首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gravitational compaction of sediments is an important process in forward basin modelling. This paper presents a mathematical model for the one-dimensional compaction of an accreting layer of argillaceous sediments. Realistic constitutive laws for the clay compressibility and the clay permeability, based on soil mechanics tests, were incorporated into the model. The governing equations were put in dimensionless form and the extent of abnormal pore fluid pressure development was found to depend on the sedimentation parameter, a dimensionless group representing the ratio of the sediment hydraulic conductivity to the sediment accumulation rate. The effects of clay compressibility were studied and highly colloidal clays such as montmorillonite developed higher overpressures than less compressible materials. The results also showed that overpressuring developed in shales for cases in which the clay permeability did not go to zero in the limit of zero porosity. Linear models based on simplifying assumptions inappropriate for sedimentary basins were found to give significantly different estimates for the conditions leading to overpressuring. Using reasonable parameters, the model adequately reproduced porosity and pore pressure profiles measured in the sand-shale sequences of the South Caspian Sea.  相似文献   

2.
Tectonic inversion models predict that stratigraphic thickening and local facies patterns adjacent to reactivated fault systems should record at least two phases of basin development: (1) initial extension‐related subsidence and (2) subsequent shortening‐induced uplift. In the central Peloncillo Mountains of southwestern New Mexico, thickness trends, distribution, and provenance of two major stratigraphic intervals on opposite sides of a northwest‐striking reverse fault preserve a record of Early Cretaceous normal displacement and latest Cretaceous–Paleogene reverse displacement along the fault. The Aptian–Albian Bisbee Group thickens by a factor of three from the footwall to the hanging‐wall block, and the Late Cretaceous?–Eocene Bobcat Hill Formation is preserved only in the footwall block. An initial episode of normal faulting resulted in thickening of upper Aptian–middle Albian, mixed siliciclastic and carbonate deposits and an up section change from coarse‐grained deltas to shallow‐marine depositional conditions. A second episode of normal faulting caused abrupt thickening of upper Albian, quartzose coastal‐plain deposits across the fault. These faulting episodes record two events of extension that affected the northern rift shoulder of the Bisbee basin. The third faulting episode was oblique‐slip, reverse reactivation of the fault and other related, former normal faults. Alluvial and pyroclastic deposits of the Bobcat Hill Formation record inversion of the Bisbee basin and development of an intermontane basin directly adjacent to the former rift basin. Inversion was coeval with latest Cretaceous–Paleogene shortening and magmatism. This offset history offers significant insight into extensional basin tectonics in the Early Cretaceous and permits rejection of models of long‐term Mesozoic shortening and orogen migration during the Cretaceous. This paper also illustrates how episodes of fault reactivation modify, in very short distances (<10 km), regional patterns of subsidence, the distribution of sediment‐source areas, and sedimentary depositional systems.  相似文献   

