首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Water resources play an important role in supporting the economic and social development of China. The impact of climate change on water resources has become a bottleneck in this process, especially for major projects, with surface water and groundwater systems experiencing considerable impacts. The annual natural recharge of fresh groundwater is 8 840×10~8 m~3, which accounts for approximately 31% of the water resources. Groundwater is the most significant water source for many cities and energy bases, and it is also the main source acting as a buffer against extreme climate events caused by climate change. However, most of the groundwater in China buried deeply and unevenly, which increases the difficulty of investigating and exploiting this resource.This paper illustrates the general conditions of China water resources and hydrogeological hazards, such as karst sinkholes, surface subsidence, and soil salinization, caused by climate change, El Nino, La Nina, other climate events and human activities and presents the regulatory measures enacted to mitigate these issues in China.The China Geological Survey(CGS) has organized professional teams to investigate and evaluate groundwater resources and the environment since 1999. Based on these investigations, the total quantity, expected exploitable quantity and current exploited quantity of groundwater in whole China have been evaluated. In addition, an evaluation of the groundwater pollution caused by climate change throughout China and key areas has been conducted. At present, the CGS is conducting national groundwater monitoring projects and establishing regional engineering and technical measures for water resource exploitation and utilization.  相似文献   

2.
Lake Balkhash is the third largest inland lake in Central Asia after the Caspian Sea and the Aral Sea.The Ili River-Balkash Lake Basin resides in the southeastern part of the Republic of Kazakhstan and the western part of China's Ili Prefecture,which belongs to the arid and semi-arid region.In the middle to late 20thcentury,the Ili River-Balkash Lake Basin was affected by climate change and human activities,and the problems of water ecology and water resources became increasingly prominent,which became the focus of attention for China and Kazakhstan.In this study,the water level derived from radar altimeter data,the water surface area extracted from Landsat data,and the temperature and precipitation data in the basin were comprehensively utilised.Data analysis of the time course and correlation of hydrological,meteorological elements in the lake basin,water dynamic changes,and influencing factors of Lake Balkhash was studied.The results show that the cyclical change of regional climate is the main factor affecting the change of lake water,and human activities in the short term can regulate the change of water volume in Lake Balkhash.The research results in this paper can provide a scientific basis for the solution of water disputes in cross-border rivers between China and Kazakhstan.  相似文献   

3.
Water resources system is composed of natural water subsystem and social water subsystem. And it is a complicated large system, which contains certain regional background, as well as specific framework, function and dynamic balance. The evaluation of the water resources system needs the viewpoint of sustainable development and the measurement according to water resources system carrying capacity, which holds the meaning of both water resources carrying capacity and water environment carrying capacity. The Changjiang River Delta is a very important area in China. As the local water resources are concerned, the Delta is an area lack of water as a matter of fact. The water resources system of the Delta experiences a long, intricate and degenerate period. The lack of water due to resources shortage in the 1950's was converted to that due to water quality from the 1980's. Furthermore, the status of water shortage sharpens gradually. The representations are summarized as follows: firstly, the discharge amount of wastewater and polluted water is large all along. Secondly, the pollution status of rivers, which involve the Changjiang River, the Grand Canal, the rivers in cities and the rivers in small towns and villages, is noticeable. Thirdly, water quality of Taihu Lake is worth of more attention. Therefore, the countermeasures on the reconditioning and regulating of water resources system in the Delta demands the following new strategies, such as to treat the rivers, the lakes and the seas as one overall system, to improve, harmonize and counterpoise water resources system carrying capacity, to implement the integrated management of water resources, which means the integrated management of drainage area along with the regional area, especially the integrated management of city water, and to carry on water saving and scientific use so as to increase the efficiency of water use, and so on.  相似文献   

4.
Changes in the climatic system introduce uncertainties in the supply and management of water resources. The Intergovernmental Panel on Climate Change(IPCC) predicts an increase of 2 to 4 °C over the next 100 years. Temperature increases will impact the hydrologic cycle by directly increasing the evaporation of surface water sources. Consequently, changes in precipitation will indirectly impact the flux and storage of water in surface and subsurface reservoirs(i.e., lakes, soil moisture, groundwater, etc.). In addition, increases in temperature contribute to increases in the sea level, which may lead to sea water intrusions, water quality deterioration, potable water shortages, etc. Climate change has direct impacts on the surface water and the control of storage in rivers, lakes and reservoirs, which indirectly controls the groundwater recharge process. The main and direct impact of climate change on groundwater is changes in the volume and distribution of groundwater recharge. The impact of climate change on groundwater resources requires reliable forecasting of changes in the major climatic variables and accurate estimations of groundwater recharge. A number of Global Climate Models(GCMs) are available for understanding climate and projecting climate change.These GCMs can be downscaled to a basin scale, and when they are coupled with relevant hydrological models, the output of these coupled models can be used to quantify the groundwater recharge, which will facilitate the adoption of appropriate adaptation strategies under the impact of climate change.  相似文献   

