carlo, ZHAireS, has been developed for this purpose combining the high energy hadronic interaction capabilities of AIRES, and the dense media propagation capabilities of TIERRAS, with the precise low energy tracking and specific algorithms developed to calculate the radio emission in ZHS. A thinning technique is implemented to allow the simulation of radio pulses induced by showers up to 10 EeV in ice. The code is validated comparing the results for electromagnetic and hadronic showers to those obtained with GEANT4 and ZHS codes. The contribution to the pulse of other shower particles in addition to electrons and positrons, mainly protons, pions and muons, is found to be below 3% for 10 PeV and above proton induced showers. The characteristics of hadronic showers and the corresponding Cherenkov frequency spectra are compared with those from purely electromagnetic showers. The dependence of the spectra on shower energy and high-energy hadronic model is addressed and parameterizations for the radio emission in hadronic showers in ice are given for practical applications.  相似文献   

9.
《Astroparticle Physics》2011,34(5-6):335-340
We revisit the radar echo technique as an approach to detect ultra-high energy cosmic rays (UHECR). The UHECR extensive air showers generate disk-like ionization fronts propagating with a relativistic velocity and creating fast decaying plasma. We study the reflection of a radio wave, such as the one from a radar transmitter or commercial radio and TV station, from the relativistic ionization front. The reflected wave will be frequency upshifted due to the relativistic Doppler effect and propagate almost normally to the front due to relativistic aberration. The amplitude of the reflected wave depends strongly on the front velocity and parameters (density, collision frequency) of the plasma behind the front. We develop a theory that allows one to find the reflected wave. Using this theory and typical parameters of extensive air showers, we discuss the feasibility of UHECR detection.  相似文献   

10.
Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in Earth’s magnetic field and the charge-excess emission due to a net electron excess in the air shower front. It was only recently shown that Cherenkov effects play an important role in the radio emission from air showers. In this article we show the importance of these effects to extract quantitatively the position of the shower maximum from the radio signal, which is a sensitive measure for the mass of the initial cosmic ray. We also show that the relative magnitude of the charge-excess and geomagnetic emission changes considerably at small observer distances where Cherenkov effects apply.  相似文献   

11.
Radio emission from Ultra-High Energy Cosmic Rays (UHECR) showers detected after specular reflection off the Antarctic ice surface has been recently demonstrated by the ANITA balloon-borne experiment. An antenna observing a large area of ice or water from a mountaintop, a balloon or a satellite may be competitive with more conventional techniques. We present an estimate of the exposure of a high altitude antenna, which provides insight on the prospects of this technique for UHECR detection. We find that a satellite antenna may reach a significantly larger exposure than existing UHECR observatories, but an experimental characterization of the radio reflected signal is required to establish the potential of this approach. A balloon-borne or a mountaintop antenna are found not to be competitive under any circumstances.  相似文献   

12.
E Lyytinen 《Icarus》2003,162(2):443-452
Long-period comets have narrow one-revolution old dust trails that can cause meteor outbursts when encountered by Earth. To facilitate observing campaigns that will characterize and perhaps help find Earth-threatening, long-period comets from their trace of meteoric debris, we use past accounts of outbursts from 14 different showers to calculate the future dust trail positions near Earth’s orbit. We also examine known near-Earth, long-period comets and identify five potential new showers, which can be utilized to learn more about these objects. We demonstrate that it is the one-revolution trail that is responsible for meteor outbursts. A method that calculates in what year these showers are likely to return and at what hour is presented. The calculations improve on earlier approximate methods that used the Sun’s reflex motion to gauge the trail motion relative to Earth’s orbit.  相似文献   

13.
We describe the possible electromagnetic signals expected from the magnetospheric interactions of a neutron star binary prior to merger. We find that both radio and X-ray signals of detectable strength are possible. We discuss possible links with the phenomenon of gamma-ray bursts (GRBs) and describe the prospects for direct detection of these signals in searches for radio and X-ray transients.  相似文献   

14.
Coherent electromagnetic erenkov radiation is produced by cosmic ray air showers passing through the atmosphere. This radiation is detected by radio telescopes. We demonstrate here that the effect of random spatial fluctuations in the refractive index of air, about a mean exceeding unity, causes the airshower to emit not only the spontaneous coherent radio emission described elsewhere by Kahn and Lerche, but also an induced radiation field which can exceed the spontaneous field in certain frequency bands. Further the conditions for emission of the coherent radio erenkov radiation are altered by the presence of the refractive index fluctuations. And the Earth's magnetic field gives rise to the dominant term in the far-field radiation, be it spontaneous or induced, since it causes a systematic separation of electrons and positrons in the shower which, for parameters currently acceptable for air showers, is the major factor in determining the far-field radiation pattern. Also we suggest that the coherent 500 Mc/sec radiation seen from occasional showers is probably a reflection of an atmospheric correlation length of order 15 cm at the time the shower passes through the atmosphere.  相似文献   

15.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

16.
Hard X-ray states and radio emission in GRS 1915+105   总被引:1,自引:0,他引:1  
We compare simultaneous Ryle Telescope radio and Rossi X-Ray Timing Explorer X-ray observations of the galactic microquasar GRS 1915+105, using the classification of the X-ray behaviour in terms of three states as previously established. We find a strong (one-to-one) relation between radio oscillation events and series of spectrally hard states in the X-ray light curves, if the hard states are longer than ∼100 s and are 'well separated' from each other. In all other cases the source shows either low-level or high-level radio emission, but no radio oscillation events. During intervals when the source stays in the hard spectral state for periods of days to months, the radio behaviour is quite different; during some of these intervals a quasi-continuous jet is formed with an almost flat synchrotron spectrum extending to at least the near-infrared. Based on the similarities between the oscillation profiles at different wavelengths, we suggest a scenario which can explain most of the complex X-ray:radio behaviour of GRS 1915+105. We compare this behaviour with that of other black hole sources, and challenge previous reports of a relation between spectrally soft X-ray states and the radio emission.  相似文献   

17.
The history of the cosmological reionization is still unclear. Two ionizing sources, stars and QSOs, are believed to play important roles during this epoch. Besides the 21 cm signals, the infrared emission from Pop Ⅲ stars and X-ray photons from QSOs can be powerful probes of the reionization. Here we present a cross-correlation study of the 21 cm, infrared and X-ray backgrounds. The advantage of doing such cross-correlations is that we could highlight the correlated signals and eliminate irrelevant fore-grounds. We develop a shell model to describe the 21 cm signals and find that PopⅢ stars can provide higher 21 cm signals than QSOs. Using the ROSAT data for X-ray and AKARI data for infrared, we predict various cross power spectra analytically and dis-cuss prospects for detecting these cross-correlation signals in future low frequency radio surveys. We find that, although these cross-correlational signals have distinct features, so far, they have been difficult to detect due to the high noise of the soft X-ray and infrared backgrounds given by ROSAT and AKARI.  相似文献   

18.
We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.  相似文献   

19.
LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper ‘Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations’ published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.  相似文献   

20.
The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent energy measurement for the air showers measured through their radio signal with the LOFAR antennas. The energy reconstruction is performed using a parameterized relation between the measured shower size and the cosmic-ray energy obtained from air shower simulations. In order to illustrate the capabilities of LORA, the all-particle cosmic-ray energy spectrum has been reconstructed, assuming that cosmic rays are composed only of protons or iron nuclei in the energy range between ∼2 × 1016 and 2 × 1018 eV. The results are compatible with literature values and a changing mass composition in the transition region from a Galactic to an extragalactic origin of cosmic rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号