首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Planktonic gross primary production (GPP), community respiration (CR), and nitrification (NIT) were measured monthly in the Scheldt estuary by the oxygen incubation method in 2003. No significant evolution of planktonic GPP was observed since the 1990s with high rates in the freshwater area (salinity 0; 97±65 mmol C m−2 d−1) decreasing seaward (22–37 mmol C m−2 d−1). A significant decrease of NIT was observed with regard to previous investigations although this process still represents up to 20% of total organic matter production in the inner estuary. Planktonic CR was highest in the inner estuary and seemed to be mainly controlled by external organic matter inputs. Planktonic net community production was negative most of the time in the estuary with values ranging from −300 to 165 mmol C m−2 d−1. Whole estuary net ecosystem production (NEP) was investigated on an annual scale using the results mentioned above and published benthic metabolic rates. A NEP of −39±8 mmol C m−2 d−1 was estimated, which confirms the strong heterotrophic status of this highly nutrified estuary. NEP rates were computed from June to December 2003 to compare with results derived from the Land-Ocean Interaction in the Coastal Zone budgeting procedure applied to dissolved inorganic phosphorus and carbon (DIP and DIC). DIP budgets failed to provide realistic estimates in the inner estuary where abiotic processes account for more than 50% of the nonconservative DIP flux. DIC budgets predicted a much lower NEP than in situ incubations (−109±31 versus −42±9 mmol C m−2 d−1) although, as each approach is associated with several critical assumptions, the source of this discrepancy remains unclear.  相似文献   

2.
To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.  相似文献   

3.
Responses of autotrophic and heterotrophic processes to nutrients and trace elements were examined in a series of experimental estuarine food webs of increasing trophic complexity using twenty 1-m3 mesocosms. Nutrients (nitrogen and phosphorus) and trace elements (a mix of arsenic, copper, cadmium) were added alone and in combination during four experimental runs spanning from spring 1997 to spring 1998. Diel changes in dissolved oxygen were used to examine whole system gross primary production (WS-GPP), respiration (WS-RESP), and net ecosystem metabolism (NEM). Nutrient and trace element additions had the greatest effect on WS-GPP, WS-RESP, and NEM; trophic complexity did not significantly affect any of these parameters (p>0.3). Effects of trophic complexity were detected in nutrient tanks where bivalves significantly (p=0.03) reduced WS-GPP. Nutrient additions significantly enhanced WS-GPP and to a lesser extent WS-RESP during most mesocosm runs. The system shifted from net heterotrophy (−17.2±1.8 mmol C m−3 d−1) in the controls to net autotrophy (29.1±7.6 mmol C m−3 d−1) in the nutrient tanks. The addition of trace elements alone did not affect WS-GPP and WS-RESP to the same extent as nutrients, and their effects were more variable. Additions of trace elements alone consistently made the system more net heterotrophic (−24.9±1.4 mmol C m−3 d−1) than the controls. When trace elements were added in combination with nutrients, the nutrient-enriched system became less autotrophic (1.6±3.1 mmol C m−3 d−1). The effects of trace elements on NEM occurred primarily through reductions in WS-GPP rather than increases in WS-RESP. Our results suggest that autotrophic and heterotrophic processes respond differently to these stressors.  相似文献   

4.
Biogeochemical processes occurring near the sediment-water interface of shallow (≈20 m) water sediments lying beneath the Mississippi River plume on the Louisiana shelf were studied using benthic chambers and sediment cores. Three sites were chosen with distinctly different characteristics. One was overlain by oxic water where aerobic respiration dominated organic matter remineralization. The second site was overlain by oxic water but organic matter remineralization was dominated by sulfate reduction. The third site was overlain by hypoxic water and aerobic remineralization was of minor significance. Major differences were observed in the fluxes of CO2(17–56 mmol m−2 d−1), O2(2–56 mmol m−2 d−1) and nutrients (e.g., NH4 +, 2.6–4.2 mmol m−2 d−1) across the sediment-water interface, and the relative importance of different electron acceptors, even though the sites were in close proximity and at nearly the same water depth. Large variations in the efficiency of organic-C burial (3%–51%) were also calculated based on a simplified model of the relationships between the fraction of organic matter remineralized by sulfate reduction and the fraction of sulfide produced that is buried as pyrite. These observations demonstrate the high degree of spatial heterogeneity of benthic biogeochemistry in this important near-deltaic environment.  相似文献   

