首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract Low‐angle detachment faults and thrust‐sheet top basins are common features in foreland basins. However, in stratigraphic analysis their influence on sequence architecture is commonly neglected. Usually, only eustatic sea level and changing flexural subsidence are accounted for, and when deformation is considered, the emphasis is on the generation of local thrust‐flank unconformities. This study analyses the effects of detachment angle and repetitive detachment activation on stratigraphic stacking patterns in a large thrust‐sheet top basin by applying a three‐dimensional numerical model. Model experiments show that displacement over low‐angle faults (2–6°) at moderate rates (~5.0 m kyr?1) results in a vertical uplift component sufficient to counteract the background flexural subsidence rate. Consequently, the basin‐wide accommodation space is reduced, fluvio‐deltaic systems carried by the thrust‐sheet prograde and part of the sediment supply is spilled over towards adjacent basins. The intensity of the forced regression and the interconnectedness of fluvial sheet sandstones increases with the dip angle of the detachment fault or rate of displacement. In addition, the delta plain is susceptible to the formation of incised valleys during eustatic falls because these events are less compensated by regional flexural subsidence, than they would be in the absence of fault displacement.  相似文献   

2.
High resolution seismic reflection surveys over one of the most active and rapidly extending regions in the world, the Gulf of Corinth, have revealed that the gulf is a complex asymmetric graben whose geometry varies significantly along its length. A detailed map of the offshore faults in the gulf shows that a major fault system of nine distinct faults limits the basin to the south. The northern Gulf appears to be undergoing regional subsidence and is affected by an antithetic major fault system consisting of eight faults. All these major faults have been active during the Quaternary. Uplifted coastlines along their footwalls, growth fault patterns and thickening of sediment strata toward the fault planes indicate that some of these offshore faults on both sides of the graben are active up to present. Our data ground‐truth recent models and provides actual observations of the distribution of variable deformation rates in the Gulf of Corinth. Furthermore they suggest that the offshore faults should be taken into consideration in explaining the high extension rates and the uplift scenarios of the northern Peloponnesos coast. The observed coastal uplift appears to be the result of the cumulative effect of deformation accommodated by more than one fault and therefore, average uplift rates deduced from raised fossil shorelines, should be treated with caution when used to infer individual fault slip rates. Seismic reflection profiling is a vital tool in assessing seismic hazard and basin‐formation in areas of active extension.  相似文献   

3.
Tectonic inversion models predict that stratigraphic thickening and local facies patterns adjacent to reactivated fault systems should record at least two phases of basin development: (1) initial extension‐related subsidence and (2) subsequent shortening‐induced uplift. In the central Peloncillo Mountains of southwestern New Mexico, thickness trends, distribution, and provenance of two major stratigraphic intervals on opposite sides of a northwest‐striking reverse fault preserve a record of Early Cretaceous normal displacement and latest Cretaceous–Paleogene reverse displacement along the fault. The Aptian–Albian Bisbee Group thickens by a factor of three from the footwall to the hanging‐wall block, and the Late Cretaceous?–Eocene Bobcat Hill Formation is preserved only in the footwall block. An initial episode of normal faulting resulted in thickening of upper Aptian–middle Albian, mixed siliciclastic and carbonate deposits and an up section change from coarse‐grained deltas to shallow‐marine depositional conditions. A second episode of normal faulting caused abrupt thickening of upper Albian, quartzose coastal‐plain deposits across the fault. These faulting episodes record two events of extension that affected the northern rift shoulder of the Bisbee basin. The third faulting episode was oblique‐slip, reverse reactivation of the fault and other related, former normal faults. Alluvial and pyroclastic deposits of the Bobcat Hill Formation record inversion of the Bisbee basin and development of an intermontane basin directly adjacent to the former rift basin. Inversion was coeval with latest Cretaceous–Paleogene shortening and magmatism. This offset history offers significant insight into extensional basin tectonics in the Early Cretaceous and permits rejection of models of long‐term Mesozoic shortening and orogen migration during the Cretaceous. This paper also illustrates how episodes of fault reactivation modify, in very short distances (<10 km), regional patterns of subsidence, the distribution of sediment‐source areas, and sedimentary depositional systems.  相似文献   

