首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The absence of any wide-separation gravitational lenses in the Large Bright Quasar Survey is used to place limits on the population of cluster-sized haloes in the universe, and hence constrain a number of cosmological parameters. The results agree with previous investigations in strongly ruling out the standard cold dark matter model but they are consistent with low-density universes in which the primordial fluctuation spectrum matches both cluster abundances and cosmic microwave background measurements. These conclusions are essentially independent of the cosmological constant, which is in stark contrast to the statistics of galaxy lenses. The constraints presented here are nullified if clusters have core radii of ≳10 kpc, but are free of a number of potential systematic errors, owing to the homogeneity of the data.  相似文献   

2.
The existence of large-scale voids in several galaxy surveys suggests the occurrence of an inflationary first-order phase transition. This process generates primordial bubbles that, before evolving into the present voids, leave at decoupling a non-Gaussian imprint on the cosmic microwave background.
In this paper we evaluate an analytical expression of the collapsed three-point correlation function from the bubble temperature fluctuations. Comparing the results with COBE -DMR measures, we obtain upper limits on the allowed non-Gaussianity and hence on the bubble parameters.  相似文献   

3.
Mapping cosmic microwave background (CMB) polarization is an essential ingredient of current cosmological research. Particularly challenging is the measurement of an extremely weak B-mode polarization that can potentially yield unique insight on inflation. Achieving this objective requires very precise measurements of the secondary polarization components on both large and small angular scales. Scattering of the CMB in galaxy clusters induces several polarization effects whose measurements can probe cluster properties. Perhaps more important are levels of the statistical polarization signals from the population of clusters. Power spectra of five of these polarization components are calculated and compared with the primary polarization spectra. These spectra peak at multipoles  ℓ≥ 3000  , and attain levels that are unlikely to appreciably contaminate the primordial polarization signals.  相似文献   

4.
We derive analytic expressions for the leading-order corrections to the polarization induced in the cosmic microwave background (CMB) owing to scattering of photons off hot electrons in galaxy clusters along the line of sight. For a thermal distribution of electrons with kinetic temperature k B T e∼10 keV and bulk peculiar velocity V ∼1000 km s−1, the dominant corrections to the polarization induced by the primordial CMB quadrupole and the cluster peculiar velocity arise from electron thermal motion and are at the level of ∼10 per cent in each case, near the peak of the polarization signal. When more sensitive measurements become feasible, these effects will be significant for the determination of transverse peculiar velocities, and the value of the CMB quadrupole at the cluster redshift, via the cluster polarization route.  相似文献   

5.
We present the observed relation between Δ T SZ, the cosmic microwave background (CMB) temperature decrement due to the Sunyaev–Zeldovich (SZ) effect, and L , the X-ray luminosity of galaxy clusters. We discuss this relation in terms of the cluster properties, and show that the slope of the observed Δ T SZ– L relation is in agreement with both the L – T e relation based on numerical simulations and X-ray emission observations, and the M gas– L relation based on observation. The slope of the Δ T SZ– L relation is also consistent with the M tot– L relation, where M tot is the cluster total mass based on gravitational lensing observations. This agreement may be taken to imply a constant gas mass fraction within galaxy clusters, however, there are large uncertainties, dominated by observational errors, associated with these relations. Using the Δ T SZ– L relation and the cluster X-ray luminosity function, we evaluate the local cluster contribution to arcmin-scale cosmic microwave background anisotropies. The Compton distortion y -parameter produced by galaxy clusters through the SZ effect is roughly two orders of magnitude lower than the current upper limit based on FIRAS observations.  相似文献   

6.
As the quality of the available galaxy cluster data improves, the models fitted to these data might be expected to become increasingly complex. Here we present the Bayesian approach to the problem of cluster data modelling: starting from simple, physically motivated parametrized functions to describe the cluster's gas density, gravitational potential and temperature, we explore the high-dimensional parameter spaces with a Markov-Chain Monte Carlo sampler, and compute the Bayesian evidence in order to make probabilistic statements about the models tested. In this way sufficiently good data will enable the models to be distinguished, enhancing our astrophysical understanding; in any case the models may be marginalized over in the correct way when estimating global, perhaps cosmological, parameters. In this work we apply this methodology to two sets of simulated interferometric Sunyaev–Zel'dovich effect and gravitational weak lensing data, corresponding to current and next-generation telescopes. We calculate the expected precision on the measurement of the cluster gas fraction from such experiments, and investigate the effect of the primordial cosmic microwave background (CMB) fluctuations on their accuracy. We find that data from instruments such as the Arcminute Microkelvin Imager (AMI), when combined with wide-field ground-based weak lensing data, should allow both cluster model selection and estimation of gas fractions to a precision of better than 30 per cent for a given cluster.  相似文献   

7.
Being the largest gravitationally bound structures in the Universe, galaxy clusters are huge reservoirs of photons generated by the bremsstrahlung of a hot cluster gas. We consider the absorption of high-energy photons from distant cosmological gamma-ray sources by the bremsstrahlung of galaxy clusters. The magnitude of this effect is the third in order of smallness after the effects of absorption by the cosmic microwave background and absorption by the extragalactic background light. Our calculations of the effect of absorption by the bremsstrahlung of galaxy clusters have shown that this effect manifests itself in the energy range ~1–100 GeV and can be τ ~ 10?5 in optical depth.  相似文献   

