首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequential chromospheric brightenings (SCBs) are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. Since their initial discovery in 2005, there have been several subsequent investigations of SCBs. These studies have used differing detection and analysis techniques, making it difficult to compare results between studies. This work employs the automated detection algorithm of Kirk et al. (Solar Phys. 283, 97, 2013) to extract the physical characteristics of SCBs in 11 flares of varying size and intensity. We demonstrate that the magnetic substructure within the SCB appears to have a significantly smaller area than the corresponding \(\mbox{H}\upalpha\) emission. We conclude that SCBs originate in the lower corona around \(0.1~R_{\odot}\) above the photosphere, propagate away from the flare center at speeds of \(35\,\mbox{--}\,85~\mbox{km}\,\mbox{s}^{-1}\), and have peak photosphere magnetic intensities of \(148\pm2.9~\mbox{G}\). In light of these measurements, we infer SCBs to be distinctive chromospheric signatures of erupting coronal mass ejections.  相似文献   

2.
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.  相似文献   

3.
We studied the occurrence and characteristics of geomagnetic storms associated with disk-centre full-halo coronal mass ejections (DC-FH-CMEs). Such coronal mass ejections (CMEs) can be considered as the most plausible cause of geomagnetic storms. We selected front-side full-halo coronal mass ejections detected by the Large Angle and Spectrometric Coronagraph onboard the Solar and Heliospheric Observatory (SOHO/LASCO) from the beginning of 1996 till the end of 2015 with source locations between solar longitudes E10 and W10 and latitudes N20 and S20. The number of selected CMEs was 66 of which 33 (50%) were deduced to be the cause of 30 geomagnetic storms with \(\mathrm{Dst} \leq- 50~\mbox{nT}\). Of the 30 geomagnetic storms, 26 were associated with single disk-centre full-halo CMEs, while four storms were associated, in addition to at least one disk-centre full-halo CME, also with other halo or wide CMEs from the same active region. Thirteen of the 66 CMEs (20%) were associated with 13 storms with \(-100~\mbox{nT} < \mbox{Dst} \leq- 50~\mbox{nT}\), and 20 (30%) were associated with 17 storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\). We investigated the distributions and average values of parameters describing the DC-FH-CMEs and their interplanetary counterparts encountering Earth. These parameters included the CME sky-plane speed and direction parameter, associated solar soft X-ray flux, interplanetary magnetic field strength, \(B_{t}\), southward component of the interplanetary magnetic field, \(B_{s}\), solar wind speed, \(V_{sw}\), and the \(y\)-component of the solar wind electric field, \(E_{y}\). We found only a weak correlation between the Dst of the geomagnetic storms associated with DC-FH-CMEs and the CME sky-plane speed and the CME direction parameter, while the correlation was strong between the Dst and all the solar wind parameters (\(B_{t}\), \(B_{s}\), \(V_{sw}\), \(E_{y}\)) measured at 1 AU. We investigated the dependences of the properties of DC-FH-CMEs and the associated geomagnetic storms on different phases of solar cycles and the differences between Solar Cycles 23 and 24. In the rise phase of Solar Cycle 23 (SC23), five out of eight DC-FH-CMEs were geoeffective (\(\mbox{Dst} \leq- 50~\mbox{nT}\)). In the corresponding phase of SC24, only four DC-FH-CMEs were observed, three of which were nongeoeffective (\(\mbox{Dst} > - 50~\mbox{nT}\)). The largest number of DC-FH-CMEs occurred at the maximum phases of the cycles (21 and 17, respectively). Most of the storms with \(\mbox{Dst}\leq- 100~\mbox{nT}\) occurred at or close to the maximum phases of the cycles. When comparing the storms during epochs of corresponding lengths in Solar Cycles 23 and 24, we found that during the first 85 months of Cycle 23 the geoeffectiveness rate of the disk-centre full-halo CMEs was 58% with an average minimum value of the Dst index of \(- 146~\mbox{nT}\). During the corresponding epoch of Cycle 24, only 35% of the disk-centre full-halo CMEs were geoeffective with an average value of Dst of \(- 97~\mbox{nT}\).  相似文献   