5.
We report integrated measurements of sediment oxygen consumption (SOC) and bottom water plankton community respiration rates (WR) during eight cruises from 2003 to 2007 on the Louisiana continental shelf (LCS) where hypoxia develops annually. Averaged by cruise, SOC ranged from 3.9 to 25.8 mmol O2 m−2 day−1, whereas WR ranged from 4.1 to 10.8 mmol O2 m−3 day−1. Total below-pycnocline respiration rates ranged from 46.4 to 104.5 mmol O2 m−2 day−1. In general, below-pycnocline respiration showed low variability over a large geographic and temporal range, and exhibited no clear spatial or inter-annual patterns. SOC was strongly limited by dissolved oxygen (DO) in the overlying water; whereas, WR was insensitive to low DO, a relationship that may be useful for parameterizing future models. The component measures, WR and SOC, were similar to most prior measurements, both from the LCS and from other shallow estuarine and coastal environments. The contribution of SOC to total below-pycnocline respiration averaged 20 ± 4%, a finding that differs from several prior LCS studies, but one that was well supported from the broader estuarine and oceanic literature. The data reported here add substantially to those available for the LCS, thus helping to better understand oxygen dynamics on the LCS.  相似文献   

6.
Sulfate reduction rates were measured over the course of a year in the sediments of aJuncus roemerianus marsh located in coastal Alabama. Sulfate reduction rates were typically highest in the surface 0–2 cm and at depths corresponding to peak belowground biomass of the plants. The highest volume-based sulfate reduction rate measured was 1,350 μmol liter-sediment−1 d−1 in September 1995. Areal sulfate reduction rates (integrated to 20 cm depth) were strongly correlated to sediment temperature and varied seasonally from 15.2 mmol SO 4 2− m−2 d−1 in January 1995 to 117 mmol SO 4 2− m−2 d−1 in late August 1995. Despite high sulfate reduction rates porewater dissolved sulfide concentrations were low (<73 μM), indicating rapid sulfide oxidation or precipitation. Sulfate depletion data indicated that net oxidation of sediment sulfides occurred in March through May, following a period of infrequent tidal flooding and during a period of high plant production. Porewater Fe(II) reached very high levels (maximum of 969 μM; mean for all dates was 160 μM), particularly during periods of high sulfate reduction. The annual sulfate reduction rate integrated over the upper 20 cm of sediment was 22.0 mol SO 4 2− m−2 yr−1, which is among the highest rates measured in a wetland ecosystem. Based on literature values of net primary production inJ. roemerianus marshes, we estimate that an amount equivalent to 16% to 90% of the annual belowground production may be remineralized through sulfate reduction.  相似文献   