8.
We develop a general formalism for analysing parameter information from non-Gaussian cosmic fields. The method can be adapted to include the non-linear effects in galaxy redshift surveys, weak lensing surveys and cosmic velocity field surveys as part of parameter estimation. It can also be used as a test of non-Gaussianity of the cosmic microwave background. Generalizing maximum-likelihood analysis to second order, we calculate the non-linear Fisher information matrix and likelihood surfaces in parameter space. To this order we find that the information content is always increased by including non-linearity. Our methods are applied to a realistic model of a galaxy redshift survey, including non-linear evolution, galaxy bias, shot-noise and redshift-space distortions to second order. We find that including non-linearities allows all of the degeneracies between parameters to be lifted. Marginalized parameter uncertainties of a few per cent will then be obtainable using forthcoming galaxy redshift surveys.  相似文献   

9.
We examine the ability of the future Planck mission to provide a catalogue of galaxy clusters observed via their Sunyaev–Zel'dovich (SZ) distortion in the cosmic microwave background (CMB). For this purpose we produce full-sky SZ maps based on N -body simulations and scaling relations between cluster properties for several cosmological models. We extrapolate the N -body simulations by a mass function to high redshifts in order to obtain a realistic SZ background. The simulated Planck observations include, besides the thermal and kinematic SZ effects, contributions from the primordial CMB, extragalactic point sources as well as Galactic dust, free–free and synchrotron emission. A harmonic-space maximum-entropy method is used to separate the SZ signal from contaminating components in combination with a cluster detection algorithm based on thresholding and flux integration to identify clusters and to obtain their fluxes. We estimate a survey sensitivity limit (depending on the quality of the recovered cluster flux) and provide cluster survey completeness and purity estimates. We find that, given our modelling and detection algorithm, Planck will reliably detect at least several thousands of clusters over the full sky. The exact number depends on the particular cosmological model (up to 10 000 cluster detections in a concordance ΛCDM model with  σ8= 0.9  ). We show that the Galaxy does not significantly affect the cluster detection. Furthermore, the dependence of the thermal SZ power spectrum on the matter variance on scales of  8 h −1  Mpc and the quality of its reconstruction by the employed method are investigated. Our simulations suggest that the Planck cluster sample will not only be useful as a basis for follow-up observations, but also will have the ability to provide constraints on cosmological parameters.  相似文献   

10.
The coupling of photons and baryons by Thomson scattering in the early universe imprints features in both the cosmic microwave background (CMB) and matter power spectra. The former have been used to constrain a host of cosmological parameters, the latter have the potential to strongly constrain the expansion history of the universe and dark energy. Key to this program is the means to localize the primordial features in observations of galaxy spectra which necessarily involve galaxy bias, non-linear evolution and redshift space distortions. We present calculations, based on mock catalogs produced from high-resolution N-body simulations, which show the range of behaviors we might expect of galaxies in the real universe. We investigate physically motivated fitting forms which include the effects of non-linearity, galaxy bias and redshift space distortions and discuss methods for analysis of upcoming data. In agreement with earlier work, we find that a survey of several Gpc3 would constrain the sound horizon at z  1 to about 1%.  相似文献   

11.
Cosmic microwave background and large-scale structure data will shortly improve dramatically with the Microwave Anisotropy Probe and Planck Surveyor , and the Anglo-Australian 2-Degree Field and Sloan Digital Sky Survey. It is therefore timely to ask which of the microwave background and large-scale structure will provide a better probe of primordial non-Gaussianity. In this paper we consider this question, using the bispectrum as a discriminating statistic. We consider several non-Gaussian models and find that in each case the microwave background will provide a better probe of primordial non-Gaussianity. Our results suggest that if microwave background maps appear Gaussian, then apparent deviations from Gaussian initial conditions in galaxy surveys can be attributed with confidence to the effects of biasing. We demonstrate this precisely for the spatial bispectrum induced by local non-linear biasing.  相似文献   

12.
We examine the possibility of the decay of the vacuum energy into a homogeneous distribution of a thermalized cosmic microwave background (CMB), which is characteristic of an adiabatic vacuum energy decay into photons. It is shown that observations of the primordial density fluctuation spectrum, obtained from CMB and galaxy distribution data, restrict the possible decay rate. When photon creation due to an adiabatic vacuum energy decay takes place, the standard linear temperature dependence   T ( z ) = T 0(1 + z )  is modified, where T 0 is the present CMB temperature, and can be parametrized by a modified CMB temperature dependence     . From the observed CMB and galaxy distribution data, a strong limit on the maximum value of the decay rate is obtained by placing a maximum value  βmax≃ 3.4 × 10−3  on the β parameter.  相似文献   

