首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
历次核试验进入海洋的~(137)Cs对中国近海影响的模拟研究   总被引:1,自引:0,他引:1  
1945年以来,世界各主要核国家进行了数千次核试验,这些核试验产生的绝大部分放射性物质通过多种途径进入海洋,对海洋环境造成放射性污染。本文建立了一个准全球海洋的放射性物质输运和扩散数值模式,通过数值模拟手段评估了历史核试验释放的放射性物质137 Cs对中国近海海洋环境的影响。本文借助前人工作评估了核试验释放137Cs进入海洋的途径和总量;通过比较模拟结果与观测资料,表明本文建立的放射性物质模式能够较好地模拟出137Cs在中国近海及其邻近海域的分布情况和随时间演变特征;模拟结果表明中国近海里的137Cs浓度在20世纪50年代中期达到最大,其中吕宋海峡海域137Cs浓度最高,达80.99Bq/m3;进一步分析了2011年3月份日本福岛核事故前中国近海137Cs浓度分布状况,2011年整个中国近海137Cs浓度介于1.0~1.6Bq/m3间,且其浓度垂向分布较均匀,相对封闭的南海浓度略高于其他海域。  相似文献   

2.
Concentrations and inventories of137Cs and239,240Pu were determined in sea waters and sediments columns from the western North Pacific from 1980 to 1986.The239,240Pu/137Cs activity ratio in the water column shows a tendency to increase from the surface (10–3) to bottom waters (10–1), but the ratio in sediment is within a rather narrow range (10–2 to 10–1), indicating more effective removal of plutonium from the water column than137Cs. In regions south of 40N, the radionuclide inventories in the water column significantly exceed the estimated global fallout (stratospheric fallout due to the atmospheric nuclear explosion), especially in the case of239,240Pu. These excess inventories imply that local or close-in fallout derived from nuclear explosions in the equatorial North Pacific are well-preserved and retained in the regions, despite about 20 years since the atmospheric nuclear explosion moratorium. Data suggesting lateral transport of137Cs in surface water from north of 40N to southern regions is shown. Some data on90Sr contents are also shown.  相似文献   

3.
Analysis of 210Pb, 226Ra, 137Cs and 134Cs in short sediment cores provide first estimates of deposition rates in some Clyde sea lochs. The radio-caesium nuclides originate mainly in the liquid effluent released at distance from the Clyde by the Windscale nuclear fuel reprocessing plant and their concentrations in Clyde sediments provide information on (a) enrichment factors onto particulate matter, (b) surficial mixing coefficients and (c) sedimentation rates. A radiocaesium residence time in coastal waters of ca. 103 years reflects the importance of scavenging by the high nearshore particulate flux. 210Pb levels in sediments are controlled, in the unsupported fraction, by a major input sorbed on catchment particulates and, in the supported component, by 226Ra activities occasionally perturbed by unusually high surface values probably of planktonic origin. In one loch, detectable levels of 134Cs and 60Co are attributed to their discharge by nuclear submarines.  相似文献   

4.
A numerical experiment is carried out to reproduce distribution of concentration of 90Sr and 137Cs, estimate their total amount and verify their source in the Japan Sea. Model results are in good agreement with observational findings in the Japan Sea expeditions between 1997 and 2002 by the Japan Atomic Energy Agency. Vertical profiles of the concentration of 90Sr and 137Cs show exponential decreases with depth from the sea surface to the sea bottom. From the model and observational results, it is suggested that the concentration of 90Sr and 137Cs in the surface layer is approximately in the range of 1.0–1.5 Bq/m3 and 2.0–2.5 Bq/m3, respectively. On the other hand, it is found that the concentration in the intermediate and deep layer is higher than that observed in the northwestern Pacific Ocean, suggesting active winter convection in the Japan Sea. The total amount of 90Sr and 137Cs in the seawater is evaluated to be 1.34 × 1015 Bq and 2.02 × 1015 Bq, respectively, in the numerical experiment, which demonstrates an estimation by observational data obtained in the Japan Sea expeditions. The total amount of 90Sr and 137Cs changed during the second half of 20th century corresponding to deposition at the sea surface with the maximums of 4.86 × 1015 Bq for 90Sr and 7.33 × 1015 Bq for 137Cs, respectively, in the mid-1960s. The numerical experiment suggests that the main source of 90Sr and 137Cs has been global fallout, although there have been some potential sources in the Japan Sea.  相似文献   