4.
We use the data for the \(\text{H}\beta\) emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates \(\langle \mbox{SFR} \rangle \) averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking \(\langle \mbox{SFR} \rangle \) and the star formation rate \(\mbox{SFR}_{0}\) derived from the \(\text{H}\beta\) luminosity at zero starburst age is found to be 0.04. We compare \(\langle \mbox{SFR} \rangle \mbox{s}\) with some commonly used SFRs which are derived adopting a continuous star formation during a period of \({\sim}\,100~\mbox{Myr}\), and find that the latter ones are 2–3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for \(\langle \mbox{SFR} \rangle \) determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of \({\sim}\,2\) of the \(\langle \mbox{SFR} \rangle \) averaged over the lifetime of the bursting compact galaxy.  相似文献   

5.
A full three-dimensional, numerical model is used to study the modulation of Jovian and Galactic electrons from 1 MeV to 50 GeV, and from the Earth into the heliosheath. For this purpose the very local interstellar spectrum and the Jovian electron source spectrum are revisited. It is possible to compute the former with confidence at kinetic energies \(E < 50~\mbox{MeV}\) since Voyager 1 crossed the heliopause in 2012 at \(\sim 122~\mbox{AU}\), measuring Galactic electrons at these energies. Modeling results are compared with Voyager 1 observations in the outer heliosphere, including the heliosheath, as well as observations at or near the Earth from the ISSE3 mission, and in particular the solar minimum spectrum from the PAMELA space mission for 2009, also including data from Ulysses for 1991 and 1992, and observations above 1 MeV from SOHO/EPHIN. Making use of the observations at or near the Earth and the two newly derived input functions for the Jovian and Galactic electrons respectively, the energy range over which the Jovian electrons dominate the Galactic electrons is determined so that the intensity of Galactic electrons at Earth below 100 MeV is calculated. The differential intensity for the Galactic electrons at Earth for \(E = 1~\mbox{MeV}\) is \(\sim 4\) electrons \(\mbox{m}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{MeV}^{-1}\), whereas for Jovian electrons it is \(\sim 350\) electrons \(\mbox{m}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mbox{MeV}^{-1}\). At \(E = 30~\mbox{MeV}\) the two intensities are the same; above this energy the Jovian electron intensity quickly subsides so that the Galactic intensity completely dominates. At 6 MeV, in the equatorial plane the Jovian electrons dominate but beyond \(\sim 15~\mbox{AU}\) the Galactic intensity begins to exceed the Jovian intensity significantly.  相似文献   

6.
Previous analysis of magnetohydrodynamic-scale currents in high-speed solar wind near 1 AU suggests that the most intense current-carrying structures occur at electron scales and are characterized by average current densities on the order of \(1~\mbox{pA}/\mbox{cm}^{2}\). Here, this prediction is verified by examining the effects of the measurement bandwidth and/or measurement resolution on the analysis of synthetic solar wind signals. Assuming Taylor’s hypothesis holds for the energetically dominant fluctuations at kinetic scales, the results show that when \(\nu_{c}\gg \nu_{b}\), where \(\nu_{c}\) is the measurement bandwidth and \(\nu_{b} \approx 1/3~\mbox{Hz}\) is the break frequency, the average scale of the most intense fluctuations in the current density proxy is approximately \(1/\nu_{c}\), and the average peak current density is a weakly increasing function that scales approximately like \(\nu_{c}^{0.1}\).  相似文献   

