首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many methods based on interpolation were developed. Using these methods the orbits fit well at the sampling points. However, these methods ig...  相似文献   

2.
Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many methods based on interpolation were developed. Using these methods the orbits fit well at the sampling points. However, these methods ignore the physical motion model of GPS satellites. Therefore, the trajectories may not fit the true orbits at the periods in between 2 sampling epochs. To solve this problem, we develop a dynamic approach, in which a model based on Helmert transformation is developed in GPS orbit fitting. In this orbit fitting approach, GPS orbits at sampling points are treated as pseudo-observations. Thereafter, Helmert transformation is built up between the pseudo-observations and dynamically integrated orbits at each epoch. A set of Helmert parameters together with corrections of GPS initial orbits are then modeled as unknown parameters. Results show that the final fit orbits have the same precision as the IGS final orbits.  相似文献   

3.
 Since the beginning of the International Global Navigation Satellite System (GLONASS) Experiment, IGEX, in October 1998, the Center for Orbit Determination in Europe (CODE) has acted as an analysis center providing precise GLONASS orbits on a regular basis. In CODE's IGEX routine analysis the Global Positioning System (GPS) orbits and Earth rotation parameters are introduced as known quantities into the GLONASS processing. A new approach is studied, where data from the IGEX network are combined with GPS observations from the International GPS Service (IGS) network and all parameters (GPS and GLONASS orbits, Earth rotation parameters, and site coordinates) are estimated in one processing step. The influence of different solar radiation pressure parameterizations on the GLONASS orbits is studied using different parameter subsets of the extended CODE orbit model. Parameterization with three constant terms in the three orthogonal directions, D, Y, and X (D = direction satellite–Sun, Y = direction of the satellite's solar panel axis), and two periodic terms in the X-direction, proves to be adequate for GLONASS satellites. As a result of the processing it is found that the solar radiation pressure effect for the GLONASS satellites is significantly different in the Y-direction from that for the GPS satellites, and an extensive analysis is carried out to investigate the effect in detail. SLR observations from the ILRS network are used as an independent check on the quality of the GLONASS orbital solutions. Both processing aspects, combining the two networks and changing the orbit parameterization, significantly improve the quality of the determined GLONASS orbits compared to the orbits stemming from CODE's IGEX routine processing. Received: 10 May 2000 / Accepted: 9 October 2000  相似文献   

4.
We provide suggestions for the approved COSMIC-2 satellite mission regarding the field of view (FOV) and the clock stability of its future GNSS receiver based on numerical analyses using COSMIC GPS data. While the GRACE GPS receiver is mounted on the zenith direction, the precise orbit determination (POD) antennas of COSMIC are not. The COSMIC antenna design results in a narrow FOV and a reduction in the number of GPS observations. To strengthen the GPS geometry, GPS data from two POD antennas of COSMIC are used to estimate its orbits. The phase residuals of COSMIC are at the centimeter level, compared to the millimeter level of GRACE. The receiver clock corrections of COSMIC and GRACE are at the microsecond and nanosecond levels, respectively. The clock spectra of COSMIC at the frequencies of 0–0.005 Hz contain significant powers, indicating potential systematic errors in its clock corrections. The clock stability, expressed by the Allan deviation, of COSMIC ranges from 10?9 to 10?11 over 1 to 104 s, compared to 10?12 to 10?14 for GRACE. Compared to USO-based clock of GRACE, the clock of COSMIC is degraded in its stability and is linked to the reduction of GPS data quality. Lessons for improvement of COSMIC-2 over COSMIC in FOV and receiver clock stability are given.  相似文献   

5.
Resolving the initial phase ambiguities of GPS carrier phase observations was always considered an important aspect of GPS processing techniques. Resolution of the so-called wide-lane ambiguities using a special linear combination of theL 1 andL 2 carrier and code observations has become standard. New aspects have to be considered today: (1) Soon AS, the so-called Anti-Spoofing, will be turned on for all Block II spacecrafts. This means that precise code observations will be no longer available, which in turn means that the mentioned approach to resolve the wide-lane ambiguities will fail. (2) Most encouraging is the establishment of the new International GPS Geodynamics Service (IGS), from where high quality orbits, earth rotation parameters, and eventually also ionospheric models will be available. We are reviewing the ambiguity resolution problem under these new aspects: We look for methods to resolve the initial phase ambiguities without using code observations but using high quality orbits and ionospheric models from IGS, and we study the resolution of the narrow-lane ambiguities (after wide-lane ambiguity resolution) using IGS orbits.  相似文献   