7.
Benthic metabolism and nutrient exchange across the sediment-water interface were examined over an annual cycle at four sites along a freshwater to marine transect in the Parker River-Plum Island Sound estuary in northeastern Massachusetts, U.S. Sediment organic carbon content was highest at the freshwater site (10.3%) and decreased along the salinity gradient to 0.2% in the sandy sediments at the marine end of the estuary. C:N ratios were highest in the mid estuary (23:1) and lowest near the sea (11:1). Chlorophyll a in the surface sediments was high along the entire length of the estuary (39–57 mg chlorophyll a m−2) but especially so in the sandy marine sediments (172 mg chlorophyll a m−2). Chlorophyll a to phaeophytin ratios suggested most chlorophyll is detrital, except at the sandy marine site. Porewater sulfide values varied seasonally and between sites, reflecting both changes in sulfate availability as overlying water salinity changed and sediment metabolism. Patterns of sediment redox potential followed those of sulfide. Porewater profiles of inorganic N and P reflected strong seasonal patterns in remineralization, accumulation, and release. Highest porewater NH4 + values were found in upper and mid estuarine sediments, occasionally exceeding 1 mM N. Porewater nitrate was frequently absent, except in the sandy marine sediments where concentrations of 8 μM were often observed. Annual average respiration was lowest at the marine site (13 mmol O2 m−2 d−1 and 21 mmol TCO2 m−2 d−1) and highest in the mid estuary (130 mmol O2 m−2 d−1 and 170 mmol TCO2 m−2 d−1) where clam densities were also high. N2O and CH4 fluxes were low at all stations throughout the year: Over the course, of a year, sediments varied from being sources to sinks of dissolved organic C and N, with the overall spatial pattern related closely to sediment organic content. There was little correlation between PO4 3− flux and metabolism, which we attribute to geochemical processes. At the two sites having the lowest salinities, PO4 3− flux was directed into the sediments. On average, between 22% and 32% of total system metabolism was attributable to the benthos. The mid estuary site was an exception, as benthic metabolism accounted for 95% of the total, which is attributable to high densities of filter-feeding clams. Benthic remineralization supplied from less than 1% to over 190% of the N requirements and 0% to 21% of the P requirements of primary producers in this system. Estimates of denitrification calculated from stoichiometry of C and N fluxes ranged from 0% for the upper and mid estuary site to 35% for the freshwater site to 100% of sediment organic N remineralization at the marine site. We hypothesize that low values in the upper and mid estuary are attributable to enhanced NH4 + fluxes during summer due to desorption of exchangeable ammonium from rising porewater salinity. NH4 + desorption during summer may be a mechanism that maintains high rates of pelagic primary production at a time of low inorganic N inputs from the watershed.  相似文献   

8.
Since 1991, Mississippi River water has been diverted at Caernarvon, Louisiana, into Breton Sound estuary. Breton Sound estuary encompasses 1100 km2 of fresh and brackish, rapidly subsiding wetlands. Nitrite + nitrate, total Kjeldahl nitrogen, ammonium, total phosphorus, total suspended sediments, and salinity concentrations were monitored at seven locations in Breton Sound from 1988 to 1994. Statistical analysis of the data indicated decreased total Kjeldahl nitrogen with associated decrease in total nitrogen, and decreased salinity concentrations in the estuary due to the diversion. Spring and summer water quality transects indicated rapid reduction of nitrite + nitrate and total suspended sediment concentration as diverted Mississippi River water entered the estuary, suggesting near complete assimilation of these constituents by the ecosystem. Loading rates of nitrite + nitrate (5.6–13.4 g m−2 yr−1), total nitrogen (8.9–23.4 g m−2 yr−1), and total phosphorus (0.9–2.0 g m−2 yr−1) were calculated along with removal efficiencies for these constituents (nitrite + nitrate 88–97%; total nitrogen 32–57%; total phosphorus 0–46%). The low impact of the diversion on water quality in the Breton Sound estuary, along with assimilation of TSS over a very short distance, suggests that more water may be introduced into the estuary without detrimental affects. This would be necessary if freshwater diversions are to be used to distribute nitrients and sediments into the lower reaches of the estuary, in an effort to compensate for relative sea-level rise, and reverse the current trend of rapid loss of wetlands in coastal Louisiana.  相似文献   

9.
Benthic oxygen, dinitrogen, and nutrient fluxes (NH4+, NO3, and PO43−) were measured monthly during a 1-year period at two locations in Weeks Bay, a shallow (1.4 m) and eutrophic estuary in Alabama. Gross primary productivity (GPP), ecosystem respiration (R), and net ecosystem metabolism were determined from high-frequency dissolved oxygen measurements. Peak water column NO3 (55 μM) and chlorophyll a (138 μg/l) concentrations were measured during spring and fall, respectively. Sediments were a net source of NH4+ (102 μmol m−2 h−1) and PO43− (0.9 μmol m−2 h−1) but a sink for NO3 (−30 μmol m−2 h−1). Benthic N2 fluxes indicated net N fixation (12 μmol N m−2 h−1). Sediment oxygen demand (0.55 g O2 m−2 day−1) accounted for <10% of R (7.3 g O2 m−2 day−1). Despite high GPP rates (4.7 g O2 m−2 day−1), the estuary was net heterotrophic. Benthic regeneration supplied, on average, 7.5% and 4% of primary productivity N and P demands, respectively. These results contrast with the conventional view that benthic regeneration accounts for a large fraction of phytoplankton nutrient demand in shallow estuaries.  相似文献   