3.
4.
Abstract The Pitaiito Basin is an intramontane basin (15 × 20 km2) situated at the junction of the Central and Eastern Cordillera in the southern part of the Colombian Andes. Tectonic structures, evolution of the basin and distribution of the sediments suggest that the basin was formed adjacent to an active dextral strike-slip fault. Based on sedimentation rates it is estimated that subsidence started around 4.5 Ma. The basin can be divided into a relatively shallow western part (c. 300 m deep) and a deep eastern part (c. 1200 m deep). The transition between both areas is sharp and is delineated by a NW/SE-oriented fault. The position of this fault is reflected by the areal distribution of the deep non-exposed sediments as well as sediments at the surface: west of this fault the basin infill consists of coarse to medium elastics (conglomerates and sand) whereas in the eastern part fine elastics (clay and peat) are present. The lateral transition between both types of sediment is abrupt and its position is stable in time. The surface and near surface sediments in the Pitalito Basin reflect the last stage of sedimentary infill which came to a halt between 17,000 and 7500 years bp . These sediments were deposited by an eastward prograding fluvial system. The western upstream part of this system differs significantly from that of the eastern part which forms the downstream continuation. The western part exhibits unstable, shallow fluvial channels that wandered freely over the surface which predominantly consists of clayey overbank sediments. The alluvial architecture in the eastern half is characterized by stable channels and thick accumulations of organic-rich flood basin sediments and resembles an anastomosing river. The transition between both alluvial systems also coincides with the N/S-oriented normal fault. Palaeoclimatic conditions over the last c. 61,500 years were determined by means of a pollen record. From c. 61,500 to 20,000 years BP the mean annual temperature fluctuated considerably and decreased by 2–3oC during the relatively warm periods (interstadials) and by 6–8oC during the cold periods (stadials) in comparison with modern temperatures. These changes led to a displacement of the zonal vegetation belts from c. 200 m during the stadials to c. 1500 m in interstadial times without significant effects on the fluvial system present in the Pitaiito Basin until c. 20,000 years BP. Around this period the organic-rich eastern flood basins were choked with sediments and peat growth came to an end. Palynological and sedimentological data suggest that around that period the climate was cold (Δ 6–8oC) and very dry and that a sparse vegetation cover was present around the basin. In these semi-arid climatic conditions the river system changed from an anastomosing pattern to one with ephemeral stream characteristics. This may have lasted until at least 17,000 years BP. Somewhere between 17,000 and 7500 years BP the eastward-flowing infilling river system changed into a NW-flowing erosive river system due to climatic or tectonic control and the present state was reached.  相似文献   

5.
The spatial organisation of meandering-river deposits varies greatly within the sedimentary fills of rift basins, depending on how differential rates of fault propagation and subsidence interplay with autogenic processes to drive changes in fluvial channel-belt position and rate of migration, avulsion frequency and mechanisms of meander-bend cut off. This set of processes fundamentally influences stacking patterns of the accumulated successions. Quantitative predictions of the spatio-temporal evolution and internal architecture of meandering fluvial deposits in such tectonically active settings remain limited. A numerical forward stratigraphic model—the Point-Bar Sedimentary Architecture Numerical Deduction (PB-SAND)—is applied to examine relationships between differential rates of subsidence and resultant fluvial channel-belt migration, reach avulsion and channel-deposit stacking in active, fault-bounded half-grabens. The model is used to reconstruct and predict the complex morphodynamics of fluvial meanders, their generated channel belts, and the associated lithofacies distributions that accumulate as heterogeneous fluvial successions in rift settings, constrained by data from seismic images and outcrop successions. The 3D modelling outputs are used to explore sedimentary heterogeneity at various spatio-temporal scales. Results show how the connectivity of sand-prone geobodies can be quantified as a function of subsidence rate, which itself decreases both along and away from the basin-bounding fault. In particular, results highlight the spatial variability in the size and connectedness of sand-prone geobodies that is seen in directions perpendicular and parallel to the basin axis, and that arises as a function of the interaction between spatial and temporal variations in rates of accommodation generation and fault-influenced changes in river morphodynamics. The results have applied significance, for example, to both hydrocarbon exploration and assessment of groundwater aquifers. The expected greatest connectivity of fluvial sandbody in a half-graben is primarily determined by the complex interplay between the frequency and rate of subsidence, the style of basin propagation, the rates of migration of channel belts, the frequency of avulsion and the proportion and spatial distribution of variably sand-prone channel and bar deposits.  相似文献   

6.
Abstract Burial histories of Late Neogene sedimentary basins on the Wairarapa fold and thrust belt of the Hikurangi convergent plate margin (New Zealand) have been deduced from decompacted sedimentary columns and palaeo-waterdepths. These indicate that at least two major cycles of basement subsidence and uplift have occurred since 15 Ma. The older (15-10 Ma) cycle affected outer areas of the forearc. Subsidence, at a minimum rate of 0.5-0.6 mm/yr, was followed by rapid uplift. The subsequent (10 Ma to present) cycle affected a broad area of the inner forearc. Subsidence, at an average rate 0.33 mm/yr, was followed by uplift at an average rate of 0.5-1.5 mm/yr. Vertical movement is continuing, with uplift of the axial greywacke ranges and development of the Wairarapa Depression.
Palinspastic reconstructions of the inner forearc region indicate that basin development was characterized by a see-saw oscillation in basin orientation, with the axis of the basin and direction of basin tilt switching back and forth from east to west through time. A large-scale change in basin orientation took place around 2 Ma when the westernmost part of Wairarapa began to rise on the flanks of the rising Tararua Range, associated with the ramping of the Australian Plate up and over the subducted Pacific Plate. Loading of the forearc is unlikely to have been a significant cause of basement subsidence before this event. Earlier phases of basin development associated with basement subsidence and uplift may be related to a complex interplay of tectonic factors, including the westward migration of the subducted Pacific Plate as it passed beneath southern North Island during Miocene time, episodes of locking and unlocking of parts of the plate interface, and growth of the accretionary prism.  相似文献   