6.
GPS轨道插值方法   总被引:1,自引:1,他引:0  
国际GNSS组织(IGS)中心提供的GPS卫星精密星历的时间间隔为15min,在GPS的实际应用中必须要对GPS轨道进行插值。常规的GPS轨道插值方法有Lagrange插值、Neville插值和Chebyshev拟合。对上述3种插值方法进行了详细分析,并用于GPS轨道插值;然后利用美国国家大地测量局(NGS)提供的GP...  相似文献   

7.
Quality of reprocessed GPS satellite orbits   总被引:4,自引:2,他引:2  
High-precision Global Positioning System (GPS) satellite orbits are one of the core products of the International GNSS Service (IGS). Since the establishment of the IGS in 1994, the quality and consistency of the IGS orbits has steadily been improved by advances in the modeling of GPS observations. However, due to these model improvements and reference frame changes, the time series of operational orbits are inhomogeneous and inconsistent. This problem can only be overcome by a complete reprocessing starting with the raw observation data. The quality of reprocessed GPS satellite orbits for the time period 1994–2005 will be assessed in this paper. Orbit fits show that the internal consistency of the orbits could be improved by a factor of about two in the early years. Comparisons with the operational IGS orbits show clear discontinuities whenever the reference frame was changed by the IGS. The independent validation with Satellite Laser Ranging (SLR) residuals shows an improvement of up to 30% whereas a systematic bias of 5 cm still persists.  相似文献   

8.
GLONASS frequency division multiple access signals render ambiguity resolution (AR) rather difficult because: (1) Different wavelengths are used by different satellites, and (2) pseudorange inter-frequency biases (IFBs) cannot be precisely modeled by means of a simple function. In this study, an AR approach based on the ionospheric-free combination with a wavelength of about 5.3 cm is assessed for GLONASS precise point positioning (PPP). This approach simplifies GLONASS AR because pseudorange IFBs do not matter, and PPP-AR can be enabled across inhomogeneous receivers. One month of GLONASS data from 165 European stations were processed for different network size and different durations of observation periods. We find that 89.9% of the fractional parts of ionospheric-free ambiguities agree well within ± 0.15 cycles for a small network (radius = 500 km), while 77.6% for a large network (radius = 2000 km). In case of the 3-hourly GLONASS-only static PPP solutions for the small network, reliable AR can be achieved where the number of fixed GLONASS ambiguities account for 97.6% within all candidate ambiguities. Meanwhile, the RMS of the east, north and up components with respect to daily solutions is improved from 1.0, 0.6, 1.2 cm to 0.4, 0.4, 1.1 cm, respectively. When GPS PPP-AR is carried out simultaneously, the positioning performance can be improved significantly such that the GLONASS ambiguity fixing rate rises from 74.4 to 95.4% in case of hourly solutions. Finally, we introduce ambiguity-fixed GLONASS orbits to re-attempt GLONASS PPP-AR in contrast to the above solutions with ambiguity-float orbits. We find that ambiguity-fixed orbits lead to clearly better agreement among ionospheric-free ambiguity fractional parts in case of the large network, that is 80.5% of fractional parts fall in ± 0.15 cycles in contrast to 74.6% for the ambiguity-float orbits. We conclude that highly efficient GLONASS ionospheric-free PPP-AR is achievable in case of a few hours of data when GPS PPP-AR is also accomplished, and ambiguity-fixed GLONASS orbits will contribute significantly to PPP-AR over wide areas.  相似文献   

9.
Impact of Earth radiation pressure on GPS position estimates   总被引:10,自引:8,他引:2  
GPS satellite orbits available from the International GNSS Service (IGS) show a consistent radial bias of up to several cm and a particular pattern in the Satellite Laser Ranging (SLR) residuals, which are suggested to be related to radiation pressure mismodeling. In addition, orbit-related frequencies were identified in geodetic time series such as apparent geocenter motion and station displacements derived from GPS tracking data. A potential solution to these discrepancies is the inclusion of Earth radiation pressure (visible and infrared) modeling in the orbit determination process. This is currently not yet considered by all analysis centers contributing to the IGS final orbits. The acceleration, accounting for Earth radiation and satellite models, is introduced in this paper in the computation of a global GPS network (around 200 IGS sites) adopting the analysis strategies from the Center for Orbit Determination in Europe (CODE). Two solutions covering 9 years (2000–2008) with and without Earth radiation pressure were computed and form the basis for this study. In previous studies, it has been shown that Earth radiation pressure has a non-negligible effect on the GPS orbits, mainly in the radial component. In this paper, the effect on the along-track and cross-track components is studied in more detail. Also in this paper, it is shown that Earth radiation pressure leads to a change in the estimates of GPS ground station positions, which is systematic over large regions of the Earth. This observed “deformation” of the Earth is towards North–South and with large scale patterns that repeat six times per GPS draconitic year (350 days), reaching a magnitude of up to 1 mm. The impact of Earth radiation pressure on the geocenter and length of day estimates was also investigated, but the effect is found to be less significant as compared to the orbits and position estimates.  相似文献   