4.
The transition from syn- to post-rift is often poorly constrained and in contrast to syn-rift systems, the controls on the development of post-rift systems are poorly understood. This paper documents the timing of the post-rift onset and discusses the controls that affected the subsequent development of the post-rift infill of the North Viking Graben using an integration of seismic and well data. The study enhances our understanding of post-rift system development in general and provides an analogue for other post-rift systems. Within the early post-rift infill of the North Viking Graben five key seismic surfaces were mapped [Base Cretaceous Unconformity (BCU), Intra-Aptian, Top Albian, Top Cenomanian and Top Turonian], which divide the post-rift interval into four key seismic stratigraphic units (K1–K4). The BCU has an intra-Volgian age on the basin slopes and shelfal and terrace areas and is interpreted to mark the end of rifting in the study area. On the footwall crests adjacent to the graben the BCU represents a complex unconformity from the syn- and post-rift combined, and in the graben it forms a conformable contact. Therefore, the BCU could not be used to date the onset of the post-rift in these locations. The thickness variations and age relationships between the syn-rift stratigraphy and the K-units reveal that the early post-rift infill of the North Viking Graben was dominantly controlled by the significant local syn-rift topography, especially in the K1 and K2 stages. The Cretaceous post-rift stratigraphy was also influenced by relative base level, which controlled the sediment source areas, the development of the basin geometry itself and subsequently the style of sediment deposition in the study area. Regional variations are also recognised in the post-rift stratigraphy although these variances are strongly influenced by the local basin physiography.  相似文献   

5.
Three-dimensional (3D) seismic, well and biostratigraphic data are integrated to determine the timing of inversion on the hangingwall of the South Viking Graben, offshore Norway. Within the study area two, NW–SE to NE–SW trending normal faults are developed which were active during a Late Jurassic rift event. In the hangingwall of these faults asymmetric, 2–5 km wide anticlines are developed which trend parallel to the adjacent faults and are interpreted as growth folds formed in response to compressional shortening (inversion) of the syn-rift basin-fill. Marked thickness variations are observed in Late Jurassic and Early Cretaceous growth strata with respect to the inversion-related folds, with seismic data indicating onlap and thinning of these units across the folds. In addition, well data suggests that not only are erosional surfaces only locally developed towards the crests of the folds, but these surfaces may also truncate underlying flooding surfaces towards the fold crests. Taken together, these observations indicate that inversion and growth of inversion-related structures initiated in the late Early Volgian and continued until the Late Albian. Furthermore, it is demonstrated that individual folds amplified and propagated laterally through time, and that fold growth was not synchronous across the study area. This study demonstrates that the temporal evolution of structures associated with the inversion of sedimentary basins can be accurately determined through the integration of 3D seismic, well and biostratigraphic data. Furthermore, this study has local implications for constraining the timing of inversion within the South Viking Graben during the Late Mesozoic.  相似文献   

6.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   

7.
Multiple episodes of extensional tectonism dominated the formation of Mesozoic fault-bounded basins on the Grand Banks of Newfoundland, the Irish Continental Shelf and the central North Sea. A range of structural and stratigraphic responses in the Jeanne d'Arc, Porcupine and Moray Firth basins support widespread synchronous tectonic controls on sedimentation during one of these episodes, the Late Cimmerian. Rifting was preceded by a phase of related tectonism during which subsidence rates began to vary across broad areas but without significant fault block rotation. This Late Cimmerian ‘onset warp’ pattern of subsidence is considered to have been essential in the establishment of restricted anoxic basins from latest Oxfordian through Kimmeridgian (sensu gallico) time and the development of one prolific layer of organic-rich source rocks. The most prominent and widely recognized structural/lithostratigraphic response to Late Cimmerian rifting was the deposition of sediment wedges. Tithonian to early Valanginian strata generally thicken- into northerly trending faults in the Jeanne d'Arc and Porcupine basins, indicating that extensional stress was orientated WNW-ESE across a very broad area. The misalignment of this regional Late Cimmerian extensional stress with local inherited structural fabric may be responsible for transpressional uplift of individual fault blocks in the Outer Moray Firth basin. Sedimentological responses to Late Cimmerian rifting were varied, though a common lithofacies stacking pattern is recognized. Variably thick conglomerates and/or sandstones were widely deposited at the start of rift deformation, while palaeoenvironments ranged from alluvial and braid plain to submarine fan even within individual basins. The relatively coarse basal sediments fine upwards into a second layer of commonly organic-rich shales and mark The widest variations in palaeoenvironments and sediment thicknesses occurred during the last phase of Late Cimmerian rift tectonism, though all three basins show evidence of decreasing water depths, increasing oxygen levels and increasing grain size. This lithofacies stacking pattern of relatively coarse to fine to coarse (reservoir/source/reservoir) and the development of bounding unconformities are largely attributable to progressive changes in rift-controlled subsidence. Rift basin subsidence rates are interpreted to increase from a low at initiation of faulting to a mid-rift peak, followed by slowing subsidence to the end of extension. A number of counteracting crustal mechanisms that may account for progressive variations in rift-induced subsidence are considered.  相似文献   

