首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 503 毫秒
1.
Terrestrial samarium consists of seven isotopes. Some spectral lines from Sm have isotope shifts and hyperfine structures that will modify the profile of the absorption lines in the Fraunhofer spectrum. The photospheric spectrum around the Sm ii lines at 4467 and 4519 Å has been studied. Although it is impossible to derive the solar abundance of each individual isotope, it is shown that a terrestrial isotopic composition can account for the anomal line width and asymmetry of the observed solar lines. The solar abundance found from the two lines is A(Sm) = 1.54 in the logarithmic A(H) = 12.00 scale.  相似文献   

2.
Abstract– Paired meteorites Graves Nunatak 06128 and 06129 (GRA) represent an ancient cumulate lithology (4565.9 Ma ± 0.3) containing high abundances of sodic plagioclase. Textures and stable isotope compositions of GRA indicate that superimposed on the igneous lithology is a complex history of subsolidus reequilibration and low‐temperature alteration that may have extended over a period of 150 Myr. In GRA, apatite is halogen‐rich with Cl between 4.5 and 5.5 wt% and F between 0.3 and 0.9 wt%. The Cl/(Cl+F+OH) ratio of the apatite is between 0.65 and 0.82. The Cl and F are negatively correlated and are heterogeneously distributed in the apatite. Merrillite is low in halogens with substantial Na in the 6‐fold coordinated Na‐site (≈2.5%) and Mg in the smaller octahedral site. The merrillite has a negative Eu anomaly, whereas the apatite has a positive Eu anomaly. The chlorine isotope composition of the bulk GRA leachate is +1.2‰ relative to standard mean ocean chloride (SMOC). Ion microprobe chlorine isotope analyses of the apatite range between ?0.5 and +1.2‰. Textural relationships between the merrillite and apatite, and the high‐Cl content of the apatite, suggest that the merrillite is magmatic in origin, whereas the apatite is a product of the interaction between merrillite and a Cl‐rich fluid. If the replacement of merrillite by apatite occurred at approximately 800 °C, the fluid composition is f(HCl)/f(H2O) = 0.0383 and a HCl molality of 2.13 and f(HCl)/f(HF) = 50–100. It is anticipated that the calculated f(HCl)/f(H2O) and a HCl molality are minimum values due to assumptions made on the OH component in apatite and basing the calculations on the apatite with the lowest XCl. The bulk δ37Cl of GRA is a >2σ outlier from chondritic meteorites and suggests that parent body processes resulted in fractionation of the Cl isotopes.  相似文献   

3.
Oxygen and carbon isotope ratios in the martian CO2 are key values to study evolution of volatiles on Mars. The major problems in spectroscopic determinations of these ratios on Mars are uncertainties associated with: (1) equivalent widths of the observed absorption lines, (2) line strengths in spectroscopic databases, and (3) thermal structure of the martian atmosphere during the observation. We have made special efforts to reduce all these uncertainties. We observed Mars using the Fourier Transform Spectrometer at the Canada–France–Hawaii Telescope. While the oxygen and carbon isotope ratios on Mars were byproducts in the previous observations, our observation was specifically aimed at these isotope ratios. We covered a range of 6022 to 6308 cm−1 with the highest resolving power of ν/δν=3.5×105 and a signal-to-noise ratio of 180 in the middle of the spectrum. The chosen spectral range involves 475 lines of the main isotope, 184 lines of 13CO2, 181 lines of CO18O, and 119 lines of CO17O. (Lines with strengths exceeding 10−27 cm at 218 K are considered here.) Due to the high spectral resolution, most of the lines are not blended. Uncertainties of retrieved isotope abundances are in inverse proportion to resolving power, signal-to-noise ratio, and square root of the number of lines. Laboratory studies of the CO2 isotope spectra in the range of our observation achieved an accuracy of 1% in the line strengths. Detailed observations of temperature profiles using MGS/TES and data on temperature variations with local time from two GCMs are used to simulate each absorption line at various heights in each part of the instrument field of view and then sum up the results. Thermal radiation of Mars' surface and atmosphere is negligible in the chosen spectral range, and this reduces errors associated with uncertainties in the thermal structure on Mars. Using a combination of all these factors, the highest accuracy has been achieved in measuring the CO2 isotope ratios: 13C/12C = 0.978 ± 0.020 and 18O/16O = 1.018 ± 0.018 times the terrestrial standards. Heavy isotopes in the atmosphere are enriched by nonthermal escape and sputtering, and depleted by fractionation with solid-phase reservoirs. The retrieved ratios show that isotope fractionation between CO2 and oxygen and carbon reservoirs in the solid phase is almost balanced by nonthermal escape and sputtering of O and C from Mars.  相似文献   