7.
8.
Detailed structural cross‐sections, analysis of extensional structures and palaeotemperatures obtained from primary fluid inclusions in quartz and calcite veins from the extensional Cameros Basin (N Spain) allow an interpretation of its thermal evolution and its geometric reconstruction to be constrained. The Cameros Basin underwent an extensional stage during the Late Jurassic to Early Cretaceous, with a maximum preserved thickness of Mesozoic deposits of about 9000 m. During the Tertiary, the basin was inverted, allowing a large part of the sedimentary sequence to be exposed. Extensional deformation in individual beds created N120E‐striking tension gashes in the synrift sequence, parallel to the master normal faults limiting the basin and dipping perpendicular to bedding. The extensional strain calculated from tension gashes varies between 4 and 12%. The number and thickness of veins increases the lower their position in the stratigraphic section. Palaeotemperatures were obtained from samples along a stratigraphic section comprising a thickness of 4000 m synrift deposits. Homogenization temperatures range from 107 to 225 °C. Palaeothermometric data and geometric reconstruction give a geothermal gradient of 27–41 °C km?1 during the extensional stage and allow an eroded section of at least 1500 m to be inferred. Low‐grade metamorphic assemblages in lutitic rocks of the deepest part of the basin presently exposed at surface imply P–T conditions of 350–400 °C and less than 2 kbar, which implies a geothermal gradient of about 70 °C km?1. Since the metamorphic thermal peak is dated at 100 Ma, the P–T path indicates a heating event during the late Albian, probably linked to the reaching of thermal equilibrium of the continental crust after extension. The results obtained support the hypothesis of a synclinal basin geometry, with vertical superposition of Lower Cretaceous sedimentary units rather than a model of laterally juxtaposed bodies onlapping the prerift sequence.  相似文献   

9.
Detailed seismic reflection data combined with regional magnetic, gravity and geological data indicate that the Drummond Basin originated as a backare extensional basin associated with Late Devonian and Early Carboniferous active margin tectonism in the northern New England Fold Belt. Seismic reflection data have been used to generate a two-way time map of seismic basement, providing a clear view of the basinal geometry and structural development. Broadscale structural asymmetry of the basin implies that simple shear along a deep, upper-crustal detachment provided the extensional mechanism and generated an inter-related set of listric normal faults and associated transfer faults, as well as steeply-dipping planat normal faults. The orientation of normal faults near the basin margins appears to have been controlled by regional basement structural trends. Transfer-fault trends were approximarely orthogonal to the line of plate convergence as assessed from the orientation of coeval are, forcare and subduction complex stratorectonic elements. Three distinct phases of infill are represented in the basinal stratigraphic succession. The first consists largely of volcanics and volcaniclastics, indicating that effusive magmatism and extension were closely associated in space and time. The second is quartzose and of basement derivation, but was not derived from footwall blocks at the faulted basinal margins to the east and north. Uplifted hanging-wall crust beyond the western basinal margin, a product of west-directed simple shear detachment, was the likely source terrain. The final infill phase consisted of volcaniclastics considered to have been derived from a coeval volcanic are to the east. Major faults at the basin margins provided conduits for magmatism during extensional basin development, and long after the basinal history was complete. During the Late Carboniferous and mid-Triassic, the basin was affected by two discrete episodes of compressional deformation. This led to inversion with the development of folds, and reverse and wrench faults now seen at the surface.  相似文献   