5.
Longkou City is a coastal area,and lacks water resources.The overexploitation of groundwater causes seawater intrusion.At present,seawater intrudes an area of 68 km2.With the decrease of groundwater extraction,the seawater intrusion area has generally declined.The paper expounds the development process of seawater intrusion as well as the corresponding prevention and control measures of using groundwater replenishment and groundwater throttling in Longkou City.In view of the seawater intrusion problem in Longkou City,some adaptive management countermeasures are put forward,which include:Adjusting industrial and agricultural structure,promoting economic and social development to match water resources;improving water usage structure,optimizing the utilization of water resources;advancing the construction of a water-saving society,using water resources efficiently;implementing inter-basin water transfer,using water resources rationally;developing and utilizing unconventional water sources,making full use of water resources;strengthening water infrastructure construction,increasing the development and utilization potential of water resources;carrying out ecological restoration,protecting water resources and ecological environment;improving the management informationalization level,strengthening the capabilities of groundwater monitoring and management;increasing publicity,improving public awareness of participation.  相似文献   

6.
Abstract: Human activity during the Holocene in the Horqin region, northeastern China, has been widely documented. As an important proxy record of human activity, black carbon (BC) in sediments has been linked to climate change and human adaptation. A loess-paleosol section located in south Horqin was chosen for this study. Holocene climate change and human adaptation to the environment were discussed by analyzing BC, organic carbon (OC) and other proxies. The conclusions included: (1) before 3900 cal BP, human activity was closely related to the natural environment and cultural development was dominated by climate change. For example, the rapid decline of the agrarian Hongshan culture was caused by a slight decrease in temperature at ~5000 cal BP; (2) during 3900-3200 cal BP, the heavy dependence of human societies on nature gradually lessened and the ability of those human societies to adapt to the environment was enhanced. However, the farming-dominated Lower Xiajiadian culture was nonetheless replaced by the pastoralist Upper Xiajiadian culture due to an extremely cooling event at ~3200 cal BP; (3) during the late Holocene period, the marked influence of climate change on human activity might have lessened as a result of a clear improvement in human labor skills. After this, human living styles were influenced by cultural developments rather than climate change because humans had mastered more powerful means of productivity.  相似文献   

7.
Geothermal resources are increasingly gaining attention as a competitive, clean energy source to address the energy crisis and mitigate climate change. The Wugongshan area, situated in the southeast coast geothermal belt of China, is a typical geothermal anomaly and contains abundant medium- and low-temperature geothermal resources. This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region, encompassing the recharge origin, water–rock interaction mechanisms, and residence time. The results show that the geothermal water in the western region of Wugongshan is weakly alkaline, with low enthalpy and mineralization levels. The hydrochemistry of geothermal waters is dominated by Na-HCO3 and Na-SO4, while the hydrochemistry types of cold springs are all Na-HCO3. The hydrochemistry types of surface waters and rain waters are Na-HCO3 or Ca-HCO3. The δD and δ18O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m. Molar ratios of major solutes and isotopic compositions of 87Sr/86Sr underscore the significant role of silicate weathering, dissolution, and cation exchange in controlling geothermal water chemistry. Additionally, geothermal waters experienced varying degrees of mixing with cold water during their ascent. The δ13C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic. The δ34S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock. Age dating using 3H and 14C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.  相似文献   

8.
《《幕》》2008,31(3):356-357
Quantification of geological processes is a demanding task of primary importance in many Earth science studies. One valuable tool is low-temperature thermochronology (mainly fission-track and U-Th/He analyses) which finds many applications in the oil industry, in the exploration and sustainable management of water and mineral resources and in the analysis of the relationships between tectonics and climate change. The IGCP 543 project has two primary aims:  相似文献   