7.
We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012?–?2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude \({>}\,\mbox{M1}\) and \({>}\,\mbox{C1}\) within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy \(\mathrm{ACC}=0.93(0.00)\), true skill statistic \(\mathrm{TSS}=0.74(0.02)\), and Heidke skill score \(\mathrm{HSS}=0.49(0.01)\) for \({>}\,\mbox{M1}\) flare prediction with probability threshold 15% and \(\mathrm{ACC}=0.84(0.00)\), \(\mathrm{TSS}=0.60(0.01)\), and \(\mathrm{HSS}=0.59(0.01)\) for \({>}\,\mbox{C1}\) flare prediction with probability threshold 35%.  相似文献   

8.
We present new two- and four-dimensional potential energy surfaces for the KCl(\(\mbox{X}^{1} \varSigma ^{+}\))-He and KCl(\(\mbox{X}^{1} \varSigma ^{+}\))-para-H2 systems calculated with the internuclear distances of KCl and H2 frozen at their experimental minimum energy. The CCSD(T) level of theory with aug-cc-pVQZ/AQZP basis sets is used. The potential surfaces present well depths of about \(78~\mbox{cm}^{-1}\) and \(235~\mbox{cm}^{-1}\) below the dissociation limit of the above interacting systems respectively. With these potential surfaces, cross sections are obtained in the close coupling scheme and rate coefficients inferred by averaging the cross sections over a Maxwell-Boltzmann velocity distribution for temperature below 50 K. A propensity towards \(\Delta J = 1\) transitions is observed.  相似文献   

9.
We investigate the parameters of global solar p-mode oscillations, namely damping width \(\Gamma\), amplitude \(A\), mean squared velocity \(\langle v^{2}\rangle\), energy \(E\), and energy supply rate \(\mathrm{d}E/\mathrm{d}t\), derived from two solar cycles’ worth (1996?–?2018) of Global Oscillation Network Group (GONG) time series for harmonic degrees \(l=0\,\mbox{--}\,150\). We correct for the effect of fill factor, apparent solar radius, and spurious jumps in the mode amplitudes. We find that the amplitude of the activity-related changes of \(\Gamma\) and \(A\) depends on both frequency and harmonic degree of the modes, with the largest variations of \(\Gamma\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le3300~\upmu\mbox{Hz}\) and \(31\le l \le60\) with a minimum-to-maximum variation of \(26.6\pm0.3\%\) and of \(A\) for modes with \(2400~\upmu\mbox{Hz}\le\nu\le 3300~\upmu\mbox{Hz}\) and \(61\le l \le100\) with a minimum-to-maximum variation of \(27.4\pm0.4\%\). The level of correlation between the solar radio flux \(F_{10.7}\) and mode parameters also depends on mode frequency and harmonic degree. As a function of mode frequency, the mode amplitudes are found to follow an asymmetric Voigt profile with \(\nu_{\text{max}}=3073.59\pm0.18~\upmu\mbox{Hz}\). From the mode parameters, we calculate physical mode quantities and average them over specific mode frequency ranges. In this way, we find that the mean squared velocities \(\langle v^{2}\rangle\) and energies \(E\) of p modes are anticorrelated with the level of activity, varying by \(14.7\pm0.3\%\) and \(18.4\pm0.3\%\), respectively, and that the mode energy supply rates show no significant correlation with activity. With this study we expand previously published results on the temporal variation of solar p-mode parameters. Our results will be helpful to future studies of the excitation and damping of p modes, i.e., the interplay between convection, magnetic field, and resonant acoustic oscillations.  相似文献   

