共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Capture Zones for Simple Aquifers 总被引:1,自引:0,他引:1
Carl D. McElwee 《Ground water》1991,29(4):587-590
Abstract. The protection and cleanup of aquifers is a matter of high priority for all states and the federal government. One concept that is receiving increased attention is that of wellhead protection. Capture zones showing the area influenced by a well within a certain time are useful for both aquifer protection and cleanup. If hydrodynamic dispersion is neglected, a deterministic curve defines the capture zone. Analytical expressions for the capture zones can be derived for simple aquifers. However, the capture zone equations are transcendental and cannot be explicitly solved for the coordinates of the capture zone boundary. Fortunately, an iterative scheme allows the solution to proceed quickly and efficiently even on a modest personal computer. Three forms of the analytical solution must be used in an iterative scheme to cover the entire region of interest, after the extreme values of the x coordinate are determined by an iterative solution. The resulting solution is a discrete one, and usually 100-1000 intervals along the x-axis are necessary for a smooth definition of the capture zone. The presented program is written in FORTRAN and has been used in a variety of computing environments. No graphics capability is included with the program; it is assumed the user has access to a commercial package. The superposition of capture zones for multiple wells is expected to be satisfactory if the spacing is not too close. Because this program deals with simple aquifers, the results rarely will be the final word in a real application. However, the program is useful as a first phase in developing wellhead protection or aquifer cleanup schemes. 相似文献
4.
A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free‐surface, by coupling the arbitrary Lagrangian–Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity. 相似文献
5.
6.
7.
David C. Schafer 《Ground water》1996,34(4):628-639
8.
9.
Estimating the Horizontal Gradient in Heterogeneous, Unconfined Aquifers: Comparison of Three-Point Schemes 总被引:1,自引:0,他引:1
At least two approaches may be used to estimate the horizontal components of the hydraulic gradient based on measured heads from three observation points. First, the gradient may be estimated by passing a plane through the measured heads (h-method). Second, if the elevation of the base of the aquifer is known to be spatially constant, an estimate of the gradient may be obtained using the squares of the measured heads (h2 - method). In the present study, these methods are examined in application to a heterogeneous system. Using Monte Carlo analysis, we demonstrate that the magnitude of the gradient estimated via the h-method involved significant bias, which increased when the distance separating the wells increased. In contrast, bias in the estimated magnitude of the gradient based on the h2 -method decreased with increasing separation among the wells. Estimation variances for both the magnitude and orientation of the gradient also decreased with separation distance. The variance in the orientation was observed to remain relatively high, however, even at relatively large separations among the wells (e.g., 10 integral scales). These results are Interpreted as implying that the best estimate of the gradient for steady flow in an unconfined aquifer is derived from the h2 - method with the wells separated by significant distances. These results also demonstrate the uncertainty inherent in estimating the gradient based on limited field data. 相似文献
10.
The term capture, related to the source of water derived from wells, has been used in two distinct yet related contexts by the hydrologic community. The first is a water‐budget context, in which capture refers to decreases in the rates of groundwater outflow and (or) increases in the rates of recharge along head‐dependent boundaries of an aquifer in response to pumping. The second is a transport context, in which capture zone refers to the specific flowpaths that define the three‐dimensional, volumetric portion of a groundwater flow field that discharges to a well. A closely related issue that has become associated with the source of water to wells is streamflow depletion, which refers to the reduction in streamflow caused by pumping, and is a type of capture. Rates of capture and streamflow depletion are calculated by use of water‐budget analyses, most often with groundwater‐flow models. Transport models, particularly particle‐tracking methods, are used to determine capture zones to wells. In general, however, transport methods are not useful for quantifying actual or potential streamflow depletion or other types of capture along aquifer boundaries. To clarify the sometimes subtle differences among these terms, we describe the processes and relations among capture, capture zones, and streamflow depletion, and provide proposed terminology to distinguish among them. 相似文献
11.
An Explicit Finite Difference Model for Unconfined Aquifers 总被引:2,自引:0,他引:2
Most of the current simulation models for unconfined aquifers are based on the assumption that the free surface variation is small so that it can be combined with permeability to reduce the nonlinear Boussinesq equation to a linear partial differential equation (PDE). One of the most obvious reasons for using the linearization assumption is for the ease of numerical solution. This work presents a simpler alternative which permits an easy direct solution of the Boussinesq equation. A forward in time, central in space (FTCS) explicit finite difference method is used in the simulation model. The model was first validated by comparing its results with known analytical solution. It was then applied to an actual situation in which the short-term responses (from pumping) of an unconfined aquifer were simulated. The study shows that the stability of the model can be easily controlled, and because of the simple algorithm used, the code can be expeditiously developed and economically run on smaller machines. Due to the uncertainties in the calibration results, it is recommended here that more data be collected to improve the calibration before the model is used as a real-time simulation tool. 相似文献
12.
13.
Stefanie A. Crisman Fred. J. Molz David L. Dunn Frank C. Sappington 《Ground Water Monitoring & Remediation》2001,21(4):96-100
It is increasingly common for the electromagnetic borehole flowmeter (EBF) to he used to measure hydraulic conductivity (K) distributions in subsurface flow systems. Past applications involving the EBF have been made mostly in confined aquifers (Kabala 1994; Boman et al. 1997; Podgorney and Ritzi 1997; Ruud and Kabala 1997a, 1997b; Flach et al. 2000), and it has been common to set up a flow field around a test well using a small pump that is located near the top of the well screen (Mob, and Young 1993). In thin, unconfined aquifers that exhibit ground water tables near the ground surface and that undergo drawdown during pumping, such a configuration can be problematical because pumping and associated drawdown may effectively isolate the upper portion of the aquifer from the flowmeter. In these instances, a steady-state flow field in the vicinity of the test well may be created using injection rather than pumping, allowing for testing in the otherwise isolated upper portion of the aquifer located near the initial water table position. Using procedures developed by Molz and Young (1993), which were modified for an injection mode application, testing was conducted to determine whether or not the injection mode would provide useful information in a shallow, unconfined aquifer that required the collection of data near the initial water table position. Results indicated that the injection mode for the EBF was well suited for this objective. 相似文献
14.
15.
The Theis Solution in Heterogeneous Aquifers 总被引:2,自引:0,他引:2
Sergio E. Serrano 《Ground water》1997,35(3):463-467
16.
17.
18.
19.
In semiarid and arid environments, leakage from rivers is a major source of recharge to underlying unconfined aquifers. Differential river gauging is widely used to estimate the recharge. However, the methods commonly applied are limited in that the temporal resolution is event‐scale or longer. In this paper, a novel method is presented for quantifying both the total recharge volume for an event, and variation in recharge rate during an event from hydrographs recorded at the upstream and downstream ends of a river reach. The proposed method is applied to river hydrographs to illustrate the method steps and investigate recharge processes occurring in a sub‐catchment of the Murray Darling Basin (Australia). Interestingly, although it is the large flood events which are commonly assumed to be the main source of recharge to an aquifer, our analysis revealed that the smaller flow events were more important in providing recharge. 相似文献
20.