10.
The dynamics of sediment feeding into rift basins and the geomorphologic nature of source areas are critical elements in understanding the evolution of rifted basins. This study integrates seismic, well and geochronologic data on the western dipslope of the Raoyang Sag, a rift associated sub-basin to the larger Bohai Bay Basin of China to define the history of drainage development for the basin and to assess the sedimentologic response to drainage evolution events. In the Paleogene-age Lixian Slope, as indicated by paleo-drainage configuration, progradational seismic geometries, compositional maturity and zircon-tourmaline-rutile maturity index trends, three drainages; the paleo-Daqing River, paleo-Tang River and paleo-Dasha River drainages were feeding three closely spaced hanging wall deltaic depositional systems; Delta A fed from the northwest, Delta B fed from the west and Delta C fed from the southwest, respectively. From the late Eocene to early Oligocene, a decrease in sediment-flux into the hanging wall is documented and petrographic analysis is used to link these changes to stream-capture in the upstream catchment of the Daqing River. This change is coupled with morphologic changes in the geometries of Deltas A and C, both of which show decreasing deltaic areas, changes in lobe geometry and changes in distributary channel sizes. In addition, the progradational direction of Delta C changes from perpendicular-to-the-rift axis to prograding oblique-to-the-rift axis. It is apparent that the progradation and retrogradational changes in rift margin deltas do not happen in isolation, but such changes can affect growth and progradation direction in adjacent deltas. This work shows that the decrease in sediment-flux, caused by a drainage capture, will result in a decrease in distributary channel size and delta size and may result in upstream deltas taking advantage of such decreasing confinement to prograde more obliquely to the rift axis.  相似文献   

11.
Stratigraphic data from petroleum wells and seismic reflection analysis reveal two distinct episodes of subsidence in the southern New Caledonia Trough and deep‐water Taranaki Basin. Tectonic subsidence of ~2.5 km was related to Cretaceous rift faulting and post‐rift thermal subsidence, and ~1.5 km of anomalous passive tectonic subsidence occurred during Cenozoic time. Pure‐shear stretching by factors of up to 2 is estimated for the first phase of subsidence from the exponential decay of post‐rift subsidence. The second subsidence event occured ~40 Ma after rifting ceased, and was not associated with faulting in the upper crust. Eocene subsidence patterns indicate northward tilting of the basin, followed by rapid regional subsidence during the Oligocene and Early Miocene. The resulting basin is 300–500 km wide and over 2000 km long, includes part of Taranaki Basin, and is not easily explained by any classic model of lithosphere deformation or cooling. The spatial scale of the basin, paucity of Cenozoic crustal faulting, and magnitudes of subsidence suggest a regional process that acted from below, probably originating within the upper mantle. This process was likely associated with inception of nearby Australia‐Pacific plate convergence, which ultimately formed the Tonga‐Kermadec subduction zone. Our study demonstrates that shallow‐water environments persisted for longer and their associated sedimentary sequences are hence thicker than would be predicted by any rift basin model that produces such large values of subsidence and an equivalent water depth. We suggest that convective processes within the upper mantle can influence the sedimentary facies distribution and thermal architecture of deep‐water basins, and that not all deep‐water basins are simply the evolved products of the same processes that produce shallow‐water sedimentary basins. This may be particularly true during the inception of subduction zones, and we suggest the term ‘prearc’ basin to describe this tectonic setting.  相似文献   