10.
Far-ultraviolet photometry derived from the GALEX satellite observatory has been compiled for a sample of metal-poor subdwarfs with \(\mathrm{[Fe/H]} < -1.0\). The FUV properties of these subdwarfs are compared with those of a set of Population I dwarfs that are known to have low levels of chromospheric activity. Comparisons are made via a number of photometric plots, including an absolute FUV magnitude versus \((V-K_{s})\) diagram, two-colour diagrams involving both \((m_{ \mathrm{FUV}}-B)\) and \((m_{\mathrm{FUV}}-V)\) versus \(B-V\), and a two-colour diagram composed of \((m_{\mathrm{FUV}}-V)\) versus \((V-K_{s})\). The warmest subdwarfs with \((V-K_{s}) \sim1.2\mbox{--}1.4\) show FUV excesses ranging from \(\sim2\mbox{--}3~\mbox{mag}\) relative to the Population I dwarfs, with the amount of FUV enhancement decreasing among subdwarfs of decreasing effective temperature. The coolest dwarfs that are compared have \((V-K_{s}) \sim1.8\), and among these stars the subdwarfs with \(-2.0 \leq{\mathrm{[Fe/H]}} \leq-1.0\) approach the locus of low activity Population I dwarfs in the \((m_{\mathrm{FUV}}-V, V-K_{s})\) diagram. In the \((m_{\mathrm{FUV}}-B, B-V)\) diagram the subdwarfs in this metallicity range overlap the Population I dwarf sequence for \((B-V) > 0.6\). The behaviour of the subdwarfs is consistent with their FUV fluxes being determined by a combination of a photospheric FUV spectrum, the strength of which diminishes towards cooler effective temperatures, and a spectrum of emission lines arising from a chromosphere and/or transition region which are of comparable strength between the coolest dwarfs and subdwarfs.  相似文献   

11.
We estimate the electron density, \(n_{\mathrm{e}}\), and its spatial variation in quiescent prominences from the observed emission ratio of the resonance lines Na?i?5890 Å (D2) and Sr?ii?4078 Å. For a bright prominence (\(\tau_{\alpha}\approx25\)) we obtain a mean \(n_{\mathrm{e}}\approx2\times10^{10}~\mbox{cm}^{-3}\); for a faint one (\(\tau _{\alpha }\approx4\)) \(n_{\mathrm{e}}\approx4\times10^{10}~\mbox{cm}^{-3}\) on two consecutive days with moderate internal fluctuation and no systematic variation with height above the solar limb. The thermal and non-thermal contributions to the line broadening, \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\), required to deduce \(n_{\mathrm{e}}\) from the emission ratio Na?i/Sr?ii cannot be unambiguously determined from observed widths of lines from atoms of different mass. The reduced widths, \(\Delta\lambda_{\mathrm{D}}/\lambda_{0}\), of Sr?ii?4078 Å show an excess over those from Na?D2 and \(\mbox{H}\delta\,4101\) Å, assuming the same \(T_{\mathrm{kin}}\) and \(V_{\mathrm{nth}}\). We attribute this excess broadening to higher non-thermal broadening induced by interaction of ions with the prominence magnetic field. This is suggested by the finding of higher macro-shifts of Sr?ii?4078 Å as compared to those from Na?D2.  相似文献   

12.
We present a multi-wavelength correlation study of diffuse ultraviolet radiation using GALEX observations towards the Aquila Rift. Apart from airglow and zodiacal emissions, we find a diffuse background of \(1300\mbox{--} 3700~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\) in the far-ultraviolet (FUV, 1350–1750 Å) band and \(1300\mbox{--}2800~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\) in the near-ultraviolet (NUV, 1750–2850 Å) band. The observed diffuse UV emissions are saturated with total as well as neutral hydrogen column density in the region due to high optical depth in UV (\(\tau \), 0.91–23.38). Higher values of FUV/NUV ratio in the region, greater than the threshold value of 0.6, along with the positive correlation between the ratio and FUV intensity are due to excess emission in the FUV band which is absent in the NUV band. We estimated the excess emission to be in the range \(\sim 400\mbox{--} 2700~\mbox{ph}\,\mbox{cm}^{-2}\,\mbox{s}^{-1}\,\mbox{sr}^{-1}\,\mathring{\mathrm{A}}^{-1}\), plausibly due to H2 fluorescence, ion line emissions and two-photon continuum emissions from the region in the FUV band, which also shows saturation in optically thick regions with N(H2) as well as \(\mbox{H}\alpha \) emissions. Since N(H2) and \(\mbox{H}\alpha \) emissions spread all over the region, the excess emission from the field is composite in nature and a detailed spectroscopic analysis is needed to disentangle the contribution from individual components.  相似文献   