10.
11.
The joint Taiwan–US mission FORMOSAT-3/ COSMIC (COSMIC) was launched on April 17, 2006. Each of the six satellites is equipped with two POD antennas. The orbits of the six satellites are determined from GPS data using zero-difference carrier-phase measurements by the reduced dynamic and kinematic methods. The effects of satellite center of mass (COM) variation, satellite attitude, GPS antenna phase center variation (PCV), and cable delay difference on the COSMIC orbit determination are studied. Nominal attitudes estimated from satellite state vectors deliver a better orbit accuracy when compared to observed attitude. Numerical tests show that the COSMIC COM must be precisely calibrated in order not to corrupt orbit determination. Based on the analyses of the 5 and 6-h orbit overlaps of two 30-h arcs, orbit accuracies from the reduced dynamic and kinematic solutions are nearly identical and are at the 2–3 cm level. The mean RMS difference between the orbits from this paper and those from UCAR (near real-time) and WHU (post-processed) is about 10 cm, which is largely due to different uses of GPS ephemerides, high-rate GPS clocks and force models. The kinematic orbits of COSMIC are expected to be used for recovery of temporal variations in the gravity field.  相似文献   

12.
The Earth’s non-spherical mass distribution and atmospheric drag cause the strongest perturbations on very low-Earth orbiting satellites (LEOs). Models of gravitational and non-gravitational accelerations are utilized in dynamic precise orbit determination (POD) with GPS data, but it is also possible to derive LEO positions based on GPS precise point positioning without dynamical information. We use the reduced-dynamic technique for LEO POD, which combines the geometric strength of the GPS observations with the force models, and investigate the performance of different pseudo-stochastic orbit parametrizations, such as instantaneous velocity changes (pulses), piecewise constant accelerations, and continuous piecewise linear accelerations. The estimation of such empirical orbit parameters in a standard least-squares adjustment process of GPS observations, together with other relevant parameters, strives for the highest precision in the computation of LEO trajectories. We used the procedures for the CHAMP satellite and found that the orbits may be validated by means of independent SLR measurements at the level of 3.2 cm RMS. Validations with independent accelerometer data revealed correlations at the level of 95% in the along-track direction. As expected, the empirical parameters compensate to a certain extent for deficiencies in the dynamic models. We analyzed the capability of pseudo-stochastic parameters for deriving information about the mismodeled part of the force field and found evidence that the resulting orbits may be used to recover force field parameters, if the number of pseudo-stochastic parameters is large enough. Results based on simulations showed a significantly better performance of acceleration-based orbits for gravity field recovery than for pulse-based orbits, with a quality comparable to a direct estimation if unconstrained accelerations are set up every 30 s.  相似文献   

13.
Apropos laser tracking to GPS satellites   总被引:3,自引:0,他引:3  
. Laser tracking to GPS satellites (PRN5 and 6) provides an opportunity to compare GPS and laser systems directly and to combine data of both in a single solution. A few examples of this are given in this study. The most important results of the analysis are that (1) daily SLR station coordinate solutions could be generated with a few cm accuracy; (2) coordinates of nine stations were determined in a 2.3-year-long arc solution; (3) the contribution of laser data on the `SLR-GPS' combined orbit, resulting from the simultaneous processing of SLR and GPS data, is significant and (4) laser-only orbits have an accuracy of 10–20 cm, 1-day predictions of SLR orbits differ from IGS orbits by about 20–40 cm, 2-day predictions by 50–60 cm. Received: 1 October 1996 / Accepted: 14 February 1997  相似文献   