5.
A 3-D dispersion model has been developed to simulate the dispersion of nuclear contaminants in marine ecosystems. This model is characterized by presenting high spatial resolution, by taking into account the possible sedimentation of a fraction of the contaminants, and by formulating the diffusion processes using an original approach.The model has been applied and validated taking the Baltic Sea as its scenario, and using the 137Cs originating from the Chernobyl accident as the substance which experienced the dispersion. The simulation of a year’s dispersion of the 137Cs in the Baltic sea (just after the Chernobyl accident) has been performed.  相似文献   

6.
Contents of90Sr,137Cs and60Co in surface sediments were investigated in and around Urazoko Bay, Fukui Prefecture, where a nuclear power plant has been operating since 1969 and the waste effluent has been released into the sea. The main source of90Sr and137Cs was recognized to be radioactive fallout, whereas60Co was considered to originate from the nuclear power plant. Using the137Cs concentration as an indicator of sorption capacity of the sediment, the behaviour of60Co was investigated. No seasonal variation was observed in the distribution pattern of60Co/137Cs ratio and the retention of the heavy initial discharge in 1969 was considered to dominate the radionuclide level in the sediment. Correlation of60Co/137Cs ratio in the sediment and the distance from the discharge outlet was expressed by a simple exponential function of the distance. It was suggested that the contamination is spreading out gradually to the outer region of Urazoko Bay.  相似文献   

7.
Arctic sea ice can incorporate sediment and associated chemical species during its formation in shallow shelf environments and can also intercept atmospherically transported material during transit. Release of this material in ice ablation areas (e.g. the Fram Strait) enhances fluxes of both sediments and associated species in such areas. We have used a suite of natural (7Be, 210Pb) and anthropogenic (137Cs, 239Pu, 240Pu) radionuclides in sea ice, sea-ice sediments (SIS), sediment trap material and bottom sediments from the Fram Strait to estimate transit times of sea ice from source to ablation areas, calculate radionuclide fluxes to the Fram Strait and investigate the role of sea-ice entrained sediments in sedimentation processes. Sea ice intercepts and transports the atmospherically supplied radionuclides 7Be and 210Pb, which are carried in the ice and are scavenged by any entrained SIS. All of the 7Be and most of the excess 210Pb measured in SIS collected in the Fram Strait are added to the ice during transit through the Arctic Ocean, and we use these radionuclides as chronometers to calculate ice transit times for individual ice floes. Transit times estimated from the 210Pb inventories in two ice cores are 1–3 years. Values estimated from the 7Be/210Pbexcess activity ratio of SIS are about 3–5 years. Finally, equilibrium values of the activity ratio of 210Pb to its granddaughter 210Po in the ice cores indicate transit times of at least 2 years. These transit times are consistent with back-trajectory analyses of the ice floes. The latter, as well as the clay-mineral assemblage of the SIS (low smectite and high illite content), suggest that the sampled sea-ice floes originated from the eastern Siberian Arctic shelf seas such as the eastern Laptev Sea and the East Siberian Sea. This result is in agreement with the relatively low activities of 239,240Pu and 137Cs and the 240Pu/239Pu atom ratios (∼0.18, equivalent to that in global fallout) in SIS, indicating that prior global atmospheric fallout, rather than nuclear fuel reprocessing facilities, forms the main source of these anthropogenic radionuclides reaching the western Fram Strait at the time of sampling (1999). Transport of radionuclides by sea ice through the Arctic Ocean, either associated with entrained SIS or dissolved in the ice, accounts for a significant flux in ablation areas such as the Fram Strait, up to several times larger than the current atmospheric flux in the area. Calculated fluxes derived from sea-ice melting compare well to fluxes obtained from sediment traps deployed in the Fram Strait and are consistent with inventories in bottom sediments. 240Pu/239Pu atomic ratios lower than 0.18 in bottom sediments from the Fram Strait provide evidence that plutonium from a source other than atmospheric fallout has reached the area. Most likely sources of this Pu include tropospheric fallout from atomic weapons testing of the former Soviet Union prior to 1963 and Pu released from nuclear reprocessing facilities, intercepted and transported by sea ice to the ablation areas. Future work is envisaged to more thoroughly understand the actual mechanisms by which radionuclides are incorporated in sea ice, focusing on the quantification of the efficiency of scavenging by SIS and the effect of melting and refreezing processes over the course of several years during transit.  相似文献   