13.
We report the discovery of gamma-ray detection from the Large Magellanic Cloud (LMC) B0443-6657 using the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. LMC B0443-6657 is a flat-spectrum radio source, possibly associated with a supernova remnant in the Large Magellanic Cloud (LMC N4). Employing the LAT data of 8 years, our results show a significant excess (\(>9.4\sigma \)) of gamma rays in the range of 0.2–100 GeV above the gamma-ray background. A power-law function is found to adequately describe the 0.2–\(100\mbox{ GeV}\)\(\gamma \)-ray spectrum, which yields a photon flux of \(3.27\pm 0.53\ \text{photon}\,\mbox{cm}^{2}\,\mbox{s}^{-1}\) with a photon index of \(2.35\pm 0.11\), corresponding to an isotropic gamma-ray luminosity of \(5.3\times 10^{40}~\mbox{erg}\,\mbox{s}^{-1}\). The hadronic model predicts a low X-ray and TeV flux while the leptonic model predicts an observable flux in these two energy bands. The follow-up observations of the LMC B0443-6657 in X-ray or TeV band would distinguish the radiation models of gamma rays from this region.  相似文献   

14.
A new solar imaging system was installed at Hida Observatory to observe the dynamics of flares and filament eruptions. The system (Solar Dynamics Doppler Imager; SDDI) takes full-disk solar images with a field of view of \(2520~\mbox{arcsec} \times 2520~\mbox{arcsec}\) at multiple wavelengths around the \(\mathrm{H}\alpha\) line at 6562 Å. Regular operation was started in May 2016, in which images at 73 wavelength positions spanning from \(\mathrm{H}\alpha -9~\mathring{\mathrm{A}}\) to \(\mathrm{H}\alpha +9~\mathring{\mathrm{A}}\) are obtained every 15 seconds. The large dynamic range of the line-of-sight velocity measurements (\({\pm}\,400~\mbox{km}\,\mbox{s}^{-1}\)) allows us to determine the real motions of erupting filaments in 3D space. It is expected that SDDI provides unprecedented datasets to study the relation between the kinematics of filament eruptions and coronal mass ejections (CME), and to contribute to the real-time prediction of the occurrence of CMEs that cause a significant impact on the space environment of the Earth.  相似文献   

15.
In this paper, we study an interacting holographic dark energy model in the framework of fractal cosmology. The features of fractal cosmology could pass ultraviolet divergencies and also make a better understanding of the universe in different dimensions. We discuss a fractal FRW universe filled with the dark energy and cold dark matter interacting with each other. It is observed that the Hubble parameter embraces the recent observational range while the deceleration parameter demonstrates an accelerating universe and a behavior similar to \(\Lambda \mbox{CDM}\). Plotting the equation of state shows that it lies in phantom region for interaction mode. We use \(\mathit{Om}\)-diagnostic tool and it shows a phantom behavior of dark energy which is a condition of avoiding the formation of black holes. Finally we execute the StateFinder diagnostic pair and all the trajectories for interacting and non-interacting state of the model meet the fixed point \(\Lambda \mbox{CDM}\) at the start of the evolution. A behavior similar to Chaplygin gas also can be observed in statefinder plane. We find that new holographic dark energy model (NHDE) in fractal cosmology expressed the consistent behavior with recent observational data and can be considered as a model to avoid the formation of black holes in comparison with the main model of NHDE in the simple FRW universe. It has also been observed that for the interaction term varying with matter density, the model generates asymptotic de-Sitter solution. However, if the interaction term varies with energy density, then the model shows Big-Rip singularity. Using our modified CAMB code, we observed that the interacting model suppresses the CMB spectrum at low multipoles \(l<50\) and enhances the acoustic peaks. Based on the observational data sets used in this paper and using Metropolis-Hastings method of MCMC numerical calculation, it seems that the best value with \(1\sigma \) and \(2\sigma \) confidence interval are \(\Omega _{m0}=0.278^{+0.008~+0.010} _{-0.007~-0.009}\), \(H_{0}=69.9^{+0.95~+1.57}_{-0.95~-1.57}\), \(r_{c}=0.08^{+0.02~+0.027}_{-0.002~-0.0027}\), \(\beta =0.496^{+0.005~+0.009} _{-0.005~-0.009}\), \(c= 0.691^{+0.024~+0.039}_{-0.025~-0.037}\) and \(b^{2}=0.035\) according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.  相似文献   