14.
The celestial mechanics approach: application to data of the GRACE mission   总被引:3,自引:2,他引:1  
The celestial mechanics approach (CMA) has its roots in the Bernese GPS software and was extensively used for determining the orbits of high-orbiting satellites. The CMA was extended to determine the orbits of Low Earth Orbiting satellites (LEOs) equipped with GPS receivers and of constellations of LEOs equipped in addition with inter-satellite links. In recent years the CMA was further developed and used for gravity field determination. The CMA was developed by the Astronomical Institute of the University of Bern (AIUB). The CMA is presented from the theoretical perspective in (Beutler et al. 2010). The key elements of the CMA are illustrated here using data from 50 days of GPS, K-Band, and accelerometer observations gathered by the Gravity Recovery And Climate Experiment (GRACE) mission in 2007. We study in particular the impact of (1) analyzing different observables [Global Positioning System (GPS) observations only, inter-satellite measurements only], (2) analyzing a combination of observations of different types on the level of the normal equation systems (NEQs), (3) using accelerometer data, (4) different orbit parametrizations (short-arc, reduced-dynamic) by imposing different constraints on the stochastic orbit parameters, and (5) using either the inter-satellite ranges or their time derivatives. The so-called GRACE baseline, i.e., the achievable accuracy of the GRACE gravity field for a particular solution strategy, is established for the CMA.  相似文献   

15.
The impact of accelerometry on CHAMP orbit determination   总被引:6,自引:0,他引:6  
 The contribution of the STAR accelerometer to the CHAMP orbit precision is evaluated and quantified by means of the following results: orbital fit to the satellite laser ranging (SLR) observations, GPS reduced-dynamic vs SLR dynamic orbit comparisons, and comparison of the measured to the modeled non-gravitational accelerations (atmospheric drag in particular). In each of the four test periods in 2001, five CHAMP arcs of 2 days' length were analyzed. The mean RMS-of-fit of the SLR observations of the orbits computed with STAR data or the non-gravitational force model were 11 and 24 cm, respectively. If the accelerometer calibration parameters are not known at least at the few percent level, the SLR orbit fit deteriorates. This was tested by applying a 10% error to the along-track scale factor of the accelerometer, which increased the SLR RMS-of-fit on average to 17 cm. Reference orbits were computed employing the reduced-dynamic technique with GPS tracking data. This technique yields the most accurate orbit positions thanks to the estimation of a large number of empirical accelerations, which compensate for dynamic modeling errors. Comparison of the SLR orbits, computed with STAR data or the non-gravitational force model, to the GPS-based orbits showed that the SLR orbits employing accelerometer observations are twice as accurate. Finally, comparison of measured to modeled accelerations showed that the level of geomagnetic activity is highly correlated with the atmospheric drag model error, and that the largest errors occur around the geomagnetic poles. Received: 7 May 2002 / Accepted: 18 November 2002 Correspondence to: S. Bruinsma Acknowledgments. The TIGCM results were obtained from the CEDAR database. This study was supported by the Centre National d'Etudes Spatiales (CNES). The referees are thanked for their helpful remarks and suggestions.  相似文献   

16.
资源三号01星与02星作为我国重要的遥感立体测绘卫星,承担了地理产品生产以及国土资源调查等任务。其中,高精度的卫星轨道确定是完成卫星任务的必备条件。资源三号01星与02星都搭载国产双频GPS接收机和SLR反射器来进行精密定轨和独立定轨精度检核。在定轨过程中,星载GPS接收机天线的PCO误差和PCV误差是制约进一步提高定轨精度的重要因素。尽管卫星入轨前获取GPS接收机天线的PCO先验值,本文通过在轨估计PCO,分析了PCO各个方向上的分量估计的可行性,发现通过使用在轨PCO,SLR检核显示ZY-3 01星和ZY-3 02星轨道RMS值分别提高了0.331 mm、0.399 mm。本文利用直接法和残差法估计了两颗卫星星载GPS接收机天线的PCV模型,整体量级在[-15 mm 15 mm]。通过使用在轨估计的PCV模型(10°×10°),ZY-3 01星SLR检核结果RMS值提高了2.143 mm(直接法模型)、1.628 mm(残差法模型),重叠弧段对比在三维位置上提高了11.377 mm(直接法模型)、13.903 mm(残差法模型),ZY-3 02星SLR检核结果RMS值提高了0.727 mm(直接法模型)、0.692 mm(残差法模型),重叠弧段对比在三维位置上提高了1.736 mm(直接法模型)、1.548 mm(残差法模型)。本文进一步探讨了PCV模型分辨率(10°×10°,5°×5°,2°×2°)对精密定轨的影响,在综合考虑计算效率、存储空间、提高幅度等因素后,发现使用残差法在轨估计5°×5° PCV模型是较好的选择。  相似文献   