8.
Further studies on the transport in sea water and accumulation in marine sediment of the radionuclides, released from a nuclear power plant, on Urazoko Bay, Fukui Prefecture were reported.The partition of radionuclides among the particle size fractions of a sediment sample indicated that the accumulation of60Co,137Cs and54Mn in the sediment were dominated substantially by the sorption on the particle surface in sea water, and the patterns of their sorption were considerably similar to each other.In regard to the60Co contamination of marine sediments in an area of about 13 km2 around the nuclear power plant, 60% of the60Co contamination were retained in Urazoko Bay, which occupies only 7% of the bottom surface of the region.It is clear that a part of60Co accumulated in the sediment of Urazoko Bay gradually moved to the outerward.  相似文献   

9.
As part of a broad research program on the behavior of critical radionuclides to be discharged into the sea by the first Brazilian nuclear powerplant, the uptake accumulation and loss of 137Cs, 60Co and 125I by locally abundant seaweed species was studiedUptake in static 12 liter aquarium experiments reached apparent steady-state in 2–7 days (60Co and 125I) or 2–3 weeks (137Cs). Elimination followed a reverse pattern, being comparatively fast for 137Cs and slow for 60Co and 125I. Dry weight bioaccumulation factors (BFs) were variable, falling in the 101 range for 137Cs, 103 for 125I and 103–104 for 60Co. Various short-term experiments performed over a 16 month period, showed marked temporal variations of 60Co BFs for all species.The results demonstrated that the studied species may play an important role in the transfer of the critical radionuclides through local food webs and can be employed as useful monitors for routine or accidental radionuclide releases.  相似文献   

10.
Marked fluctuation of concentrations of90Sr and137Cs was observed in the bottom waters at the entrance of Wakasa Bay during 1987–1992, and the cause was investigated. The concentrations of90Sr and137Cs in the bottom waters were significantly low when the upper level of the Japan Sea Proper Water (JSPW) was high and covered the sampling depth, but high when the upper level of the JSPW was low. The cause of the fluctuation observed in the bottom waters is, therefore, suggested to be the vertical fluctuation of the upper level of the JSPW on the shelf slope, which has been little described before.  相似文献   

11.
Temporal changes in cesium-137 (137Cs) concentrations in the surface (0–10 cm) layer of seabed sediment were quantified from continuous observation data at 71 stations within a 150-km radius of the Fukushima Daiichi Nuclear Power Plant, and the primary processes affecting temporal changes were identified. From March 2011 to the end of 2015, about 80% of the initially deposited 137Cs in the surface sediment in the coastal region (bottom depth ≤100 m) region has dissipated (radioactive decay is not included). Such a remarkable change in the 137Cs concentration was not observed in the offshore (>100 m) region. This paper focuses on the following three processes that affected the decrease in the 137Cs concentrations, and assesses their relative importance; (1) resuspension and transport of 137Cs-bound sediment, (2) desorption of 137Cs from the sediment, and (3) dilution of 137Cs by vertical mixing of sediment. Consequently, it was estimated that the first two processes together have potentially contributed to reduce the 137Cs inventory in the top 10 cm of the coastal region by at most 35%. Furthermore, by applying a pulse input sediment mixing model to the observed vertical distribution of sedimentary 137Cs, it was also estimated that more than 43% of the 137Cs in the surface sediment was transported to deeper sediment layers by vertical mixing of the sediment. This indicates that the decrease of 137Cs concentrations in coastal sediments was mainly affected by mixing of 137Cs-bound surface sediment with less contaminated sediment in the deeper layers.  相似文献   

12.
239, 240Pu,137Cs and90Sr concentrations were determined in sea waters from the central and western North Pacific in 1980 and 1982. The results are consistent with those reported earlier for North Pacific waters. The profiles of90Sr and137Cs show a monotonic decrease with depth, whilst239, 240Pu shows a distinct subsurface maximum at a depth between 400 and 1,000 m. The calculated inventories of these nuclides significantly exceed the global mean fallout inputs for these latitudes. This may be due to local fallout input to the ocean at times of large-scale nuclear weapon tests in the equatorial North Pacific. The existence of measurable amounts of137Cs and239, 240Pu in deep waters suggests that these nuclides are transported by sinking particulate matter from the surface to the deep ocean.  相似文献   