4.
Silicon and iron isotope compositions of different physically separated components of enstatite chondrites (EC) were determined in this study to understand the role of nebular and planetary scale events in fractionating Si and Fe isotopes of the terrestrial planet-forming region. We found that the metal–sulfide nodules of EC are strongly enriched in light Si isotopes (δ30Si ≥ −5.61 ± 0.12‰, 2SD), whereas the δ30Si values of angular metal grains, magnetic, slightly magnetic, and non-magnetic fractions become progressively heavier, correlating with their Mg# (Mg/(Mg+Fe)). White mineral phases, composed primarily of SiO2 polymorphs, display the heaviest δ30Si of up to +0.23 ± 0.10‰. The data indicate a key role of metal–silicate partitioning on the Si isotope composition of EC. The overall lighter δ30Si of bulk EC compared to other planetary materials can be explained by the enrichment of light Si isotopes in EC metals along with the loss of isotopically heavier forsterite-rich silicates from the EC-forming region. In contrast to the large Si isotope heterogeneity, the average Fe isotope composition (δ56Fe) of EC components was found to vary from −0.30 ± 0.08‰ to +0.20 ± 0.04‰. A positive correlation between δ56Fe and Ni/S in the components suggests that the metals are enriched in heavy Fe isotopes whereas sulfides are the principal hosts of light Fe isotopes in the non-magnetic fractions of EC. Our combined Si and Fe isotope data in different EC components reflect an inverse correlation between δ30Si and δ56Fe, which illustrates that partitioning of Si and Fe among metal, silicate, and sulfidic phases has significantly fractionated Si and Fe isotopes under reduced conditions. Such isotope partitioning must have occurred before the diverse components were mixed to form the EC parent body. Evaluation of diffusion coefficients of Si and Fe in the metal and non-metallic phases suggests that the Si isotope compositions of the silicate fractions of EC largely preserve information of their nebular processing. On the other hand, the Fe isotopes might have undergone partial or complete re-equilibration during parent body metamorphism. The relatively uniform δ56Fe among different types of bulk chondrites and the Earth, despite Fe isotope differences among their components, demonstrates that the chondrite parent bodies were not formed by random mixing of chondritic components from different locations in the disk. Instead, the chondrite components mostly originated in the same nebular reservoir and Si and Fe isotopes were fractionated either due to gas–solid interactions and associated changes in physicochemical environment of the nebular reservoir and/or during parent body processing. The heavier Si isotope composition of the bulk silicate Earth may require accretion of chondritic and/or isotopically heavier EC silicates along with cumulation of refractory forsterite-rich heavier silicates lost from the EC-forming region to form the silicate reservoir of the Earth.  相似文献   

5.
Abstract— Cosmic ray produced tracks, He and Ne isotopes and radionuclides have been studied in the recently fallen H5 chondrite Gujargaon. The results indicate an exposure age of about 7 Ma. The high track production rates of 0.25 to 0.69 × 106 cm?2 Ma?1 suggest that the Gujargaon meteoroid had a small size (Re = 9–10 cm) in space and suffered 1–3 cm ablation in the atmosphere. The conclusion about the meteoroid size is supported by the low activity of neutron capture isotope 60Co and high spallogenic 22Ne/21Ne ratio of about 1.25. The data on long lived isotopes 10Be, 53Mn and 26Al are used to derive production rates of these isotopes in a rock having a radius of 9 cm and the activity levels of the short lived isotopes 22Na and 54Mn are used to estimate the effect of modulation of galactic cosmic rays at the time of solar maximum of 1982.  相似文献   