13.
We allow a more general (step-function) form of the primordial power spectrum than the usual featureless power-law Harrison–Zeldovich (with spectral index   n =1)  power spectrum, and fit it to the latest cosmic microwave background data sets. Although the best-fitting initial power spectrum can differ significantly from the power-law shape, and contains a dip at scales   k ∼0.003  h  Mpc-1  , we find that  Ωm≈0.24  , consistent with previous analyses that assume power-law initial fluctuations. We also explore the feasibility of the early releases of the 2dF and Sloan Digital Sky Survey (SDSS) galaxy redshifts surveys to see these features, and we find that even if features exist in the primordial power spectrum, they are washed out by the window functions of the redshift surveys on scales   k <0.03  h  Mpc-1  .  相似文献   

14.
Wilkinson microwave anisotropy probe (WMAP) has provided us with the highest resolution all-sky maps of the cosmic microwave background (CMB). As a result of thermal Sunyaev–Zel’dovich effect, clusters of galaxies are imprinted as tiny, poorly resolved dips on top of primary CMB anisotropies in these maps. Here, I describe different efforts to extract the physics of intracluster medium (ICM) from the sea of primary CMB, through combining WMAP with low-redshift galaxy or X-ray cluster surveys. This finally culminates at a mean (universal) ICM pressure profile, which is for the first time directly constrained from WMAP 3 year maps, and leads to interesting constraints on the ICM baryonic budget.  相似文献   

15.
With WMAP putting the phenomenological standard model of cosmology on a strong footing, one can look forward to mining the cosmic microwave background (CMB) for fundamental physics with higher sensitivity and on smaller scales. Future CMB observations have the potential to measure absolute neutrino masses, test for cosmic acceleration independent of supernova Ia observations, probe for the presence of dark energy at z2, illuminate the end of the dark ages, measure the scale-dependence of the primordial power spectrum and detect gravitational waves generated by inflation.  相似文献   

16.
Evidence is presented for the observation of UHE gamma-rays from the direction of the active galaxy Centaurus A (NGC 5128). An excess of events from this direction is detected only for energies below the expected cosmic microwave background induced cut-off at around 150 TeV.  相似文献   

17.
A scheme is proposed for explaining the origin of the observed temperature of the cosmic microwave background (relict) radiation in which this radiation is treated as a product of the decay of primordial vector bosons in the framework of the Hoyle-Narlikar conformal cosmology.  相似文献   

18.
We apply a spherical harmonic analysis to the Point Source Redshift Survey (PSC z ), to compute the real-space galaxy power spectrum and the degree of redshift distortion caused by peculiar velocities. We employ new parameter eigenvector and hierarchical data compression techniques, allowing a much larger number of harmonic modes to be included, and correspondingly smaller error bars. Using 4644 harmonic modes, compressed to 2278, we find that the IRAS redshift-space distortion parameter is     and the amplitude of galaxy clustering on a scale of     is     . Combining these we find the amplitude of mass perturbations is     . While this is compatible with results from the cosmic microwave background (CMB), with a small degree of tilt, it disagrees with the amplitude of matter perturbations estimated from the abundance of clusters by a factor of 2, independent of cosmology. A preliminary model fitting analysis combining the CMB with either the PSC z or cluster abundances shows that the cosmological matter density parameter     , and the IRAS bias parameter     . However, the cluster abundances suggest that     and     , while the PSC z requires     and     . Given the physics of galaxy formation is poorly constrained, we conclude that IRAS galaxies and mass are only partially correlated.  相似文献   

19.
Measurements of the Type Ia supernovae Hubble diagram which suggest that the Universe is accelerating due to the effect of dark energy may be biased because we are located in a 200–300 Mpc underdense 'void' which is expanding 20–30 per cent faster than the average rate. With the smaller global Hubble parameter, the Wilkinson Microwave Anisotropy Probe 5 data on cosmic microwave background (CMB) anisotropies can be fitted without requiring dark energy if there is some excess power in the spectrum of primordial perturbations on 100 Mpc scales. The Sloan Digital Sky Survey (SDSS) data on galaxy clustering can also be fitted if there is a small component of hot dark matter in the form of 0.5 eV mass neutrinos. We show however that if the primordial fluctuations are Gaussian, the expected variance of the Hubble parameter and the matter density are far too small to allow such a large local void. Nevertheless, many such large voids have been identified in the SDSS Luminous Red Galaxy survey in a search for the late integrated Sachs–Wolfe effect due to dark energy. The observed CMB temperature decrements imply that they are nearly empty, thus these real voids too are in gross conflict with the concordance Λ cold dark matter model. The recently observed high peculiar velocity flow presents another challenge for the model. Therefore, whether a large local void actually exists must be tested through observations and cannot be dismissed a priori.  相似文献   

20.
We explore the possibility that the diffuse gamma-ray background radiation (GBR) at high Galactic latitudes could be dominated by inverse Compton scattering of cosmic ray (CR) electrons on the cosmic microwave background radiation and on starlight from our own galaxy. Assuming that the mechanisms accelerating Galactic CR hadrons and electrons are the same, we derive simple and successful relations between the spectral indices of the GBR above a few MeV and the CR electrons and CR nuclei above a few GeV. We reproduce the observed intensity and angular dependence of the GBR, in directions away from the Galactic disc and centre, without recourse to hypothetical extragalactic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号