10.
Annually integrated air-water CO2 flux data in 44 coastal environments were compiled from literature. Data were gathered in 8 major ecosystems (inner estuaries, outer estuaries, whole estuarine systems, mangroves, salt marshes, coral reefs, upwelling systems, and open continental shelves), and up-scaled in the first attempt to integrate air-water CO2 fluxes over the coastal ocean (26×106 km2), taking into account its geographical and ecological diversity. Air-water CO2 fluxes were then up-scaled in global ocean (362×106 km2) using the present estimates for the coastal ocean and those from Takahashi et al. (2002) for the open ocean (336×106 km2). If estuaries and salt marshes are not taken into consideration in the up-scaling, the coastal ocean behaves as a sink for atmospheric CO2(−1.17 mol C m−2 yr−1) and the uptake of atmospheric CO2 by the global ocean increases by 24% (−1.93 versus −1.56 Pg C yr−1). The inclusion of the coastal ocean increases the estimates of CO2 uptake by the global ocean by 57% for high latitude areas (−0.44 versus −0.28 Pg C yr−1) and by 15% for temperate latitude areas (−2.36 versus −2.06 Pg C yr−1) At subtropical and tropical latitudes, the contribution from the coastal ocean increases the CO2 emission to the atmosphere from the global oceam by 13% (0.87 versus 0.77 Pg C yr−1). If estuaries and salt marshes are taken into consideration in the upscaling, the coastal ocean behaves as a source for atmospheric CO2 (0.38 mol C m−2 yr−1) and the uptake of atmospheric CO2 from the global ocean decreases by 12% (−1.44 versus −1.56 Pg C yr−1) At high and subtropical and tropical latitudes, the coastal ocean behaves as a source for atmospheric CO2 but at temperate latitudes, it still behaves as a moderate CO2 sink. A rigorous up-scaling of air-water CO2 fluxes in the coastal ocean is hampered by the poorly constrained estimate of the surface area of inner estuaries. The present estimates clearly indicate the significance of this biogeochemically, highly active region of the biosphere in the global CO2 cycle.  相似文献   

11.
Direct census of shoots tagged in permanent plots was used to assess the present (2000–2002)Posidonia oceanica population dynamics in 25 meadows along the Spanish Mediterranean Coast. Shoot density ranged from 154±8 to 1,551±454 shoots m−2, absolute shoot mortality from 5±0 to 249±53 shoots m−2 yr−1, and absolute shoot recruitment from <5 ±1 to 62±42 shoots m−2yr−1. Specific shoot mortality and recruitment rates, which are mathematically and statistically (p>0.05) independent of shoot density, varied from 0.015±0.006 to 0.282±0.138 yr−1 and 0.018±0.005 to 0.302±0.093 yr−1, respectively. Absolute shoot mortality rate was scaled to shoot density (Pearson correlation, r=0.78, p<0.0001), and variability in specific shoot recruitment rate was partially due to differences in the percentage of growing apexes, which produce most of the recruits within the population (Pearson correlation, r=0.50, p<0.001), demonstrating the existence of structural constraints on shoot demography. Shoot half-life was estimated to range from 2.5 to 60.4 yr and meadow turnover times between 6.7 yr and more than a century, provided current estimates of shoot mortality, recruitment rates, and density remain uniform. There were differences in shoot mortality and recruitment at the regional scale, with the meadows developing along the coast of the Spanish mainland experiencing the highest shoot mortality (Tukey test, p<0.05) and tending to exhibit the highest shoot recruitment. The low shoot recruitment did not balance shoot mortality in most (60%) of the meadows, showing a prevalence of declining populations among the 25 meadows studied (Wilcoxon ranked sign test, p<0.0005). This study demonstrates the power of direct census of seagrass shoots in permanent plots to evaluate the present status of seagrass meadows, to detect on-going population decline, and to provide some insight onto the possible factors involved. The incorporation of direct census of seagrass meadows to monitoring programs will help provide the early-warning signals necessary to support management decisions to conserve seagrass meadows.  相似文献   