12.
A well‐constrained plate deformation model may lead to an improved understanding of sedimentary basin formation and the connection between subduction history and over‐riding plate deformation. Building quantitative models of basin kinematics and deformation remains challenging often due to the lack of comprehensive constraints. The Bohai Bay Basin (BBB) is an important manifestation of the destruction of the North China Craton, and records the plate kinematic history of East Asia during the Cenozoic. Although a number of interpretations of the formation of the BBB have been proposed, few quantitative basin reconstruction models have been built to test and refine previous ideas. Here, we developed a quantitative deformation reconstruction of the BBB constrained with balanced cross‐sections and structural, stratigraphic and depositional age data. Our reconstruction suggests that the basin formation process was composed of three main stages: Paleocene‐early Eocene (65–42 Ma) extension initiation, middle Eocene‐early Oligocene (42–32.8 Ma) extension climax and post‐Oligocene (32.8–0 Ma) post‐extensional subsidence. The deformation of the BBB is spatially heterogeneous, and its velocity directions rotated clockwise during the basin formation process. The reconstruction supports the interpretation that the BBB formed via strike‐slip faulting and orthogonal extension and that the basin is classified as a composite extensional‐transtensional basin. We argue that the clockwise rotation of the basin velocity field was driven by the counter‐clockwise rotation in the direction of Pacific Plate subduction. The kinematics of the BBB imply that the Pacific Plate may have been sufficiently coupled to the over‐riding East Asian Plate during the critical period of Pacific Plate reorganization. The new reconstruction provides a quantitative basis for studies of deformation processes not only in the vicinity of the BBB, but also more broadly throughout East Asia.  相似文献   

13.
Unconformities, which represent either periods of interruption of sedimentation or, in most cases events characterized by deposition and subsequent erosion, are commonplace geological phenomena in sedimentary basins, and will affect the pore pressure evolution of the basin fill. The effect of unconformities on pore pressure, as well as on sediment compaction and on burial processes is studied using a numerical basin model. For coarse sediments, which are permeable so that their pore pressure always remains nearly hydrostatic, the effects of both pure deposition interruption (hiatus) and deposition-erosion events are negligible for pore pressure evolution. However, for fine-grained sediments, unconformities can modify the pore pressure and the stress state to varying degrees. The results show that the rate of removal of overlying sediments, the permeability of sediments and time play important roles in the pore pressure evolution. In the East Slope of the Ordos Basin (China), in which overpressure has not been detected in deep wells, the modelling results suggest that the large-scale erosion occurring in the Late Cretaceous and in the Tertiary may have removed high overpressure existing in the basin before the erosion.  相似文献   

14.
Summary. A systematic approach is suggested for modelling the development of sedimentary basins. The theory, which partitions basin formation into initiating and isostatic adjustment processes, is applicable to all modes of basin formation if these processes are linear, or can he represented with sufficient accuracy in an incrementally linear form.
The dynamics of regional isostatic adjustment are characterized by the Heaviside space-time Green functions for the response of elastic and viscoelastic (Maxwell) thin plate models of the lithosphere. It is shown, by convolving the Heaviside—Green functions with cylindrical surface loads, that the rate of isostatic adjustment on a viscoelastic lithosphere is a function of the wavelength of the surface load, long wavelengths being compensated most rapidly.
Six archetypal initiating processes for sedimentary basin development are presented. These processes are those responsible for the subsidence of the Earth's surface which creates a depression in which water and sediments collect. Isostatic amplification of subsidence by sediment and water loads is cast in the form of an integral equation with isostatic Heaviside—Green functions as kernel.
Specific examples, the basins that result from a graben initiating process, are compared with the largest scale structure of the North Sea Basin, a basin that is known to be underlain by a graben system. A model, in which a 50-km wide graben subsides exponentially with a time constant of 5 × 107yr during the interval 180–100 Myr bp , is shown to be consistent with the largest scale structure of the North Sea Basin if the underlying lithosphere is viscoelastic with a flexural rigidity of ∼5 × 1025 Nm and relaxation time constant ∼ 106 yr.  相似文献   