17.
香港实时GPS水汽监测系统的若干关键技术   总被引:8,自引:1,他引:7  
香港已经建成实时GPS水汽监测系统。主要介绍实时估计可降水分中的几个关键技术问题,如梯度模型、干分量模型的标定、湿分量至可降水分的区域性转换参数计算,以及预报卫星星历中粗差的探测方法等。最后,采用双差网解和非差精密单点定位两种数据处理方法,分别计算可降水份,并进行比较。  相似文献   

18.
研究了IAU2000对GPS卫星轨道确定的影响。以2006年DOY186的GPS数据为例,分析了GPS卫星在IAU2000决议模型以及原有模型下,惯性参考系统以及地固坐标系中轨道的差别。结果显示,采用不同模型,卫星轨道在惯性参考系中的差值存在周期性,其中X、Z方向的幅度达到了2.5 m,Y方向的幅度约为1 m;在地固系中,轨道差别也存在周期,幅度约为4 mm。并对卫星轨道的差值进行了统计,得出了在惯性系下,不同模型引起轨道差值的3D RMS为m级。  相似文献   

19.
采用HY2A卫星2013年2月的实测数据,研究了GPS、星载多谱勒无线电定轨定位系统(DORIS)及卫星激光测距(SLR)三种观测数据的单独和联合定轨问题。通过与法国CNES的精密轨道数据比较发现:分别采用GPS、DORIS和SLR数据进行单独定轨,GPS数据确定轨道的径向平均精度为1.3cm,三维位置约为6.2cm;DORIS定轨的径向平均精度为1.6cm,比GPS结果略差;SLR确定轨道的径向平均精度为2.3cm。用GPS、DORIS和SLR三种数据联合定轨,确定轨道的径向平均精度为1.2cm,三维位置约为6.5cm。与星载GPS定轨结果比较,三种观测数据的联合定轨在提高卫星轨道确定精度上不明显,但联合定轨有利于保持计算轨道精度相对稳定。用站星间高度角大于60°的SLR数据检验GPS/DORIS联合确定的轨道,两者在测距方向的均方差为2.5cm,可见基于HY2A的观测数据可以实现cm级的定轨需求。  相似文献   

20.
Applying a one-step integrated process, i.e. by simultaneously processing all data and determining all satellite orbits involved, a Terrestrial Reference Frame (TRF) consisting of a geometric as well as a dynamic part has been determined at the observation level using the EPOS-OC software of Deutsches GeoForschungsZentrum. The satellite systems involved comprise the Global Positioning System (GPS) as well as the twin GRACE spacecrafts. Applying a novel approach, the inherent datum defect has been overcome empirically. In order not to rely on theoretical assumptions this is done by carrying out the TRF estimation based on simulated observations and using the associated satellite orbits as background truth. The datum defect is identified here as the total of all three translations as well as the rotation about the z-axis of the ground station network leading to a rank-deficient estimation problem. To rectify this singularity, datum constraints comprising no-net translation (NNT) conditions in x, y, and z as well as a no-net rotation (NNR) condition about the z-axis are imposed. Thus minimally constrained, the TRF solution covers a time span of roughly a year with daily resolution. For the geometric part the focus is put on Helmert transformations between the a priori and the estimated sets of ground station positions, and the dynamic part is represented by gravity field coefficients of degree one and two. The results of a reference solution reveal the TRF parameters to be estimated reliably with high precision. Moreover, carrying out a comparable two-step approach using the same data and models leads to parameters and observational residuals of worse quality. A validation w.r.t. external sources shows the dynamic origin to coincide at a level of 5 mm or better in x and y, and mostly better than 15 mm in z. Comparing the derived GPS orbits to IGS final orbits as well as analysing the SLR residuals for the GRACE satellites reveals an orbit quality on the few cm level. Additional TRF test solutions demonstrate that K-Band Range-Rate observations between both GRACE spacecrafts are crucial for accurately estimating the dynamic frame’s orientation, and reveal the importance of the NNT- and NNR-conditions imposed for estimating the components of the dynamic geocenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号