共查询到20条相似文献,搜索用时 0 毫秒
1.
A. Hallberg J. A. Ogren K. J. Noone K. Okada J. Heintzenberg I. B. Svenningsson 《Journal of Atmospheric Chemistry》1994,19(1-2):153-171
A difference in partitioning between cloud droplets and interstitial air for two chemical species (elemental carbon and sulphur) with different expected behaviour in nucleation scavenging was observed in clouds at Mt. Kleiner Feldberg (825 m asl), near Frankfurt, Germany. The fraction of sulphur incorporated in cloud droplets was always higher than the fraction of elemental carbon. This difference in partitioning has also been observed in fog but under different pollution conditions in the Po Valley, Italy. Both these studies were based on bulk samples. In the present study at Kleiner Feldberg, impactor samples of the particles in the interstitial air and the cloud droplet residuals were taken and a single particle analysis was done on the samples. It was found that, for a given particle size, the majority of particles forming cloud droplets were soluble and that insoluble particles preferentially remained in the interstitial air. 相似文献
2.
ATHANASIOS NENES STEVEN GHAN HAYDER ABDULRAZZAK PATRICK Y. CHUANG JOHN H. SEINFELD 《Tellus. Series B, Chemical and physical meteorology》2001,53(2):133-149
Under certain conditions mass transfer limitations on the growth of cloud condensation nuclei (CCN) may have a significant impact on the number of droplets that can form in a cloud. The assumption that particles remain in equilibrium until activated may therefore not always be appropriate for aerosol populations existing in the atmosphere. This work identifies three mechanisms that lead to kinetic limitations, the effect of which on activated cloud droplet number and cloud albedo is assessed using a one‐dimensional cloud parcel model with detailed microphysics for a variety of aerosol size distributions and updraft velocities. In assessing the effect of kinetic limitations, we have assumed as cloud droplets not only those that are strictly activated (as dictated by classical Köhler theory), but also unactivated drops large enough to have an impact on cloud optical properties. Aerosol number concentration is found to be the key parameter that controls the significance of kinetic effects. Simulations indicate that the equilibrium assumption leads to an overprediction of droplet number by less than 10% for marine aerosol; this overprediction can exceed 40% for urban type aerosol. Overall, the effect of kinetic limitations on cloud albedo can be considered important when equilibrium activation theory consistently overpredicts droplet number by more than 10%. The maximum change in cloud albedo as a result of kinetic limitations is less than 0.005 for cases such as marine aerosol; however albedo differences can exceed 0.1 under more polluted conditions. Kinetic limitations are thus not expected to be climatically significant on a global scale, but can regionally have a large impact on cloud albedo. 相似文献
3.
4.
利用2008年4—7月、2009年5—8月和2011年5—9月黄山光明顶的云滴谱观测资料,对离散度和体积平均半径之间的关系进行了深入的分析和讨论。结果表明,随着体积平均半径的增大,离散度与体积平均半径之间的相关从正变成负,主要与活化、凝结、蒸发和去活化有关,与以往研究一致。在此基础上,进一步发现负相关比较弱,主要与碰并过程有关。当云雨自动转化阈值函数增大时,碰并增强,离散度与体积平均半径之间的相关性由负转正,且正相关性逐渐增强。碰并导致的正相关削弱了凝结和蒸发导致的负相关。此外,尽管云滴谱出现了双峰谱,但第一档强度(第一档浓度除以总的浓度)仍然可以很好地区分正负相关性。 相似文献
5.
6.
H.G. Leighton 《大气与海洋》2013,51(2):79-88
The effect of the introduction of the ice phase in a cloud droplet growth model is examined. The ice particles are introduced by freezing cloud droplets at rates consistent with observations of natural ice nucleus concentrations. In moderate updrafts the production of large particles is retarded owing to the glaciation of the cloud. In stronger updrafts where insufficient time is available for precipitation to form by condensation and coalescence, the production of small precipitation particles is increased. 相似文献
7.
在区域气候化学模式系统(RegCCMS)中,分别采用Hegg、Hansen、Ghan、Jones等4种云滴数浓度参数化方案,模拟研究了2003年10月硝酸盐气溶胶的浓度分布和第一间接气候效应,并对不同方案进行比较。结果表明,不同方案模拟的硝酸盐气溶胶分布大体上一致,主要集中在河南、山东、河北、四川等地,地面浓度最大值达18 μg/m3。Hegg、Hansen、Ghan、Jones等 4种云滴数浓度参数化方案计算得到的由硝酸盐气溶胶所造成的第一间接辐射强迫全国平均值分别为-148、-205、-161和-140 W/m2。4种方案模拟的硝酸盐气溶胶间接效应都表现为近地面气温下降,降水减少,其中Hansen方案的间接效应最强,Ghan、Hegg方案次之,Jones方案最弱。 相似文献
8.