6.
The Ca-phosphate phases in the Allende CV3 meteorite were selectively dissolved in ammoniacal EDTA solution and measured for abundances of the rare earth elements (REE) by radiochemical neutron activation and mass-spectrometric isotope dilution analyses. The REE abundances in CA-phosphates of Allende are remarkably different from those of ordinary chondrites. All the REE except Eu were observed to be enriched by factors of 50–100 relative to the C1 values. This is 3–4 times lower than concentrations of REE in the ordinary-chondrite phosphates. Allende phosphates have a small positive Eu anomaly, in contrast to the large negative Eu anomaly in phosphates from ordinary chondrites. Though the positive Eu anomaly in Allende Ca-phosphates is puzzling, the lack of a negative Eu anomaly in Allende Ca-phosphates suggests that they never have been in equilibrium with Allende coarse-grained Ca, Al-rich inclusions or their precursor materials.  相似文献   

7.
Cadmium is a highly volatile element and its abundance in meteorites may help better understand volatility‐controlled processes in the solar nebula and on meteorite parent bodies. The large thermal neutron capture cross section of 113Cd suggests that Cd isotopes might be well suited to quantify neutron fluences in extraterrestrial materials. The aims of this study were (1) to evaluate the range and magnitude of Cd concentrations in magmatic iron meteorites, and (2) to assess the potential of Cd isotopes as a neutron dosimeter for iron meteorites. Our new Cd concentration data determined by isotope dilution demonstrate that Cd concentrations in iron meteorites are significantly lower than in some previous studies. In contrast to large systematic variations in the concentration of moderately volatile elements like Ga and Ge, there is neither systematic variation in Cd concentration amongst troilites, nor amongst metal phases of different iron meteorite groups. Instead, Cd is strongly depleted in all iron meteorite groups, implying that the parent bodies accreted well above the condensation temperature of Cd (i.e., ≈650 K) and thus incorporated only minimal amounts of highly volatile elements. No Cd isotope anomalies were found, whereas Pt and W isotope anomalies for the same iron meteorite samples indicate a significant fluence of epithermal and higher energetic neutrons. This observation demonstrates that owing to the high Fe concentrations in iron meteorites, neutron capture mainly occurs at epithermal and higher energies. The combined Cd‐Pt‐W isotope results from this study thus demonstrate that the relative magnitude of neutron capture‐induced isotope anomalies is strongly affected by the chemical composition of the irradiated material. The resulting low fluence of thermal neutrons in iron meteorites and their very low Cd concentrations make Cd isotopes unsuitable as a neutron dosimeter for iron meteorites.  相似文献   

8.
Abstract— The Mg‐isotopic compositions in five barred olivine (BO) chondrules, one coarse‐grained rim of a BO chondrule, a relic spinel in a BO chondrule, one skeletal olivine chondrule similar to BO chondrules in mineralogy and composition, and two non‐BO chondrules from the Allende meteorite have been measured by thermal ionization mass spectrometry. The Mg isotopes are not fractionated and are within terrestrial standard values (±2.0%o per amu) in seven of the eight analyzed ferromagnesian chondrules. A clump of relic spinel grain and its host BO chondrule R‐11 give well‐resolvable Mg fractionations that show an enrichment of the heavier isotopes, up to +2.5%‰ per amu. The Mg‐isotopic compositions of coarse‐grained rim are identical to those of the host chondrule with BO texture. The results imply that ferromagnesian and refractory precursor components of the Allende chondrule may have been formed from isotopically heterogeneous reservoirs. In the nebula region where Allende chondrules formed, recycling of chondrules and multiple high‐temperature heating did not significantly alter the chemical and isotopic memory of earlier generations. Chemical and isotopic characteristics of refractory precursors of carbonaceous chondrite chondrules and CAIs are more closely related than previously thought. One of the refractory chondrule precursors of CV Allende is enriched in the heavier Mg isotopes and different from those of more common ferromagnesian chondrule precursors. The most probable scenario at the location where chondrule R‐11 formed is as follows. Before chondrule formation, several high‐temperature events occurred and then RPMs, refractory oxides, and silicates condensed from the nebular gas in which Mg isotopes were fractionated. Then, this CAI was transported into the chondrule formation region and mixed with more common, ferromagnesian precursors with normal Mg isotopes, and formed the BO chondrule. Because Mg isotope heterogeneity among silicates and spinel are found in some CAIs (Esat and Taylor, 1984), we cannot rule out the possibility that Mg isotopes of a melted portion of the refractory precursor (i.e., outer portion of CAI) are normal or enriched in the light isotope. Magnesium isotopes in the R‐11 host are also enriched in the heavier isotopes, +2.5%o per amu, which suggests that effects of isotopic heterogeneity among silicates and spinel, if they existed, are not considered to be large. It is possible that CAI precursor silicates partially dissolved during the chondrule forming event, contributing Mg to the melt and producing a uniform Mg‐isotopic signature but enriched in the heavier Mg isotopes, +2.5%‰ per amu. Most Mg isotopes in more common ferromagnesian chondrules represent normal chondritic material. Chemical and Mg‐isotopic signatures formed during nebular fractionations were not destroyed during thermal processes that formed the chondrule, and these were partly preserved in relic phases. Recycling of Allende chondrules and multiple heating at high temperature did not significantly alter the chemical and Mg‐isotopic memory of earlier generations.  相似文献   