12.
We investigated seasonal variability in organic carbon (OC) budgets using a physical-biological model for the Mississippi River turbidity plume. Plume volume was calculated from mixed layer depth and area in each of four salinity subregions based on an extensive set of cruise data and satellite-derived suspended sediment distributions. These physical measurements were coupled with an existing food web model to determine seasonally dependent budgets for labile (reactive on time scales of days to weeks) OC in each salinity subregion. Autochthonous gross primary production (GPP) equaled 1.3×1012 g C yr−1 and dominated labile OC inputs (88% of the budget) because riverine OC was assumed mostly refractory (nonreactive). For perspective, riverine OC inputs amounted to 3.9×1012 g C yr−1, such that physical inputs were 3 times greater than biological inputs to the plume. Annually, microbial respiration (R) accounted for 65% of labile OC losses and net metabolism (GPP—R) for the entire plume was, autotrophic, equaling 5.1×1011 g C yr−1. Smaller losses of labile OC occurred via sedimentation (20%), advection (10%), and export to higher trophic levels (5%). In our present model, annual losses of labile OC are 10% higher than inputs, indicating future improvements are required. Application of our model to estimate air-sea carbon dioxide (CO2) fluxes indicated the plume was a net sink of 2.0×109 mol CO2 yr−1, of which 90% of the total drawdown was from biotic factors. In all seasons, low salinity waters were a source of CO2 (pCO2=560–890 μatm), and intermediate to high salinity waters were a sink of CO2 (pCO2=200–370 μatm). Our model was also used to calculate O2 demand for the development, of regional hypoxia, and our spring and early summer budgets indicated that sedimentation of autochthonous OC from the immediate plume contributed 23% of the O2 demand necessary for establishment of hypoxia in the region.  相似文献   

13.
This paper addresses temporal variability in bottom hypoxia in broad shallow areas of Mobile Bay, Alabama. Time-series data collected in the summer of 2004 from one station (mean depth of 4 m) exhibit bottom dissolved oxygen (DO) variations associated with various time scales of hours to days. Despite a large velocity shear, stratification was strong enough to suppress vertical mixing most of the time. Bottom DO was closely related to the vertical salinity gradient (ΔS). Hypoxia seldom occurred when ΔS (over 2.5 m) was <2 psu and occurred almost all the time when ΔS was >8 psu in the absence of extreme events like hurricanes. Oxygen balance between vertical mixing and total oxygen demand was considered for bottom water from which oxygen demand and diffusive oxygen flux were estimated. The estimated decay rates at 20°C ranging between 0.175–0.322 d−1 and the corresponding oxygen consumption as large as 7.4 g O2 m−2 d−1 fall at the upper limit of previously reported ranges. The diffusive oxygen flux and the corresponding vertical diffusivity estimated for well mixed conditions range between 8.6–9.5 g O2 m−2 d−1 and 2.6–2.9 m2 d−1, respectively. Mobile Bay hypoxia is likely to be associated with a large oxygen demand, supported by both water column and sediment oxygen demands, so that oxygen supply from surface water during destratification events would be quickly exhausted to return to hypoxic conditions within a few hours to days after destratification events are terminated.  相似文献   

14.
Lakes worldwide are commonly oversaturated with CO2, however the source of this CO2 oversaturation is not well understood. To examine the magnitude of the C flux to the atmosphere and determine if an excess of respiration (R) over gross primary production (GPP) is sufficient to account for this C flux, metabolic parameters and stable isotopes of dissolved O2 and C were measured in 23 Québec lakes. All of the lakes sampled were oversaturated with CO2 over the sampling period, on average 221 ± 25%. However, little evidence was found to conclude that this CO2 oversaturation was the result of an excess of pelagic R over GPP. In lakes Croche and à l’Ours, where CO2 flux, R and GPP were measured weekly, the annual difference between pelagic GPP and R, or net primary production (NPP), was not sufficient to account for the size of the CO2 flux to the atmosphere. In Lac Croche average annual NPP was 14.4 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 34 mg C m−2 d−1. In Lac à l’Ours average annual NPP was −9.1 mg C m−2 d−1 while the average annual flux of CO2 to the atmosphere was 55 mg C m−2 d−1. In all of the lakes sampled, O2 saturation averaged 104.0 ± 1.7% during the ice-free season and the isotopic composition of dissolved O218ODO) was 22.9 ± 0.3‰, lower than atmospheric values and indicative of net autotrophy. Carbon evasion was not a function of R, nor did the isotopic signature of dissolved CO2 in the lakes present evidence of excess R over GPP. External inputs of C must therefore subsidize the lake to explain the continued CO2 oversaturation. The isotopic composition of dissolved inorganic C (δ13CDIC) indicates that the CO2 oversaturation cannot be attributed to in situ aerobic respiration. δ13CDIC reveals a source of excess C enriched in 13C, which may be accounted for by anaerobic sediment respiration or groundwater inputs followed by kinetic isotope fractionation during degassing under open system conditions.  相似文献   