Microphysical characteristics of precipitating cumulus cloud based on airborne Ka-band cloud radar and droplet measurements 下载免费PDF全文
Lei Wei Mengyu Huang Rong Zhang Yuhuan Lü Tuanjie Hou Hengchi Lei Delong Zhao Wei Zhou Yuan Fu 《大气和海洋科学快报》2022,15(2):65-70
在积云中,大多数云粒子的直径在7到10微米之间,而在层云中,大多数云粒子的直径不超过2微米.云滴有效半径与云中行星边界层(PBL)及PBL上层的气溶胶数浓度(Na)呈负相关.在1500米以上的高液态水含量区域,云滴浓度(Nc)变化不大,Na含量降低.高雷达反射率对应于大的FCDP云粒子浓度和小的气溶胶粒子浓度.积云中的... 相似文献
9.
Junghwa Lee Yign Noh Siegfried Raasch Theres Riechelmann Lian-Ping Wang 《Meteorology and Atmospheric Physics》2014,124(1-2):1-21
A precipitating convective cloud is simulated successfully using the Lagrangian cloud model, in which the flow field is simulated by large eddy simulation and the droplets are treated as Lagrangian particles, and the results are analyzed to investigate precipitation initiation and to examine the parameterization of cloud microphysics. It is found that raindrops appear initially near the cloud top, in which strong turbulence and broadened droplet spectrum are induced by the entrainment of dry air, but high liquid–water mixing ratio is maintained within cloud parts because of insufficient mixing. Statistical analysis of the downward vertical velocity of a droplet W reveals that the transition from cloud droplets to raindrops occurs in the range 20 μm < r < 100 μm, while the variation of W depends on turbulence as well as the droplet radius r. The general pattern of the raindrop size distribution is found to be consistent with the Marshall–Palmer distribution. The precipitation flux can be underestimated substantially, if the terminal velocity $w_{\text{s}}$ is used instead of W, but it is not sensitive to the choice of the critical droplet radius dividing cloud drops and raindrops. It is also found that precipitation starts earlier and becomes stronger if the effect of turbulence is included in the collection kernel. 相似文献
10.
The evolution of cloud droplet size spectra is calculated using an adiabatic condensational growth model. Broadness (e.g., standard deviation of diameter) of cloud droplet spectra in adiabatic cloud parcels was determined to be critically dependent on cloud supersaturation. Although droplet spectra become narrower as growth continues, the rate of narrowing is slower when cloud supersaturation is lower. This actually leads to broader droplet spectra for more continental clouds or for weaker updrafts because both of these conditions are associated with lower cloud supersaturations. More continental type clouds, which have higher concentrations of smaller droplets, were indeed found to have larger dispersions (standard deviation of diameter/mean diameter of cloud droplets). Some of these results were consistent with observations, but the larger dispersions that were much more commonly observed for continental compared to maritime clouds were due almost exclusively to smaller droplets rather than broader droplet distributions. Contrary to the model calculations, typical observations show that cleaner clouds usually have broader droplet spectra. The gaps in magnitude between theory and observations of broadness are significant in all clouds. When cloud parcels that had ascended under different updraft conditions were compared at a constant cloud altitude, parcels with lower updrafts were predicted to have broader droplet spectra with larger mean diameters. This trend of apparent spectral broadening was consistent with observations for some near-adiabatic cloud parcels. 相似文献
11.
《Atmospheric Research》2006,79(3-4):166-181
The change of cloud droplet spectra can modify the microphysics and radiative processes of the atmosphere, which in turn affects surface precipitation. In this paper, the impact of cloud droplet spectral change (CDSC) on mesoscale precipitation is studied by simulating two cases, a South China Storm on June 8, 1998 and a Yangtze River Storm on July 22, 2002, and employing the MM5V3 with newly developed, dual-parameterized explicit moisture scheme coupled to. The results show that CDSC has a slight influence on rainfall distribution/pattern, but can significantly change the precipitation intensity, especially the position and intensity of the precipitation centers. The effects of CDSC are more distinct in the daytime and have an obvious diurnal cycle on rain rate. Precipitation increase (decrease) due to CDSC is ascribed to the relative upper radiative cooling (heating) and lower radiative heating (cooling) in the daytime atmosphere. 相似文献
12.