9.
The Tarim River is the longest continental river in China. During the past five decades, intensive human exploitation of natural resources, especially water resources in this area has caused serious eco-environmental problems. The Green Corridor in the lower reaches of the Tarim River is situated on the brink of the grave. To save the Green Corridor, emergency water transportation measure was taken by the local government from the year 2000. The landscape pattem and hydrological & geochemical characteristics had changed greatly after emergency water transportation in the lower reaches of the Tarim River. After processing the remote sensing images in the years 2000 and 2005 using ARCGIS 9.0 software, which present the landscape pattems before and after the emergency water transportation, characteristics of dynamic change of landscape pattem were analyzed. The landscape pattern change is described as follows: The forest land, waters, cultivated land and construction landscape area increased, particularly the forest land, which increased by 23.03% during the last 5 years. The water landscape change was only inferior to the forest land, which increased by 16.04%. The lawn, sand and Gobi saline-alkali land area was reducing; lawn and cultivated land had made the biggest contribution to the increase of forest land by 6.46% and 4.79%. In the year 2005, landscape diversity index, evenness index, ffactal dimension and general fragmentation values increased, but dominance index reduced. Furthermore, the eco-hydrological process, hydrological & geochemical characteristics were analyzed based on the monitoring data in this paper. The results showed the hydrological & geochemical characteristics changed greatly after emergency water transportation. Hydrological geochemical characteristics were influenced earlier in the upper part than in the lower part in the lower reaches of the Tarim River. Variations in the concentration of some major ions and hydrological chemical types are obvious.  相似文献   

10.
The average temperature of Thailand is projected to increase by 2-3 °C, and the annual rainfall is projected to increase by 25% and up to 50% in certain areas. The climate change in future is expected to provide changes in hydrological cycle and therefore impacts the groundwater resources too. In this study, we analyzed the general climate change trends and reviewed the groundwater conditions of Thailand. The climate changes, hydrologic variability and the impact of climate change on groundwater sustainability are also discussed based on a national groundwater monitoring program. Currently, there are 864 groundwater monitoring stations and 1 524 monitoring wells installed in Thailand. Moreover, the impact of climate change on groundwater-dependent systems and sectors is also discussed according to certain case studies, such as saline water intrusion in coastal and inland areas. Managing aquifer recharge and other projects are examples of groundwater adaptation project for the future.  相似文献   

11.
全球气候变化下水资源脆弱性及其评估方法   总被引:43,自引:0,他引:43  
气候变化对水资源的影响主要表现在两个方面:①对水资源供给能力的影响;②对水资源需求性的影响。气候变化下水资源脆弱性评估是水资源系统的综合评估,主要包括水资源供给与需求平衡的评估。我国水资源深受气候影响,表现在地区分布不均、洪涝灾害严重、供需矛盾突出等方面;此外,自气候变化引起关注以来,我国有关水资源脆弱性评估的研究甚少。对水资源脆弱性评估方法进行探讨,旨在为进一步探讨气候变化下我国水资源的脆弱性提供依据。  相似文献   

12.
气候变化影响下水资源脆弱性评估方法及其应用   总被引:6,自引:0,他引:6  
气候变化和人类活动影响下的水资源脆弱性评价,是将气候变化影响纳入水资源规划管理、提出缓解气候变化不利影响的适应性对策的重要科学依据。针对与气候变化影响的水资源系统的敏感性和抗压性相联系的脆弱性与适应性问题,提出变化环境下水资源脆弱性评估理论体系和一般性公式。进一步,以水资源供需安全为出发点,采用温度、降雨双参数弹性系数和有水资源基础,直观、简单的水资源关键性指标体系方法,提出气候变化和人类活动背景下水资源脆弱性评估模型。将模型应用于缺水最严重的海河流域,评价了现状和未来情境下流域水资源的脆弱性情况。结果表明:整体上海河流域水资源脆弱性偏高,且平原区较山区更脆弱;气候因素对流域水资源的脆弱性影响明显,未来如不采取措施,海河流域的水资源脆弱性将进一步加重。  相似文献   