15.
A methodology to estimate a methane emission in a waste landfill site was developed. The methane flux at a waste landfill site in summer, autumn, and winter was within the following ranges: from −1.3×10−2 to 16, from −6.4×10−2 to 7.5, and from −1.6×10−3 to 1.5×10−2 g-CH4 m−2 h−1, respectively. In those seasons, the mean methane emission rate and coefficient of variation were 1.1 g-CH4 m−2 h−1 ±290%, 0.57 g-CH4 m−2 h−1 ±347%, and 5.4×10−2 g-CH4 m−2 h−1 ±370%, respectively. These results simultaneously showed that fluctuations of methane emission from the landfill surface were both of spatial and temporal variability. In each season, an exponential relationship was observed between the methane flux density and the ground temperature. Total methane emissions were estimated to be 5.7×10−2, 7.1×10−3, and 1.7×10−3 g-CH4 m−2 h−1 in the summer, autumn, and winter surveys, respectively, using a temperature surrogated-kriging method. The results of this study would improve upon the labor-intensive closed-chamber method, and could be a more practical way to estimate methane emissions from waste landfills.  相似文献   

16.
Benthic fluxes in two southern California borderland basins have been estimated by modeling water column property gradients, by modeling pore water gradients and by measuring changes in concentration in a benthic chamber. Results have been used to compare the different methods, to establish budgets for biogenic silica and carbon and to estimate rate constants for models of CaCO3 dissolution. In San Pedro Basin, a low oxygen, high sedimentation rate area, fluxes of radon-222 (86 ± 8 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.9 ± 0.3 mmol m−2 d−1) and nitrate (−0.8 ± 0.1 mmol m−2 d−1) measured in a benthic chamber agree within the measurement uncertainty with fluxes estimated from modeling profiles of nutrients and radon obtained in the water column. The diffusive fluxes of radon, SiO2 and TCO2 determined from modeling the sediment and pore water also agree with the other approaches. Approximately 33 ± 13% of the organic carbon and 37 ± 47% of the CaCO3 arriving at the sea floor are recycled. In San Nicolas Basin, which has larger oxygen concentrations and lower sedimentation rates than San Pedro, the fluxes of radon (490 ± 16 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.7 ± 0.2 mmol m−2 d−1), oxygen (−0.7 ± 0.1 mmol m−2 d−1) and nitrate (-0.4 ± 0.1 mmol m−2 d−1) determined from chamber measurements agree with the water column estimates given the uncertainty of the measurements and model estimates. Diffusion from the sediments matches the lander-measured SiO2 and PO43− (0.017 ± 0.002 mmol m−2 d−1) fluxes, but is not sufficient to supply the radon or TCO2 fluxes observed with the lander. In San Nicolas Basin 38 ± 9% of the organic carbon and 43 ± 22% of the CaCO3 are recycled. Approximately 90% of the biogenic silica arriving at the sea floor in each basin is recycled. The rates of CaCO3 dissolution determined from chamber flux measurements and material balances for protons and electrons are compared to those predicted by previously published models of CaCO3 dissolution and this comparison indicates that in situ rates are comparable to those observed in laboratory studies of bulk sediments, but orders of magnitude less than those observed in experiments done with suspended sediments.  相似文献   