16.
Many models of eruptive flares or coronal mass ejections (CMEs) involve formation of a current sheet connecting the ejecting CME flux rope with a magnetic loop arcade. However, there is very limited observational information on the properties and evolution of these structures, hindering progress in understanding eruptive activity from the Sun. In white-light images, narrow coaxial rays trailing the outward-moving CME have been interpreted as current sheets. Here, we undertake the most comprehensive statistical study of CME-rays to date. We use SOHO/LASCO data, which have a higher cadence, larger field of view, and better sensitivity than any previous coronagraph. We compare our results to a previous study of Solar Maximum Mission (SMM) CMEs, in 1984?–?1989, having candidate magnetic disconnection features at the CME base, about half of which were followed by coaxial bright rays. We examine all LASCO CMEs during two periods of minimum and maximum activity in Solar Cycle 23, resulting in many more events, \(\sim130\) CME-rays, than during SMM. Important results include: The occurrence rate of the rays is \(\sim11~\%\) of all CMEs during solar minimum, but decreases to \(\sim7~\%\) at solar maximum; this is most likely related to the more complex coronal background. The rays appear on average 3?–?4 hours after the CME core, and are typically visible for three-fourths of a day. The mean observed current sheet length over the ray lifetime is \(\sim12~R_{\odot}\), with the longest current sheet of \(18.5~R_{\odot}\). The mean CS growth rates are \(188~\mbox{km}\,\mathrm{s}^{-1}\) at minimum and \(324~\mbox{km}\,\mathrm{s}^{-1}\) at maximum. Outward-moving blobs within several rays, which are indicative of reconnection outflows, have average velocities of \(\sim350~\mbox{km}\,\mathrm{s}^{-1}\) with small positive accelerations. A pre-existing streamer is blown out in most of the CME-ray events, but half of these are observed to reform within \(\sim1\) day. The long lifetime and long lengths of the CME-rays challenge our current understanding of the evolution of the magnetic field in the aftermath of CMEs.  相似文献   

17.
Solar radio emission features a large number of fine structures demonstrating great variability in frequency and time. We present spatially resolved spectral radio observations of type IIIb bursts in the 30?–?80 MHz range made by the Low Frequency Array (LOFAR). The bursts show well-defined fine frequency structuring called “stria” bursts. The spatial characteristics of the stria sources are determined by the propagation effects of radio waves; their movement and expansion speeds are in the range of \((0.1\,\mbox{--}\,0.6)c\). Analysis of the dynamic spectra reveals that both the spectral bandwidth and the frequency drift rate of the striae increase with an increase of their central frequency. The striae bandwidths are in the range of \({\approx}\,(20\,\mbox{--}\,100)\) kHz and the striae drift rates vary from zero to \({\approx}\,0.3~\mbox{MHz}\,\mbox{s}^{-1}\). The observed spectral characteristics of the stria bursts are consistent with the model involving modulation of the type III burst emission mechanism by small-amplitude fluctuations of the plasma density along the electron beam path. We estimate that the relative amplitude of the density fluctuations is of \(\Delta n/n\sim10^{-3}\), their characteristic length scale is less than 1000 km, and the characteristic propagation speed is in the range of \(400\,\mbox{--}\,800~\mbox{km}\,\mbox{s}^{-1}\). These parameters indicate that the observed fine spectral structures could be produced by propagating magnetohydrodynamic waves.  相似文献   