13.
The distribution and inventory of artificial radionuclides,239,240Pu and137Cs were determined in the East China and the Yellow Seas in 1987. Almost all of239,240Pu and 50 to 80% of137Cs in the continental shelf area are retained in the sediment column.239,240Pu sediment inventory in the sea area is larger than the fallout input and tends to increase southwardly. This excess239,240Pu and the lateral distribution are attributable to the supply of239,240Pu by the Yangtze River discharge. On the contrary,137Cs sediment inventory shows a decrease to the south, and the fact can be accounted for by the southward dispersion of fine silt particles discharged from the Yellow River. Total137Cs inventory is smaller than the estimated fallout input, and the fact seems to indicate dispersion of137Cs out of the shelf region. Vertical profiles of239,240Pu and137Cs contents in sediments differ from that of natural210Pb, implying the effect of varied accumulation rates of the artificial radionuclides over the sediment particle mixing by benthic organisms. Apparent maximum sediment particle mixing coefficient (D B ) calculated from the excess210Pb profiles in stations located between the inner and outer shelves ranged from 1.4 to 8.3 cm2y–1. ThisD B value is higher than that in the Okinawa Trough (1.0 cm2y–1), but lower than previously estimatedD B value (26 cm2y–1) in the outer shelf mud.  相似文献   

14.
The discharge of radioactive waste, from nuclear fuel reprocessing facilities, into the coastal waters of north-west Europe has resulted in a significant increase in the inventories of a number of artificial radionuclides in the North Atlantic. Radiocaesium, 90Sr and 99Tc, which behave conservatively in seawater, have been used widely as tracers of water movement through the North Sea, Norwegian Coastal Current, Barents Sea, Greenland Sea, Fram Strait, Eurasian Basin, East Greenland Current and Denmark Strait overflow. These studies are summarised in the present paper. It has been estimated that 22% of the 137Cs Sellafield discharge has passed into the Barents Sea, en route to the Nansen Basin, via the Bjomoya-Fugloya Section, with another 13% passing through the Fram Strait. This amounts to 14 PBq 137Cs. Quantifying the influx of other radionuclides has been more problematic. The inflowing Atlantic water now appears to be diluting waters in the Arctic Basin, which were contaminated in the late 1970s and early 1980s as a result of the substantial decrease in the discharge of reprocessing wastes. Sellafield (U.K.) has dominated the supply of 134Cs, 137Cs, 90Sr, 99Tc and Pu, whereas La Hague (France) has contributed a larger proportion of 129I and 125Sb.  相似文献   

15.
Application of a coprecipitation method combined with low-background γ-spectrometry allowed the isolation of 7Be, 137Cs, 210Pb, and radium and thorium isotopes together with BaSO4, Fe(OH)3, or AMP/Cs in 18 L of coastal water. This simple method showed high chemical yields of 77–91% (mean, 85%) for 210Pb and radium isotopes, 87–92% (mean, 91%) for 7Be and thorium isotopes, and 98% for 137Cs. The activity of the nuclides showed good reproducibility with standard deviations of 1–8%, while the deviation of activity in particle-reactive 210Pb (32%) and 7Be (21%) in filtered water samples was exceptionally large.  相似文献   

16.
过去几十年中,各国多偏重于海水中~(137)Cs的研究,而对沉积物中~(137)Cs的研究较少。1981年,我们乘“科学一号”船在冲绳海槽区取得了部分沉积物。本文试就~(137)Cs在沉积物中的分布及相关因素作简单探讨。  相似文献   

17.
The Fukushima nuclear accident in 2011 released large amounts of radionuclides, including ~(137)Cs, into the Pacific Ocean. A quasi-global ocean radioactive transport model with horizontal grid spacing of 0.5°×0.5° and 21 vertical layers was thereafter established to study the long-term transport of the Fukushima-derived ~(137)Cs in the ocean.The simulation shows that the plume of ~(137)Cs would be rapidly transported eastward alongside the Kuroshio Current and its extensions. Contaminated waters with concentrations lower than 2 Bq/m3 would reach the west coast of North America 4 or 5 years after the accident. The ~(137)Cs tends to be carried, despite its very low concentration, into the Indian and South Pacific Oceans by 2016 via various branches of ocean currents.Meanwhile, the ~(137)Cs concentrations in the western part of the North Pacific Ocean decrease rapidly with time. Up to now the highly contaminated waters have remained in the upper 400 m, showing no evidence of significant penetration to deeper layers.  相似文献   