9.
The carbon-isotope and palynological record through 580 m thick almost continuous brown coal in southeast Australia's Gippsland Basin is a relatively comprehensive southern hemisphere Middle Eocene to Middle Miocene record for terrestrial change. The carbon isotope δ13Ccoal values of these coals range from ? 27.7‰ to ? 23.2. This isotopic variability follows gymnosperm/angiosperm fluctuations, where higher ratios coincide with heavier δ13C values. There is also long-term variability in carbon isotopes through time. From the Eocene greenhouse world of high gymnosperm-heavier δ13Ccoal values, there is a progressive shift to lighter δ13Ccoal values that follows the earliest (Oi1?) glacial events around 33 Ma (Early Oligocene). The overlying Oligocene–Early Miocene brown coals have lower gymnosperm abundance, associated with increased %Nothofagus (angiosperm), and lightening of isotopes during Oligocene cooler conditions.The Miocene palynological and carbon-isotope record supports a continuation to the Oligocene trends until around the late Early Miocene (circa 19 Ma) when a warming commenced, followed by an even stronger isotope shift around 16 Ma that peaked in the Middle Miocene when higher gymnosperm abundance and heavier isotopes prevailed. The cycle between the two major warm peaks of Middle Eocene and Middle Miocene was circa 30 Ma long. This change corresponds to a fall in inferred pCO2 levels for the same period. The Gippsland data suggest a link between gymnosperm abundance, long-term plant δ13C composition, climatic change, and atmospheric pCO2. Climatic deterioration in the Late Miocene terminated peat accumulation in the Gippsland Basin and no further significant coals formed in southeast Australia.The poor correspondence between this terrestrial isotope data and the marine isotope record is explained by the dominant control on δ13C by the gymnosperm/angiosperm abundance, although in turn this poor correspondence may reflect palaeoclimate control. From the brown coal seam dating, the coal appears to have accumulated during a considerable part of the allocated 30 Ma Cenozoic time period. These brown coal carbon isotope and palynological data appear to record a more gradual atmospheric carbon isotope change compared to the marine record.  相似文献   

10.
The hyperfine-structure lines of highly charged ions may allow one to look at hot rarefied astrophysical plasmas from a new perspective. In this paper, we discuss the spectral lines of ions and isotopes abundant at temperatures 105–107 K characteristic of a warm-hot intergalactic gas, a hot interstellar medium, starburst galaxies, their superwinds, and young supernova remnants. Observations of these lines will make it possible to study the bulk and turbulent motions in the observed objects and will supplement the information about the ionization state and chemical and isotopic compositions of the gas. The line of the main nitrogen isotope with wavelength λ = 5.65 mm is of particular interest. The wavelength of this line is well suited for observations of objects at z ≈ 0.15−0.6, when it is redshifted to the spectral range 6.5–9 mm widely used in ground-based radio observations, and, for example, for z ≥ 1.3, when the line is redshifted to 1.3 cm or farther. Modern and future radio telescopes and interferometers are capable of observing the 14N VII absorption by the warm-hot intergalactic gas at redshifts higher than z ≈ 0.15 in the spectra of the brightest millimeter-band sources. The submillimeter emission lines of the most abundant isotopes with hyperfine splitting may also be detected in the spectra of young supernova remnants. The article was translated by the authors.  相似文献   