8.
The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.  相似文献   

9.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

10.
Field exposures of Lower Cretaceous strata in the Oliete sub-basin (eastern Spain) allow identification of syn-rift features such as listric and planar normal faults, rotated fault blocks, fault-related folds, sharp thickness variations and wedge-shaped sedimentary geometries, as well as intra-rift angular unconformities defined by the erosive truncation of rotated fault blocks and the onlap of upper units. The combined use of both stratigraphic and extensional tectonic features at the outcrop scale has allowed us to characterise different syn-sedimentary tectonic events and their correlation between the footwall and the hangingwall block of the major extensional Gargallo fault. Such events have been interpreted as induced by the major Gargallo fault activity, and they are the basis for proposing a polyphase evolutionary model for this master fault. Data indicate that the deformation tends not to be concentrated on the major fault; instead, it is distributed over a wide area. We interpret that both the interlayered detachment levels in the pre-rift (especially the Late Triassic Keuper Facies) and syn-rift series, together with the rheology of the sedimentary pile, play an important role in transmitting deformation from master faults to hangingwall and footwall blocks.  相似文献   

11.
The Crotone Basin was generated in the late Cenozoic as a forearc basin of the Ionian arc‐trench system. New data are gained through detailed field mapping, high‐resolution stratigraphic analysis of a key area and examination of offshore well data and seismic reflection profiles. Major unconformities divide the basin fill into major sequences, which reveal a three‐stage internal organization thought to reflect geodynamic events of the Calabrian arc and backarc area closely. The first stage is characterized by extensional block faulting and uplift followed by rapid drowning during high subsidence and transtension in the basin along a major NNW‐ to NW‐striking fault system. This stage is interpreted to reflect resumption of rollback after an episode of slab tearing triggered by transitory docking of continental lithosphere in the trench. The initial uplift is inferred to reflect decoupling and rebound after the transitory coupling phase. The second stage is characterized by increased subsidence and continued extension/transtension. This trend presumably reflects a decreasing rate of rollback resulting from a tendency towards viscous coupling after acceleration of slab downwelling. The third stage is characterized by short‐lived transpression along major shear zones and local inversion of former basins. This is inferred to reflect entrance into the trench of buoyant continental lithosphere, resulting in significant deceleration of slab rollback and consequently a break in, or slowing of, backarc extension, and predominance of the effects of compression related to Africa–Europe convergence. Overall, the above evolution resulted in the formation of a progressively narrower and rapidly retreating slab, inducing extreme rates of backarc extension, and may have played a critical role in determining the intermittent nature of the backarc rifting.  相似文献   

12.
Summary. A pronounced positive magnetic anomaly of approximately 300 gamma occurs over the eastern edge of the East Shetland Platform at approximately 60°N, 1°E. After the removal of the regional gravity variation and the gravity effect of the known geological structure, it is found that this magnetic high correlates with a negative gravity residual anomaly of approximately 30 mGal. Seismic data indicate that these anomalies occur in an area of relatively shallow basement on the upthrown side of the main Viking Graben margin fault. The presence of a buried granite batholith of approximately 40 × 40km may explain the gravity, magnetic and seismic observations. The observed deviation of the fault defining the edge of the Viking Graben in the proximity of the proposed granite may be explained in terms of the tectonic influence of the buoyant granite block during the taphrogenic development of the graben.  相似文献   

13.
Our understanding of continental rifting is, in large parts, derived from the stratigraphic record. This record is, however, incomplete as it does not often capture the geomorphic and erosional signal of rifting. New 3D seismic reflection data reveal a Late Permian-Early Triassic landscape incised into the pre-rift basement of the northern North Sea. This landscape, which covers at least 542 km2, preserves a drainage system bound by two major tectonic faults. A quantitative geomorphic analysis of the drainage system reveals 68 catchments, with channel steepness and knickpoint analysis of catchment-hosted palaeo-rivers showing that the landscape preserved a >2 Myr long period of transient tectonics. We interpret that this landscape records a punctuated uplift of the footwall of a major rift-related normal fault (Vette Fault) at the onset of rifting. The landscape was preserved by a combination of relatively rapid subsidence in the hangingwall of a younger fault (Øygarden Fault) and burial by post-incision sediments. As such, we show how and why erosional landscapes are preserved in the stratigraphic record, and how they can help us understand the tectono-stratigraphic evolution of ancient continental rifts.  相似文献   