18.
Recently we (Kahler and Ling, Solar Phys.292, 59, 2017: KL) have shown that time–intensity profiles [\(I(t)\)] of 14 large solar energetic particle (SEP) events can be fitted with a simple two-parameter fit, the modified Weibull function, which is characterized by shape and scaling parameters [\(\alpha\) and \(\beta\)]. We now look for a simple correlation between an event peak energy intensity [\(I_{\mathrm{p}}\)] and the time integral of \(I(t)\) over the event duration: the fluence [\(F\)]. We first ask how the ratio of \(F/I_{\mathrm{p}}\) varies for the fits of the 14 KL events and then examine that ratio for three separate published statistical studies of SEP events in which both \(F\) and \(I_{\mathrm{p}}\) were measured for comparisons of those parameters with various solar-flare and coronal mass ejection (CME) parameters. The three studies included SEP energies from a 4?–?13 MeV band to \(E > 100~\mbox{MeV}\). Within each group of SEP events, we find a very robust correlation (\(\mathrm{CC} > 0.90\)) in log–log plots of \(F\)versus\(I_{\mathrm{p}}\) over four decades of \(I_{\mathrm{p}}\). The ratio increases from western to eastern longitudes. From the value of \(I_{\mathrm{p}}\) for a given event, \(F\) can be estimated to within a standard deviation of a factor of \({\leq}\,2\). Log–log plots of two studies are consistent with slopes of unity, but the third study shows plot slopes of \({<}\,1\) and decreasing with increasing energy for their four energy ranges from \(E > 10~\mbox{MeV}\) to \({>}\,100~\mbox{MeV}\). This difference is not explained.  相似文献   

19.
We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [\(\alpha /\mbox{Fe}\)] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [\(\alpha /\mbox{Fe}\)] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [\(\alpha /\mbox{Fe}\)], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1–4 Gyr old stellar populations were quantified in IC?5328 and NGC?6758 as well as 4–8 Gyr old ones in NGC?5812. Extended gas is present in IC?5328, NGC?1052, NGC?1209, and NGC?6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by \(\alpha \)-enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [\(\alpha /\mbox{Fe}\)] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.  相似文献   

20.
In this work we present the first attempt of modelling the deuterium chemistry in the massive young protostellar core NGC 2264 CMM3. We investigated the sensitivity of this chemistry to the physical conditions in its surrounding environment. The results showed that deuteration, in the protostellar gas, is affected by variations in the core density, the amount of gas depletion onto grain surfaces, the CR ionisation rate, but it is insensitive to variations in the H2 ortho-to-para ratio.Our results, also, showed that deuteration is often enhanced in less-dense, partially depleted (\(<85\%\)), or cores that are exerted to high CR ionisation rates (\(\ge6.5\times10^{-17}~\mbox{s}^{-1}\)). However, in NGC 2264 CMM3, decreasing the amount of gas depleted onto grains and enhancing the CR ionisation rate are often overestimating the observed values in the core. The best fit time to observations occurs around \((1\mbox{--}5) \times 10^{4}~\mbox{yrs}\) for core densities in the range \((1\mbox{--}5)\times10^{6}~\mbox{cm}^{-3}\) with CR ionisation rate between \((1.7\mbox{--}6.5)\times10^{-17}~\mbox{s}^{-1}\). These values are in agreement with the results of the most recent theoretical chemical model of CMM3, and the time range of best fit is, also, in-line with the estimated age of young protostellar objects.We conclude that deuterium chemistry in protostellar cores is: (i) sensitive to variations in the physical conditions in its environment, (ii) insensitive to changes in the H2 ortho-to-para ratio. We also conclude that the core NGC 2264 CMM3 is in its early stages of chemical evolution with an estimated age of \((1\mbox{--}5)\times10^{4}~\mbox{yrs}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号