11.
We present our calculations of the spectrum and oscillator strengths for the 4f7?(4f65d+4f66s) Eu III transitions. The calculations were performed with Cowan's RCN-RCG-RCE codes in the single-configuration approximation. A comparison of computed level lifetimes with experimental data for three levels shows that the scale of theoretical oscillator strengths could be overestimated by a factor of 3. The theoretical oscillator strengths of red Eu III lines are two orders of magnitude smaller than their astrophysical oscillator strengths derived by Ryabchikova et al. (1999) from the condition of ionization balance. The new oscillator strengths were tested by analyzing the Eu abundance using Eu II and Eu III lines in the spectra of hot peculiar stars (α2 CVn is a typical representative) and cool peculiar stars (β CrB is a typical representative). First, we computed non-LTE corrections, which proved to be significant for α2 CVn. We also analyzed the Eu II λ6645.11-Å line as well as ultraviolet and optical Eu III lines. We show that the new oscillator strengths together with the non-LTE corrections allow the contradiction between the Eu abundances derived by Ryabchikova et al. (1999) separately from optical Eu II and Eu III lines in α2 CVn to be resolved. The new Eu abundance, log(Eu/N tot)=?6.5, also faithfully describes the blended near-ultraviolet resonance Eu III lines. Using the new Eu III oscillator strengths to analyze the spectrum of the cool Ap star β CrB, we found a significant deviation of the n(Eu II)/n(Eu III) ratio from its equilibrium value. For a chemically homogeneous model atmosphere, to obtain the observed intensity of the Eu III λ 6666.35-Å line, the Eu abundance must be increased by two orders of magnitude compared to that required to describe the Eu II λ 6645.11-Å line. We discuss the possibility of explaining the observed intensities of Eu II and Eu III lines in the spectrum of β CrB by the presence of an inhomogeneous atmosphere with Eu concentrated in its uppermost layers. In such atmospheres, the role of non-LTE effects becomes dominant.  相似文献   

12.
Abstract— High‐precision Mg isotopic compositions of Ca‐Al‐rich inclusions (CAIs) from both Ningqiang (ungrouped) and Allende (CV3) carbonaceous chondrites and amoeboid olivine aggregations (AOAs) from Allende were analyzed by multicollector inductively coupled plasma mass spectrometry (MC‐ICP‐MS). The CAIs from Allende plot on a line, with an inferred initial 26Al/27Al ratio of (4.77 ± 0.39) × 10?5 close to the canonical value. This indicates a relatively closed Al‐Mg system in the CAIs and no significant Mg isotope exchange with ambient materials, although two of the CAIs are severely altered. The AOAs contain excess 26Mg and plot close to the CAI regression line, which is suggestive of their contemporary formation. The CAIs from Ningqiang define a different line with a lower inferred (26Al/27Al)0 ratio of (3.56 ± 0.08) × 10?5. None of the CAIs and AOAs studied in this work shows significant mass fractionation with enrichment of the heavier Mg isotopes, arguing against an evaporation origin.  相似文献   

13.
Abstract— This paper surveys the experimental material on the Rb-Sr systematics of eucrites accumulated in the literature for the last two decades. Among the meteorites studied, those representatives have been chosen for which the absence of disturbances of isotope systems seems reliably fixed (according to evidence from Rb-Sr, Sm-Nd, and U-Pb isotope data). These data have been subjected to joint statistical treatment. For ordinary eucrites the age has been estimated as T = 4.548 ± 0.058 Ga, and initial Sr isotope ratio, Iord = 0.698925 ± 14. For cumulate eucrites, the initial Sr isotope ratio has been estimated as Icum = 0.698872 ± 14. The substantial difference in initial Sr isotope composition suggests that those two eucrite groups originate from distinct parent bodies. Joint treatment of the available Rb-Sr data for angrites has been carried out for comparison, and the angrites initial Sr ratio has been estimated. On the basis of the estimates obtained formation intervals for the corresponding parent bodies have been calculated.  相似文献   

14.
Abstract— The classical model of s-process nucleosynthesis, based on the concept of a steady neutron flux under astrophysical conditions pertaining to the He-burning phase of red giant stars, has successfully described observed isotopic abundances and provided information on the physical conditions of the s-process environment. Because most of the isotopes on the s-process path are stable, their relevant nuclear parameters can be measured in the laboratory so that as more accurate elemental abundance and neutron capture cross-section data have become available, the classical model has been tested under increasingly stringent conditions. Accurate determinations of the neutron capture cross sections at appropriate astrophysical conditions for the Ba isotopes have shown that the abundance of the s-only isotope 136Ba is under-produced by ~20% according to the classical model. This paper describes the accurate assessment of the meteoritic abundance of Ba by the stable isotope dilution mass spectrometric technique, based on the Cl carbonaceous chondrites Orgueil and Ivuna. Repeated analyses of these two Cl chondrites give an abundance that is identical to the presently accepted solar system value for Ba within experimental errors, which indicates a deficiency in the classical model. When combined with similar data for the s-only nuclides 116Sn and 142Nd, it is apparent that the classical model, having served a valuable function for many years, must be replaced by stellar models that more accurately reflect the dynamic nature of the He-burning phase in red giant stars, in particular, during the thermal pulses of low-mass asymptotic giant branch (AGB) stars.  相似文献   