A cloud-resolving mesoscale model with a two-moment microphysical scheme has been used. The software package for cloud seeding and two categories of precipitation elements (graupel and frozen raindrops) are incorporated in the model. The aim of this study was to investigate the impact of cloud droplet concentration on hail suppression effectiveness. The concentration level of cloud droplets is prescribed in the model. We performed sensitivity tests of precipitation amounts (rain and hail) on the cloud droplet concentration in unseeded and seeded cases. We demonstrated for the unseeded case that increasing the concentration of cloud droplets created a reduction in rain accumulation, while the amount of hail accumulation increased. It is necessary to understand whether natural diversity in the cloud droplet concentration can affect the effectiveness of hail suppression. For operational cloud seeding activities, it would be helpful to determine whether it is possible to suppress hail if we know the optimal level of concentration for cloud droplets. Our study showed that hail suppression effectiveness had the greatest influence on lowering cloud droplet concentration levels; suppression effectiveness decreased as the cloud droplet concentration increased. 相似文献
13.
14.
《Atmospheric Research》1987,21(1):41-51
A continuous flow diffusion cloud chamber has been used to study the growth of water droplets on NaCl aerosols of known size. Settling distances of droplets in the chamber have been recorded and compared to the theoretical ones generated on a computer. Using the droplet growth theory of Fukuta and Walter and a thermal accommodation coefficient of 1.0, the condensation coefficient was found to be 0.01. 相似文献
15.
16.
Jefferson R. Snider JeanLouis Brenguier 《Tellus. Series B, Chemical and physical meteorology》2000,52(2):828-842
During the 2nd Aerosol Characterization Experiment (ACE‐2), relationships between stratocumulus cloud properties and aerosols were examined. Here, the relevant measurements including the cloud condensation nuclei (CCN) activation spectrum, updraft velocity, cloud microphysical and aerosol properties are presented. It is shown that calculations of droplet concentration based on updraft velocity and the CCN activation spectrum are consistent with direct observations. Also discussed is an apparent disparity among measurements of the CCN activation spectrum, the accumulation mode size distribution, and the composition of the submicrometric aerosol. The observed consistency between CCN, updraft and cloud droplets is a necessary refinement; however, extended analyses of the ACE‐2 data set are needed to guide improvements in model simulations of the interaction between aerosols and cloud microphysics. In particular, there is need for an examination of aerosol size spectra and chemical composition measurements with a view towards validating droplet activation schemes which relate the aerosol and cloud dynamical properties to cloud albedo. 相似文献
17.
A two-dimensional cloud model with bin microphysics was used to investigate the effects of cloud condensation nuclei (CCN) concentrations and thermodynamic conditions on convective cloud and precipitation developments. Two different initial cloud droplet spectra were prescribed based on the total CCN concentrations of maritime (300 cm− 3) and continental (1000 cm− 3) air masses, and the model was run on eight thermodynamic conditions obtained from observational soundings. Six-hourly sounding data and 1-hourly precipitation data from two nearby weather stations in Korea were analyzed for the year 2002 to provide some observational support for the model results.For one small Convective Available Potential Energy (CAPE) ( 300 J kg− 1) sounding, the maritime and continental differences were incomparably large. The crucial difference was the production of ice phase hydrometeors in the maritime cloud and only water drops in the continental cloud. Ice phase hydrometeors and intrinsically large cloud drops of the maritime cloud eventually lead to significant precipitation. Meanwhile negligible precipitation developed from the continental cloud. For the three other small CAPE soundings, generally weak convective clouds developed but the maritime and continental clouds were of the same phases (both warm or both cold) and their differences were relatively small.Model runs with the four large CAPE ( 3000 J kg− 1) soundings demonstrated that the depth between the freezing level (FL) and the lifting condensation level (LCL) was crucial to determine whether a cloud becomes a cold cloud or not, which in turn was found to be a crucial factor to enhance cloud invigoration with the additional supply of freezing latent heat. For two large CAPE soundings, FL–LCL was so deep that penetration of FL was prohibitive, and precipitation was only mild in the maritime clouds and negligible in the continental clouds. Two other soundings of similarly large CAPE had small FL–LCL, and both the maritime and continental clouds became cold clouds. Precipitation was strong for both but much more so in the maritime clouds, while the maximum updraft velocity and the cloud top were slightly higher in continental clouds. Although limited to small CAPE cases, more precipitation for smaller FL–LCL for a selected group of precipitation and thermodynamic sounding data from Korea was in support of these model results in its tendency.These results clearly demonstrated that the CCN effects on cloud and precipitation developments critically depended on the given thermodynamic conditions and not just the CAPE but the entire structure of the thermodynamic profiles had to be taken into account. 相似文献
18.