13.
Loss caused by earthquakes: rapid estimates   总被引:1,自引:1,他引:0  
Frolova  N. I.  Larionov  V. I.  Bonnin  J.  Sushchev  S. P.  Ugarov  A. N.  Kozlov  M. A. 《Natural Hazards》2016,84(1):63-76
Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Water resources system is a complex uncertain system under climate change which is of vulnerability. But water resources system vulnerability research is relatively weak. In this study, we present a multifunctional hierarchy indicator system for the performance evaluation of water resources vulnerability (WRV) under climate change. We established an evaluation model, i.e., analytic hierarchy process combining set pair analysis (AHPSPA) model, for assessing WRV, in which weight is determined by the analytic hierarchy process (AHP) method and the evaluation degrees are determined by the set pair analysis (SPA) theory. According to the principle of scientificalness, representative, completeness and operability, the index systems and standard of water resources vulnerability evaluation are established based on the analysis of sensibility and adaptability which include five subsystems: climate change, water resources change, social and economic infrastructure, water use level and water security capability. The AHPSPA model is used to assess water resource vulnerability in Beijing with 26 indexes under eight kinds of future climate change scenarios. Certain and uncertain information quantity of the WRV is calculated by connection numbers in the AHPSPA model. Results show that the WRV of Beijing is in the middle vulnerability (3 or III) under above-mentioned different climate change scenarios. The uncertain information is between 37.77 and 39.99 % in the WRV evaluation system in Beijing. Compared with present situation, the WRV will become better under scenario I and III and will become worse under scenario II, scenario IV, scenario representative concentration pathways (RCP)2.6, scenario RCP4.5, scenario RCP6.0 and scenario RCP8.5. In addition, we find that water resources change and water use level factors play more important role in the evaluation system of water resource vulnerability in Beijing. Finally, we make some suggestions for water resources management of Beijing.  相似文献   

14.
Yang  Xiao-Hua  Sun  Bo-Yang  Zhang  Jian  Li  Mei-Shui  He  Jun  Wei  Yi-Ming  Li  Yu-Qi 《Natural Hazards》2015,76(1):63-81

Rapid population growth and increased economic activity impose an urgent challenge on the sustainability of water resources in Beijing. Water resources system is a complex uncertain system under climate change which is of vulnerability. But water resources system vulnerability research is relatively weak. In this study, we present a multifunctional hierarchy indicator system for the performance evaluation of water resources vulnerability (WRV) under climate change. We established an evaluation model, i.e., analytic hierarchy process combining set pair analysis (AHPSPA) model, for assessing WRV, in which weight is determined by the analytic hierarchy process (AHP) method and the evaluation degrees are determined by the set pair analysis (SPA) theory. According to the principle of scientificalness, representative, completeness and operability, the index systems and standard of water resources vulnerability evaluation are established based on the analysis of sensibility and adaptability which include five subsystems: climate change, water resources change, social and economic infrastructure, water use level and water security capability. The AHPSPA model is used to assess water resource vulnerability in Beijing with 26 indexes under eight kinds of future climate change scenarios. Certain and uncertain information quantity of the WRV is calculated by connection numbers in the AHPSPA model. Results show that the WRV of Beijing is in the middle vulnerability (3 or III) under above-mentioned different climate change scenarios. The uncertain information is between 37.77 and 39.99 % in the WRV evaluation system in Beijing. Compared with present situation, the WRV will become better under scenario I and III and will become worse under scenario II, scenario IV, scenario representative concentration pathways (RCP)2.6, scenario RCP4.5, scenario RCP6.0 and scenario RCP8.5. In addition, we find that water resources change and water use level factors play more important role in the evaluation system of water resource vulnerability in Beijing. Finally, we make some suggestions for water resources management of Beijing.

  相似文献   

15.
黄河流域水循环演变若干问题的研究   总被引:29,自引:0,他引:29       下载免费PDF全文
刘昌明 《水科学进展》2004,15(5):608-614
从若干方面的研究结果揭示了黄河流域水循环发生的巨大变化.水循环是水资源科学评价与合理开发利用的基本依据.水循环主要要素的变化取决于气候条件的变化与人类活动的影响.对前者宜采用适应性对策,在研究气候变化的基础上,分析水循环变动的规律并预测其趋势,制定相应的适应性措施;对于后者则应加强水资源开发利用的科学管理,以维持流域天然水资源的可更新(可再生)性.  相似文献   

16.
以艾比湖流域为研究对象,基于研究区近60年水文、气象、社会经济等资料,分析了气候变化与人类活动对艾比湖流域水资源的影响。研究表明:(1)近60年,艾比湖流域三大主要干流径流总体呈现增加趋势;(2)近60年,虽然艾比湖流域干流径流量总体增加,但由于人类活动影响作用,导致艾比湖湖区面积和入湖量均呈现逐渐减少的趋势;(3)近60年,人类活动负影响的效果高于气候变化正影响的效果,人类活动的加剧是导致艾比湖流域湖区面积持续减少的主要原因。  相似文献   