15.
Abstract— It is now established that a large extraterrestrial object hit the Earth at the end of the Cretaceous period, about 65 Ma ago. We have investigated Re‐Os, Hf‐W, and Mn‐Cr isotope systems in sediments from the Cretaceous and the Paleogene in order to characterize the type of impactor. Within the Cretaceous‐Tertiary (K‐T) boundary layer, extraterrestrial material is mixed with terrestrial material, causing a dilution of the extraterrestrial isotope signature that is difficult to quantify. A phase essentially composed of Ni‐rich spinel, formed in the atmosphere mainly from melted projectile material, is likely to contain the extraterrestrial isotopic signature of the impactor. We show that the analysis of spinel is indeed the best approach to determine the initial isotope composition of the impactor, and that W and Cr isotopes confirm that the projectile was a carbonaceous chondrite.  相似文献   

16.
Abstract— We report the study of an unusual compact type A refractory inclusion, named the White Angel, from the Leoville CV3 meteorite. The petrologic, mineral chemical, isotopic, and trace‐element signatures of this once‐molten Ca‐Al‐rich inclusion (CAI), which contains large, equant wollastonite crystals, indicate a short multistage history that occurred very early, before substantial decay of 26Al. Magnesium in the inclusion is isotopically heavy, with FMg reaching 18‰/amu, in the range of fractionated and with unidentified nuclear effects (FUN) inclusions. However, the absence of any nuclear anomalies in Ca and Ti and an inferred 26Al/27Al ratio of (5.5 ± 0.9) × 10?5 indicate that the White Angel belongs to the F inclusions. Silicon and oxygen are also mass fractionated in favor of the heavy isotopes, but to a lesser extent. The O isotopes show a range in 16O excesses. On an O three‐isotope plot, data points lie on a line parallel and to the right of the carbonaceous chondrite anhydrous mineral mixing line, with wollastonite being the most 16O‐rich phase. The chondrite‐normalized rare earth and trace‐element pattern of the whole inclusion is the complement of an ultrarefractory pattern indicating that precursor phases of the CAI must have condensed in an Al‐, heavy rare earth element (HREE)‐depleted reservoir. Melting of those precursor phases in an 16O‐rich environment and evaporation led to mass‐dependent isotopic fractionation of Mg, Si, and O. Partial isotopic exchange with a reservoir containing unfractionated Mg took place at a later stage but before any measurable decay of 26Al. Some minerals (melilite and perovskite) in the White Angel equilibrated oxygen isotopes with a relatively 16O‐poor reservoir that was also mass‐fractionated toward the heavy isotopes, different from that with which the normal or FUN inclusions interacted.  相似文献   

17.
The Emmaville eucrite is a relatively poorly studied basaltic achondrite with an anomalous oxygen isotope signature. In this study, we report comprehensive mineralogical, petrographic, and geochemical data from Emmaville in order to understand its petrogenesis and relationship with the basaltic eucrites. Emmaville is an unusually fine‐grained, hornfelsic‐textured metabasalt with pervasive impact melt veins and mineral compositions similar to those of typical basaltic eucrites. The major and trace element bulk composition of Emmaville is also typical of a basaltic eucrite. Three separated individual lithologies were also analyzed for O isotopes; a dark gray fraction (E1), a shocked lithology (E2), and a lighter gray portion (E3). Fractions E1 and E2 shared similar O isotope compositions to the bulk sample (E‐B), whereas the lighter gray portion (E3) is slightly elevated in Δ17O and significantly elevated in δ18O compared to bulk. No evidence for any exogenous material is observed in the thin sections, coupled with the striking compositional similarity to typical basaltic eucrites, appears to preclude a simple impact‐mixing hypothesis. The O‐isotopes of Emmaville are similar to those of Bunburra Rockhole, A‐881394, and EET 92023, and thus distinct from the majority of the HEDs, despite having similarities in petrology, mineral, and bulk compositions. It would, therefore, seem plausible that all four of these samples are derived from a single HED‐like parent body that is isotopically distinct from that of the HEDs (Vesta) but similar in composition.  相似文献   

