共查询到7条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
C. R. B. Lister 《Geophysical Journal International》1989,96(2):191-201
Summary. The elegant geometrical rules of plate tectonics do not allow for a gradual shift in plate motion directions, or the gradual, as opposed to sudden, cessation of subduction. At the scale of the small plates in the NE Pacific, imperfections in boundary processes have a large effect on the net torque on the plates, and heavily influence the evolution of the geometry. In this area, the rotation of the spreading directions and the diminution of true subduction along the southern Canadian coast has not occurred by the sudden switching of plate motions from one stable condition to another. Instead, it appears as if the dominant factor for the evolution is the resistance of the ocean floor to formation of new, smoothly slipping transform faults. Compressive deformation of even young lithosphere is not only mechanically unlikely, but is not helpful to the particular configurations found in this area. Instead, a migrating shear zone and an episode of highly en echelon spreading along a new axis nearly perpendicular to the present Juan de Fuca ridge have resulted: the present Sovanco ridge was never a transform fault. Neither is the Nootka fault a shear zone, but the locus of stretching between plates whose motions are congruent at the Juan de Fuca ridge, but diverge toward the continental margin. 相似文献
5.
Vittorio Maselli Dick Kroon David Iacopini Bridget S. Wade Paul N. Pearson Henk de Haas 《Basin Research》2020,32(5):789-803
The East African Rift System (EARS) exerted a major influence on river drainage basins and regional climate of east Africa during the Cenozoic. Recent studies have highlighted an offshore branch of the EARS in the western Indian Ocean, where the Kerimbas Graben and the Davie Ridge represent its sea floor expression. To date, a clear picture of the impact and timing of this EARS offshore branch on the continental margin of the western Indian Ocean, and associated sediment dispersal pathways, is still missing. This study presents new evidence for four giant canyons along the northern portion of the Davie Ridge offshore Tanzania. Seismic and multibeam bathymetric data highlight that the southernmost three canyons are now inactive, supra-elevated relative to the adjacent sea floor of the Kerimbas Graben and disconnected from the modern slope systems offshore the Rovuma and Rufiji River deltas. Regional correlation of dated seismic horizons, integrated with well data and sediment samples, proves that the tectonic activity driving the uplift of the Davie Ridge in this area has started during the middle-upper Miocene and is still ongoing, as suggested by the presence of fault escarpments at the sea floor and by the location and magnitude of recent earthquakes. Our findings contribute to placing the Kerimbas Graben and the Davie Ridge offshore Tanzania in the regional geodynamic context of the western Indian Ocean and show how the tectonics of the offshore branch of the EARS modified the physiography of the margin, re-routing the deep-water drainage network since the middle Miocene. Future studies are needed to understand the influence of changing sea floor topography on the western Indian Ocean circulation and to evaluate the potential of the EARS offshore tectonics in generating tsunamigenic events. 相似文献
6.
7.
Charles DeMets Richard G. Gordon Jean-Yves Royer 《Geophysical Journal International》2005,161(2):445-468