17.
Brian Pompeii 《GeoJournal》2016,81(3):457-473
Globally, modifications to the landscape have drastically transformed social and ecological communities. The implication of global climate change for small islands and small island communities is especially troublesome. Socially, small islands have a limited resource base, deal with varying degrees of insularity, generally have little political power, and have limited economic opportunities. The physical attributes of small islands also increase their vulnerability to global climate change, including limited land area, limited fresh water supplies, and greater distances to resources. The focus of this research project is to document place-specific human–environmental interactions from a political ecology perspective as a means to address local concerns and possible consequences of global environmental change. The place in which these interactions are examined is the barrier island and village of Ocracoke, NC. I focus on the specific historical-geography of land and water management on Ocracoke as a means to examine relationships between local human–environmental interactions and environmental change. I provide an account of technological changes in potable water procurement and the paralleling development of island growth (i.e. people, buildings, tourism). Then, relying on interviews with island residents, I consider how advancements in local water infrastructure, specifically the installation of an additional reverse osmosis unit, are hinged on anticipated future economic development. Lastly the social dimensions of change are discussed with specific focus on the increase in housing density and overburdened septic drainage fields in relation to changing hydrologic processes with an examination of how all of these factors affect local vulnerability.  相似文献   

18.
There is a growing understanding that the impacts of climate change affect different communities within a country, in a variety of ways—not always uniformly. This article reports on research conducted in the middle hills region of Nepal that explored climate change vulnerability in terms of exposure, sensitivity and adaptive capacity across different well-being groups, genders of the head of household and household location. In the study region, dry land farming has increasingly experienced climate-induced changes to farm productivity and natural resources. The experience of vulnerability to decreased livelihood options and natural resource hazards due to a changing climate varied according to household wealth and well-being status, with very poor and poor households more vulnerable than medium and well-off households. The research indicates that the climate change adaptation would benefit by considering: (i) differential impacts of vulnerability mainly based on well-being status of households; (ii) understanding of the local socio-political context and underlying causes of vulnerability and its application; and (iii) identifying vulnerable populations for the units of vulnerability analysis and adaptation planning.  相似文献   

19.
Taiwan suffers from losses of economic property and human lives caused by flooding almost every year. Flooding is an inevitable, reoccurring, and the most damaging disaster in Taiwan since Taiwan is located in the most active tropic cyclone formation region of the Western Pacific. Flooding problem is further worse in land subsidence areas along southwestern coast of Taiwan due to groundwater overdraft. Increasing number of people is threatened with floods owing to climate change since it would induce sea level rise and intensify extreme rainfall. Assessments of flooding vulnerability depend not only on flooding severity, possible damage of assets exposed to floods should also be simultaneously considered. This paper aims at exploring how climate change might impact the flooding vulnerability of lowland areas in Taiwan. A flooding vulnerability evaluation scheme is proposed in this study which incorporates flooding severity (the maximum inundation depth determined by a two-dimensional model) and potential economic losses for various land uses. Effects of climate change on flooding vulnerability focus on alterations of rainfall depth for various recurrence intervals. The flood-prone Yunlin coastal area, located in southwestern Taiwan, is chosen to illustrate the proposed methodology. The results reveal that reducing flooding vulnerability can be achieved by either reducing flooding severity (implementation of flood-mitigation measures) or decreasing assets exposed to floods (suspension of land uses for flood-detention purpose). Performance of currently implemented flood-mitigation measures is insufficient to reduce flooding vulnerability when facing with climate change. However, the scenario suggested in this study to sustain room for floods efficiently reduces flooding vulnerability in both without- and with climate change situations. The suggestions provided in this study could support decision processes and help easing flooding problems of lowland management in Taiwan under climate change.  相似文献   

20.
环境约束下塔里木河下游地区人类活动的历史演进   总被引:3,自引:2,他引:1  
在参考历史文献和考古成果的基础上,结合野外考察,研究了历史时期以来塔里木河下游的环境变迁和人类活动演化过程.研究认为,历史时期下游地区人类活动受气候影响下的河流生态环境变化的制约;19世纪末以来塔里木河上游地区的水土资源开发,使得下游水量减少,造成下游生态环境急剧退化,下游人类活动虽不稳定,但总体是进步的.20世纪90年代以来,下游生态环境进一步恶化,在制度与技术进步的支持下,人类生产空间扩张迅速、效益不断提高的同时,下游河道进一步退缩,天然绿洲沙漠化持续发展,下游尾闾垦区毗连沙漠,成为抵御绿洲生态环境退化的生态经济区,人工绿洲维持发展的代价高昂.因此,下游人地关系走向良性发展的前提是全流域开发利用水资源保持在下游生态环境不退化的限度内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号