14.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

15.
Assessing seismic hazard in continental interiors is difficult because these regions are characterized by low strain rates and may be struck by infrequent destructive earthquakes. In this paper, we provide an example showing that interpretations of seismic cross sections combined with other kinds of studies such as analysis of microseismicity allow the whole seismogenic source area to be imaged in this type of region. The Middle Durance Fault (MDF) is an 80-km-long fault system located southeastern France that has a moderate but regular seismicity and some palaeoseismic evidence for larger events. It behaves as an oblique ramp with a left-lateral-reverse fault slip and has a low strain rate. MDF is one of the rare slow active fault system monitored by a dedicated dense velocimetric short period network. This study showed a fault system segmented in map and cross section views which consists of staircase basement faults topped by listric faults ramping off Triassic evaporitic beds. Seismic sections allowed the construction of a 3-D structural model used for accurate location of microseismicity. Southern part of MDF is mainly active in the sedimentary cover. In its northern part and in Alpine foreland, seismicity deeper than 8 km was also recorded meaning active faults within the crust cannot be excluded. Seismogenic potential of MDF was roughly assessed. Resulting source sizes and estimated slip rates imply that the magnitude upper limit ranges from 6.0 to 6.5 with a return period of a few thousand years. The present study shows that the coupling between 3-D fault geometry imaging and accurate location of microseismicity provides a robust approach to analyse active fault sources and consequently a more refined seismic hazard assessment.  相似文献   

16.
Abstract The structural evolution of a basin cannot be reconstructed from sedimentary thicknesses alone without data on palaeobathymetry. Two classes of geological horizons, are defined, profiles and traces. Profiles are time-lines and bound depositional units. Traces were formed at a known water depth and contain implicit palaeobathymetric data.
Rock units bounded by traces are diachronous lithostratigraphic units, and the thicknesses of such units are controlled directly by subsidence, while the thicknesses of profile-bounded units may be unaffected by the subsidence or even the palaeotopography of the basin.
Dating fault movement from thickness variations in profile-bounded units is difficult without prior knowledge of the palaeobathymetry, and it is impossible to distinguish between synsedimentary fault movement and onlap to a pre-existing fault scarp from thickness alone.
Reconstruction of the basin history of the North Sea is difficult due to the lack of trace-bounded units in the post-Jurassic. The validity of previously published studies depends largely on the quality and quantity of palaeobathymetric data included. An alternative basin history is proposed based on the few trace-bounded units in the North Viking Graben. This includes rifting episodes in the Triassic and Late Jurassic, and a period of uplift in the Palaeocene.  相似文献   

17.
Reflection seismic data show that the late Cenozoic Safford Basin in the Basin and Range of south-eastern Arizona, is a 4.5-km-deep, NW-trending, SW-dipping half graben composed of middle Miocene to upper Pliocene sediments, separated by a late Miocene sequence boundary into lower and upper basin-fill sequences. Extension during lower basin-fill deposition was accommodated along an E-dipping range-bounding fault comprising a secondary breakaway zone along the north-east flank of the Pinaleño Mountains core complex. This fault was a listric detachment fault, active throughout the mid-Tertiary and late Cenozoic, or a younger fault splay that cut or merged with the detachment fault. Most extension in the basin was accommodated by slip on the range-bounding fault, although episodic movement along antithetic faults temporarily created a symmetric graben. Upper-plate movement over bends in the range-bounding fault created rollover structures in the basin fill and affected deposition within the half graben. Rapid periods of subsidence relative to sedimentation during lower basin-fill deposition created thick, laterally extensive lacustrine or alluvial plain deposits, and restricted proximal alluvian-fan deposits to the basin margins. A period of rapid extension and subsidence relative to sediment influx, or steepening of the upper segment of the range-bounding fault at the start of upper basin-fill deposition resulted in a large downwarp over a major fault bend. Sedimentation was restricted to this downwarp until filled. Episodic subsidence during upper basin-fill deposition caused widespread interbedding of lacustrine and fluvial deposits. Northeastward tilting along the south-western flank of the basin and north-eastward migration of the depocentre during later periods of upper basin-fill deposition suggest decreased extension rates relative to late-stage core complex uplift.  相似文献   