18.
Abstract— We explore the possibility that Te isotopic anomalies measured in Ca‐Al‐rich inclusions (Fehr et al. 2009) and in leachates of carbonaceous chondrites (Fehr et al. 2006) may be due to mass‐independent effects controlled by nuclear field shift rather than to nucleosynthetic processes. Fehr et al.'s spectrum of mass‐independent anomalies of Te isotopes shows a smooth correlation with mass number and nuclear charge distribution. Ratios of even to odd isotopes, as the 125Te/126Te ratio used by these authors for normalization are particularly prone to nuclear field shift effects. We show that the alternative normalization of isotopic ratios to 130Te/126Te strongly reduces the trend of isotopic fractionation with mass number, leaving only 125Te as truly anomalous. For both normalizations (125Te/126Te and 130Te/126Te), Fehr et al.'s results fit the theory of Bigeleisen (1996), which suggests that the nuclear field shift effect can potentially account for the observed Te isotope abundances, as an alternative to nucleosynthetic processes. We propose that these mass‐independent effects may be acquired during accretion of sulfides from the solar nebula.  相似文献   

19.
We performed in situ oxygen three‐isotope measurements of chondrule olivine, pyroxenes, and plagioclase from the newly described CVRed chondrite NWA 8613. Additionally, oxygen isotope ratios of plagioclase in chondrules from the Kaba CV3OxB chondrite were determined to enable comparisons of isotope ratios and degree of alteration of chondrules in both CV lithologies. NWA 8613 was affected by only mild thermal metamorphism. The majority of oxygen isotope ratios of olivine and pyroxenes plot along a slope‐1 line in the oxygen three‐isotope diagram, except for a type II and a remolten barred olivine chondrule. When isotopic relict olivine is excluded, olivine, and low‐ and high‐Ca pyroxenes are indistinguishable regarding Δ17O values. Conversely, plagioclase in chondrules from NWA 8613 and Kaba plot along mass‐dependent fractionation lines. Oxygen isotopic disequilibrium between phenocrysts and plagioclase was caused probably by exchange of plagioclase with 16O‐poor fluids on the CV parent body. Based on an existing oxygen isotope mass balance model, possible dust enrichment and ice enhancement factors were estimated. Type I chondrules from NWA 8613 possibly formed at moderately high dust enrichment factors (50× to 150× CI dust relative to solar abundances); estimates for water ice in the chondrule precursors range from 0.2× to 0.6× the nominal amount of ice in dust of CI composition. Findings agree with results from an earlier study on oxygen isotopes in chondrules of the Kaba CV chondrite, providing further evidence for a relatively dry and only moderately high dust‐enriched disk in the CV chondrule‐forming region.  相似文献   

20.
One approach to decipher the dynamics of material transport and planetary accretion in the early solar system is to investigate xenolithic fragments in meteorites. In this work, we examined an igneous fragment from the NWA 12651 meteorite—the first igneous fragment found in any CM chondrite—by analyzing its mineralogy, rare earth elements (REEs), and O‐isotopes. The study shows that the exsolution lamellae of the igneous fragment consist of Fe‐rich and Ca‐rich pyroxene. Thus, the fragment was part of a progressive crystallization in a closed system, such as in a depleted magma reservoir or mantle. In this environment, the pyroxene co‐crystallized with plagioclase, resulting in a negative Eu anomaly and enrichment of the heavy REEs compared to the light REEs. The O‐isotopes of the fragment are more 16O‐enriched than the mafic minerals in the matrix or in other bulk CM chondrites; therefore, the fragment was formed in a different region than the NWA 12651 parent body. The iron meteorites Tucson and Deep Springs, the pallasite Milton, and the CB chondrites have similar O‐isotopes as the igneous fragment. However, no direct connection can be drawn and it is questionable if the fragment shares a same parent body with one of these meteorites. The close formation region to the CB chondrites may suggest a formation of the fragment in the carbonaceous chondrite region. Thus, a wide transport through the nebula of the early solar system may not have been necessary to move the fragment to the CM chondrite formation region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号