17.
The high permeability of sediments and strong near-bottom currents cause seawater to infiltrate the surface layers of Middle Atlantic Bight shelf deposits. In this study, sandy sediment cores from 11 to 12 m water depth were percolated with filtered seawater on shipboard. Sedimentary oxygen consumption (SOC) increased non-linearly with pore water flow, approaching maximum rates of 120 mmol m−2 d−1 (May 2001) or 75 mmol m−2 d−1(July 2001). The addition of acetate to the inflowing water promptly enhanced the release of dissolved inorganic carbon (DIC) from the cores. DIC production rates were a linear function of acetate concentration, ranging from 100 to 300 mmol m−2 d−1 without substrate addition to 572 mmol m−2 d−1 with 100 mM acetate. The sediments also hydrolyzed a glucose pseudopolymer, and the liberated glucose prompted an increase of SOC. Our results suggest that decomposition rates of organic matter in permeable sands can exceed those of fine-grained, organic-rich deposits, when water currents cause advective interstitial flow, supplying the subsurface microbial community with degradable material and electron acceptors. We conclude that the highly permeable sand beds of the Middle Atlantic Bight are responsive within minutes to hours and efficiently operate as biocatalytical filters.  相似文献   

18.
In the lower delta of the Paraná River, at the head of the Río de la Plata estuary (Argentina), we compared net aboveground primary production (NAPP) and soil properties of the dominant macrophyteScirpus giganteus (Kunth) in a floating and an attached marsh community. Both marshes are tidally influenced but in different ways. The floating marsh site is relatively isolated from tidal influences because its ability to float makes it resistant to overland flow and to sediment inputs from the estuary. The attached marsh lacks the capacity to float and receives sediment supplies from the estuary through overland flow. These hydrologic differences are reflected in lower mineral content in sediments of the floating marsh. Using a leaf tagging technique, estimated NAPP was 1,109 ± 206 g m−2 yr−1 for the floating marsh and 1,866 ±258 g m−2 yr−1 for the attached marsh. We attribute the lower NAPP of the floating marsh to isolation from sediment input from overland flow.  相似文献   

19.
Wadeite K2ZrSi3O9 and its analogues K2TiSi3O9 and Cs2ZrSi3O9, synthesized by high-temperature solid-state sintering, have been investigated using powder X-ray diffraction coupled with Rietveld analysis and high-temperature oxide melt solution calorimetry. The crystal chemistry and energetics of these phases, together with K2SiVISi3 IVO9, a high-pressure wadeite analogue containing both tetrahedral and octahedral Si, are discussed in term of ionic substitutions. As the size of the octahedral framework cation increases, Si4+ → Ti4+ → Zr4+, the cell parameter c increases at a much higher rate than a. In contrast, increasing the interstitial alkali cation size (K+ → Cs+) results in a higher rate of increase in a compared with c. This behavior can be attributed to framework distortion around the interstitial cation. The enthalpies of formation from the constituent oxides (ΔHf,ox0) and from the elements (ΔHf,el0) have been determined from drop-solution calorimetry into 2PbO·B2O3 solvent at 975 K. The obtained values (in kJ/mol) are as follows: ΔHf,ox0 (K2TiSi3O9) = −355.8 ± 3.0, ΔHf,el0 (K2TiSi3O9) = −4395.1 ± 4.8, ΔHf,ox0 (K2ZrSi3O9) = −374.3 ± 3.3, ΔHf,el0 (K2ZrSi3O9) = −4569.9 ± 5.0, ΔHf,ox0 (Cs2ZrSi3O9) = −396.6 ± 4.4, and ΔHf,el0 (Cs2ZrSi3O9) = −4575.0 ± 5.5. The enthalpies of formation for K2SiVISi3 IVO9 were calculated from its drop-solution enthalpy of an earlier study (Akaogi et al. 2004), and the obtained ΔHf,ox0 (K2SiSi3O9) = −319.7 ± 3.4 and ΔHf,el0 (K2SiSi3O9) = −4288.7 ± 5.1 kJ/mol. With increasing the size of the octahedral framework cation or of the interstitial alkali cation, the formation enthalpies become more exothermic. This trend is consistent with the general behavior of increasing energetic stability with decreasing ionic potential (z/r) seen in many oxide and silicate systems. Further, increasing the size of the octahedral framework cation appears to induce more rapid increase in stability than increasing the interstitial alkali cation size, suggesting that framework cations play a more dominant role in wadeite stability.  相似文献   

20.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号