18.
The opening of the Gulf of Aden and the Red Sea, and the collision of the Arabian plate with the jigsaw southern margin of the Anatolian plate have sheared the Sinai-Levant microplate off the NW part of the Arabian plate, and created the left-lateral Dead Sea (Levant) transform fault. The structural setting of the northern Levant region, particularly Lebanon and the Palmyrides, has been complicated by detachments along incompetent evaporitic horizons, roughly separating the post-Triassic succession from the underlying crustal material. The interpretation of the multiple source Werner deconvolution (MSWD) estimates of Bouguer gravity profiles, which were separately calculated for Syria and Lebanon, integrated with the available geological and geophysical results leads to the following interpretations: (1) the crust of Syria thickens southeastwards from approximately 32 km under the Al-Ghab Graben to >36 km under the Aleppo high, the Palmyride fold belt and the Rutbah high; (2) the lower-crustal (basaltic) layer thickens northwestwards from the hinterland to the Al-Ghab graben at the expense of the overlying andesitic layer; (3) the Mid-Beqa'a fault is delineated by the MSWD estimates in Lebanon and its NE extension in Syria; (4) the Phanerozoic section in the southwesternmost parts of the Palmyrides is ∼ 13 km thick, and the shortening there could exceed 30 km; (5) the Palmyride fold belt, and the Serghaya and Mid-Beqa'a faults could have accounted for about 70 km of the 105 km left-lateral displacement along the southern segment of the Dead Sea transform fault system, without transmission to the Syrian (northern) segment of the fault system; (6) the splitting of the Dead Sea transform fault in the Kuleh Depression into the Serghaya. Mid-Beqa'a, Yammouneh and Roum faults could be explained by the rotation of the detached post-Triassic succession over a stable deep left-lateral fracture of the Dead Sea fault in the underlying crustal material.  相似文献   

19.
Abstract We present an interpretation of the structure and faulting of an industry multichannel line across the Central North Sea Graben. We observe substantial faulting between the mid-Jurassic and mid-Cretaceous and on the base Zechstein (salt) reflector. To estimate the extension from these faults we consider movement along both planar and curved faults. We demonstrate that summing the heave (the horizontal displacement) overestimates the time measure of elongation for planar, ‘domino-type’, faulting. However, for high-angle normal faults and up to 70% extension (β= 1.7) the heave only overestimates the extension by 13%. In the absence of other information, summing the heave provides a useful estimate of extension in the case of domino-type faulting. For curved ‘listric’ faults the heave is only a true measure of the elongation if the antithetic faulting which removes the voids is vertical. Antithetic movement along inclined shear planes implies significantly more extension. We used the two models; of faulting to introduce progressively greater amounts of internal deformation in the crustal rocks and sediments to attempt to reconcile the estimate of extension necessary to give the observed subsidence and that given by analysing the faults visible on the seismic line. Estimates of extension obtained by allowing antithetic faulting along inclined shear planes are consistent with the range of estimates necessary to account for the post-mid-Jurassic subsidence. The estimates for the prior mid-Jurassic faulting are still substantially less than those necessary to explain the subsidence. However, this is not of major concern as there are many reasons as to why analysis of the faulting should underestimate the pre mid-Jurassic extension. Our interpretation of the seismic line implies curved faults bottoming in the lithologically weak Zechstein salt. These faults are decoupled from the region below and, hence, do not reflect the geometry of the faulting in the basement.  相似文献   

20.
Summary. The lithospheric stretching model for the formation of sedimentary basins was tested in the central North Sea by a combined study of crustal thinning and basement subsidence patterns. A profile of crustal structure was obtained by shooting a long-range seismic experiment across the Central Graben, the main axis of subsidence. A seabed array of 12 seismometers in the graben was used to record shots fired in a line 530 km long across the basin. The data collected during the experiment were interpreted by modelling synthetic seismograms from a laterally varying structure, and the final model showed substantial crustal thinning beneath the graben. Subsidence data from 19 exploration wells were analysed to obtain subsidence patterns in the central North Sea since Jurassic times. Changes in water depth were quantified using foraminiferal assemblages where possible, and observed basement subsidence paths were corrected for sediment loading, compaction and changes in water depth through time. The seismic model is shown to be compatible with the observed gravity field, and the small size of observed gravity anomalies is used to argue that the basin is in local isostatic equilibrium. Both crustal thinning and basement subsidence studies indicate about 70 km of stretching across the Central Graben during the mid-Jurassic to early Cretaceous extensional event. This extension appears to have occurred over crust already slightly thinned beneath the graben, and the seismic data suggest that total extension since the early Permian may have been more than 100km. The data presented here may all be explained using a simple model of uniform extension of the lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号