18.
本文报道2015年9月和2016年5月期间天然放射性核素224Ra和223Ra在吕宋海峡及周边海域表层和垂向水体的分布特征。为理解日本福岛核事故的影响,本文亦分析研究区域内人工放射性核素137Cs的分布特征。结果表明,224,223Ra和137Cs比活度水平均处于我国南海海洋天然放射性本底变化范围之内。224Ra在吕宋海峡以西南海北部海域比活度较高,在吕宋海峡以东菲律宾海域比活度较低。137Cs没有明显的分布趋势。基于三站位(LS3,LS5和LS8)224Ra、137Cs以及温盐的垂向分布特征,本文揭示224Ra和137Cs在热带表层水、次表层水和中-深层水中比活度水平和梯度变化的差异特征。彩虹台风事件扭转了整个吕宋海峡及周边海域的海流循环过程。大量以低水平224Ra为特征的西太平洋海水涌入南海,降低水体224Ra比活度水平。但是,西太平洋和南海北部海域水体137Cs比活度水平没有明显差异,台风导致的海流变化对水体137Cs比活度没有明显影响。  相似文献   

19.
Salt marsh sediment volume decreases from organic decomposition, compaction of solids, and de-watering, and each of these processes may change with age. Variability in the vertical accretion rate within the upper 2 m was determined by assembling results from concurrent application of the 137Cs and 210Pb dating techniques used to estimate sediment age since 1963/1964, and 0 to ca 100+ years before present (yBP), respectively. The relationship between 210Pb and the 137Cs dated accretion rates (Sed210 and Sed137, respectively) was linear for 45 salt marsh and mangrove environments. Sed210 averaged 75% of Sed137 suggesting that vertical accretion over the last 100+ years is driven by soil organic matter accumulation, as shown for the pre 137Cs dated horizon. The ratio of Sed210/Sed137 declines with increasing mineral content. A linear multiple regression equation that includes bulk density and Sed137 to predict Sed210 described 97% of the variance in Sed210. Sediments from Connecticut, Delaware and Louisiana coastal environments dated with 14C indicate a relatively constant sediment accretion rate of 0.13 cm year−1 for 1000–7000 yBP, which occurs within 2 m of today's marsh surface and equals modern sea level rise rates. Soil subsidence is not shown to be distinctly different in these vastly different coastal settings. The major reason why the Sed137 measurements indicate higher accretion rates than do the Sed210 measurements is because the former apply to younger sediments where the effects of root growth and decomposition are greater than in the latter. The most intense rates of change in soil volume in organic-rich salt marshes sediments is, therefore, neither in deep or old sediments (>4 m; >1000 years), but within the first several hundreds of years after accumulation. The average changes in organic and inorganic constituents downcore are nearly equal for 58 dated sediment cores from the northern Gulf of Mexico. These parallel changes downcore are best described as resulting from compaction, rather than from organic matter decomposition. Thus most of the volumetric changes in these salt marsh sediments occurs in the upper 2 m, and declines quickly with depth. Extrapolation forwards or backwards, using results from the 210Pb and the 137Cs dating technique appear to be warranted for the types of samples from the environments described here.  相似文献   

20.
Profiles of the radioisotopes 210Pb and 137Cs were determined in 15 sediment cores collected from Sagami Bay, Japan. The activities of 210Pbex (unsupported) in core top sediments increased with water depth from 25 dpm g−1 on the upper continental slope off the mouth of Tokyo Bay to an average of 283 dpm g−1 at the deep-sea station SB. The high 210Pb trapping efficiency of settling particles expected from the results of the sediment trap experiment near the SB site suggests that effective 210Pb enrichment in surface sediments may occur during resuspension and lateral transportation of particles via the benthic nepheloid layer on the continental slope. In several cores, 137Cs profiles showed an increase, a distinct peak, and then a decrease to an undetectable level downcore. These profiles can be compared with the temporal change of bomb-produced 137Cs fallout.The mean sedimentation rates estimated by the 210Pbex inventory method, rather than using 210Pbex profiles, ranged from 0.06 g cm−2 y−1 to 0.14 g cm−2 y−1. The average value of the rates in SB cores was calculated to be 0.11 g cm−2 y−1, which was similar to that calculated under the assumption that the age of the 137Cs peak corresponds to its maximum fallout year in 1963.Although 137Cs inventories represented one tenth of the anthropogenic fallout of 137Cs until 1997, they correlated with the increase in 210Pbex inventory. This suggests that the scavenging of refractory 137Cs as well as 210Pb by settling particles in the water column can lead to the formation of a time marker layer even in deep-sea sediment core, such as at the SB site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号