本文利用已建立的一维非定常积云数值模式,分别研究了各种碰并过程、大气层结条件和吸湿性盐核的化学成分对积云中云滴谱形成的影响.计算结果表明,在各种碰并过程对积云发展前期云滴谱展宽的作用中,以重力碰并过程的作用最为显著,小尺度湍流的碰并过程则起到很重要的促进作用,它可以加速大云滴的增长,而电碰并过程的作用并不大.大气层结条件对积云中云滴谱的形成影响较大,而吸湿性盐核的化学成分对积云的宏观特征和微观特征都影响不大. 相似文献
19.
In-Jin Choi Takamichi Iguchi Sang-Woo Kim Teruyuki Nakajima Soon-Chang Yoon 《Meteorology and Atmospheric Physics》2014,123(3-4):181-194
This study performed a three-dimensional regional-scale simulation of aerosol and cloud fields using a meso-scale non-hydrostatic model with a bin-based cloud microphysics. The representation of aerosols in the model has been improved to account for more realistic multi-modal size distribution and multiple chemical compositions. Two case studies for shallow stratocumulus over Northeast Asia in March 2005 were conducted with different aerosol conditions to evaluate model performance. Improved condensation nuclei (CN) and cloud condensation nuclei (CCN) are attributable to the newly constructed aerosol size distribution. The simulated results of cloud microphysical properties (cloud droplet effective radius, liquid water path, and optical thickness) with improved CN/CCN number are close to the retrievals from satellite-based observation. The effects of aerosol on the microphysical properties of shallow stratocumulus are investigated by model simulation, in terms of columnar aerosol number concentration. Enhanced aerosol number concentration results in increased liquid water path in humid case, but invariant liquid water path in dry case primarily due to precipitation occurrence. The changes of cloud microphysical properties are more predominant for small aerosol burden than for large aerosol burden with the retarded changes in cloud mass and size due to inactive condensation and collision-coalescence processes. Quantitative evaluation of sensitivity factor between aerosol and cloud microphysical properties indicates a strong aerosol-cloud interaction in Northeast Asian region. 相似文献
20.
云滴数浓度影响混合型层状云降水的数值模拟 总被引:1,自引:1,他引:1
使用耦合了Morrison双参数微物理方案的中尺度WRF模式V2.2,对2008年1月25-29日发生在我国南方的冰雪天气过程进行了数值试验。在模式准确再现了此次天气过程形势演变特点的基础上,对模式微物理方案中云滴数浓度影响累积降水量的情况进行了敏感性试验,发现云滴数浓度对降水量的影响是复杂和非线性的。对此次天气过程中的微物理量进行了详细的分析,并从各种水成物粒子的发展演变上,讨论了云滴数浓度的增加在暖云和冷云两种降水机制上对降水产生的不同影响。结果表明,云滴数浓度越大,云水混合比就越大,云滴的尺度越小。雨滴对不同云滴数浓度的响应与云滴的情况相反,随着云滴数浓度的增加,雨滴数浓度减小,雨水也减少,暖云降水过程受到了抑制;冰晶和雪晶的数浓度的演变过程没有明显变化,而冰晶和雪晶的混合比是相应增加的,冷云降水过程得到了一定程度的增强。从本文模拟的个例来看,设置不同云滴数浓度所得到的总累计降水量的差异在1%以内。总的来说,增加云滴数浓度,降水量会减少。从比例上来看,增加云滴数浓度对暖云降水过程的抑制作用比对冷云降水过程的增强作用更为显著,但是在本文模拟的个例中,冷云降水过程占主导地位,减少的降水和增加的降水的绝对值在同一个量级上并且数值相近,它们相互抵消后得到的结果是降水量变化的绝对值大大减小了,这解释了增加云滴数浓度后模拟的总累积降水量变化不明显的原因。 相似文献