15.
Geothermal resources hosted within sedimentary basins with high natural permeability have been targeted for the production of energy in Australia. The Hutton Sandstone (Cooper‐Eromanga Basin) – a prolific oil and gas producer known to have good reservoir quality and high reservoir volume – was recently tested for its geothermal potential in the Cooper Region. However, recent exploratory drilling did not produce the anticipated flow rates, raising the question of the impact of diagenesis on the reservoir quality of this sedimentary formation. The combined characterization of the petrology, diagenesis and petrophysical properties of the Hutton Sandstone at Celsius‐1 and other surrounding wells indicates variable reservoir properties in the Cooper Region. This integrated study demonstrates that low formation permeability occurs at geothermal target depth and explains the negligible flow rates obtained at Celsius‐1. These low permeabilities are the results of the preservation of widespread detrital clayey matrix and the extensive occurrence of authigenic kaolinite, illite and silica cements at the top and base of the Hutton Sandstone. This aspect is confirmed by NMR T2 transversal relaxation time becoming shorter at similar depths. Petrography analysis also reveals that sandstones are affected by diagenetic processes of the eogenetic and mesogenetic phases. However, the Hutton Sandstone at Celsius‐1 is presently at pressure‐temperature conditions that are below the mesogenetic conditions, which suggests a late episode of uplift and cooling from maximum palaeotemperatures.  相似文献   

16.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

17.
There are a series of basins in the Fenwei Graben. Field survey found that there took place several paleolake regressions or intensive stream down-incisions in all basins during the Mid-Late Quaternary. The lowest and oldest paleosol/loess units overlying three of the lacustrine terraces or alluvial ones and some paleomagenetism data from the lacustrine sediment indicate that the onset times of three paleolake regressions or intensive stream down-incisions are synchronous with the formation of L9, L6 and L2 respectively in the Weihe Basin, S8, S5 and S1 respectively in the Linfen-Taiyuan-Xingding Basins, and L8, L5 and L1 respectively in the Datong Basin. The difference in the onset time of each lake regressions or intensive stream down-incision in different basins reveals that the farther the basin is from the Tibetan Plateau, the later it took place. Taking these field facts and the former research results in terms of the regional tectonic movement into account, it is inferred that the tectonic movement of the Tibetan Plateau most probably controlled such geomorphologicalsedimentary evolution in the graben.  相似文献   

18.
Fission track analyses of detrital components in the Permo-Triassic Karoo Basin (South Africa), highlight the potency of tectono-magmatically driven fluids to penetrate wide and far in foreland basins. The data, together with the data published on Karoo tectonics and magmatism, support a model which requires that fluids were driven north out of the Cape-Karoo orogen during the Cape Orogeny (270–200 Ma). Later fluids were redistributed and aquifers rejuvenated during (and after) the final break-up of Gondwana (<200 Ma). The fission track data indicate that thermal annealing of fission tracks in zircon occurs non-uniformly between individual zircon grains. This model is in agreement with recent models applied to deformed foreland basins and implicates tectonic fluids in U metallogenesis.  相似文献   

19.
20.
The late Messinian mixed carbonate‐siliciclastic platforms of the Sorbas Basin, known as the Terminal Carbonate Complex, record significant changes in carbonate production and geometry. Their facies and stratigraphic architecture result from complex interactions between base‐level fluctuations, evaporite deformation/dissolution and detrital inputs. A 3D quantitative approach (with DIONISOS software) is used to explore the basin‐scale platform architecture and to quantify the carbonate production of the Terminal Carbonate Complex. The modelling strategy consists in integrating detailed 2D field‐based transects and modern carbonate system parameters (e.g. carbonate production rates, bathymetric and hydrodynamic ranges of production). This approach limits user impact and so provides more objective output results. Tests are carried out on carbonate production rates, subsidence and evaporite deformation/dissolution. Numerical modelling provides accurate predictions of geometries, facies distributions and depositional sequence thicknesses, validated by field data. Comparative statistical testing of the field transects and of the various model outputs are used to discern the relative contribution of the parameters tested to the evolution of basin filling. The 3D visualization and quantification of the main carbonate producers (ooids and microbialites) are discussed in terms of changes in base‐level and detrital supply. This study demonstrates that base‐level fluctuations have the greatest impact on the carbonate budget. Evaporite deformation/dissolution affects the type and amount of carbonate production, inducing a transition from an ooid‐ to microbialite‐dominated system and also has a major effect on stratigraphic architecture by inducing the migration of depocentres. The numerical modelling results obtained using modern carbonate system parameters could also be applied to subsurface ooid‐microbialite reservoirs, and the Terminal Carbonate Complex is a good analogue for such systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号