首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Experiments were conducted to determine the water solubility of alkali basalts from Etna, Stromboli and Vesuvius volcanoes, Italy. The basaltic melts were equilibrated at 1,200°C with pure water, under oxidized conditions, and at pressures ranging from 163 to 3,842 bars. Our results show that at pressures above 1 kbar, alkali basalts dissolve more water than typical mid-ocean ridge basalts (MORB). Combination of our data with those from previous studies allows the following simple empirical model for the water solubility of basalts of varying alkalinity and fO2 to be derived: \textH 2 \textO( \textwt% ) = \text H 2 \textO\textMORB ( \textwt% ) + ( 5.84 ×10 - 5 *\textP - 2.29 ×10 - 2 ) ×( \textNa2 \textO + \textK2 \textO )( \textwt% ) + 4.67 ×10 - 2 ×\Updelta \textNNO - 2.29 ×10 - 1 {\text{H}}_{ 2} {\text{O}}\left( {{\text{wt}}\% } \right) = {\text{ H}}_{ 2} {\text{O}}_{\text{MORB}} \left( {{\text{wt}}\% } \right) + \left( {5.84 \times 10^{ - 5} *{\text{P}} - 2.29 \times 10^{ - 2} } \right) \times \left( {{\text{Na}}_{2} {\text{O}} + {\text{K}}_{2} {\text{O}}} \right)\left( {{\text{wt}}\% } \right) + 4.67 \times 10^{ - 2} \times \Updelta {\text{NNO}} - 2.29 \times 10^{ - 1} where H2OMORB is the water solubility at the calculated P, using the model of Dixon et al. (1995). This equation reproduces the existing database on water solubilities in basaltic melts to within 5%. Interpretation of the speciation data in the context of the glass transition theory shows that water speciation in basalt melts is severely modified during quench. At magmatic temperatures, more than 90% of dissolved water forms hydroxyl groups at all water contents, whilst in natural or synthetic glasses, the amount of molecular water is much larger. A regular solution model with an explicit temperature dependence reproduces well-observed water species. Derivation of the partial molar volume of molecular water using standard thermodynamic considerations yields values close to previous findings if room temperature water species are used. When high temperature species proportions are used, a negative partial molar volume is obtained for molecular water. Calculation of the partial molar volume of total water using H2O solubility data on basaltic melts at pressures above 1 kbar yields a value of 19 cm3/mol in reasonable agreement with estimates obtained from density measurements.  相似文献   

2.
Mineral-specific IR absorption coefficients were calculated for natural and synthetic olivine, SiO2 polymorphs, and GeO2 with specific isolated OH point defects using quantitative data from independent techniques such as proton–proton scattering, confocal Raman spectroscopy, and secondary ion mass spectrometry. Moreover, we present a routine to detect OH traces in anisotropic minerals using Raman spectroscopy combined with the “Comparator Technique”. In case of olivine and the SiO2 system, it turns out that the magnitude of ε for one structure is independent of the type of OH point defect and therewith the peak position (quartz ε = 89,000 ± 15,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}), but it varies as a function of structure (coesite ε = 214,000 ± 14,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}; stishovite ε = 485,000 ± 109,000  \textl \textmol\textH2\textO-1 \textcm-2\text{l}\,\text{mol}_{{\text{H}_2}\text{O}}^{-1}\,\text{cm}^{-2}). Evaluation of data from this study confirms that not using mineral-specific IR calibrations for the OH quantification in nominally anhydrous minerals leads to inaccurate estimations of OH concentrations, which constitute the basis for modeling the Earth’s deep water cycle.  相似文献   

3.
Li diffusion in zircon   总被引:2,自引:2,他引:0  
Diffusion of Li under anhydrous conditions at 1 atm and under fluid-present elevated pressure (1.0–1.2 GPa) conditions has been measured in natural zircon. The source of diffusant for 1-atm experiments was ground natural spodumene, which was sealed under vacuum in silica glass capsules with polished slabs of zircon. An experiment using a Dy-bearing source was also conducted to evaluate possible rate-limiting effects on Li diffusion of slow-diffusing REE+3 that might provide charge balance. Diffusion experiments performed in the presence of H2O–CO2 fluid were run in a piston–cylinder apparatus, using a source consisting of a powdered mixture of spodumene, quartz and zircon with oxalic acid added to produce H2O–CO2 fluid. Nuclear reaction analysis (NRA) with the resonant nuclear reaction 7Li(p,γ)8Be was used to measure diffusion profiles for the experiments. The following Arrhenius parameters were obtained for Li diffusion normal to the c-axis over the temperature range 703–1.151°C at 1 atm for experiments run with the spodumene source:
D\textLi = 7.17 ×10 - 7 exp( - 275 ±11 \textkJmol - 1 /\textRT)\textm2 \texts - 1. D_{\text{Li}} = 7.17 \times 10^{ - 7} { \exp }( - 275 \pm 11\,{\text{kJmol}}^{ - 1} /{\text{RT}}){\text{m}}^{2} {\text{s}}^{ - 1}.  相似文献   

4.
Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (ρ) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ρ of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L−1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (σ = ± 0.32 kg m−3):
r- r0 = 184.0 10 6 2 + 1.0 4 70 8*\textS - 1. 2 10 6 1*\textT + 3. 1 4 7 2 1 \textE - 4*\textS 2 +  0.00 1 9 9 \textT 2 - 0.00 1 1 2*\textS*\textT, \rho - \rho^{0} = { 184}.0 10 6 2 { } + { 1}.0 4 70 8*{\text{S}} - 1. 2 10 6 1*{\text{T }} + { 3}. 1 4 7 2 1 {\text{E}} - 4*{\text{S}}^{ 2} + \, 0.00 1 9 9 {\text{T}}^{ 2} - 0.00 1 1 2*{\text{S}}*{\text{T}},  相似文献   

5.
Monticellite is a common magmatic mineral in the groundmass of kimberlites. A new oxygen barometer for kimberlite magmas is calibrated based on the Fe content of monticellite, CaMgSiO4, in equilibrium with kimberlite liquids in experiments at 100 kPa from 1,230 to 1,350°C and at logfO2 from NNO-4.1 to NNO+5.3 (where NNO is the nickel–nickel oxide buffer). The XFeMtc/XFeliq was found to decrease with increasing fO2, consistent with only Fe2+ entering the monticellite structure. Although the XFe-in-monticellite varies with temperature and composition, these dependencies are small compared to that with fO2. The experimental data were fitted by weighted least square regression to the following relationship: \Updelta \textNNO = \frac{ log[ 0.858( ±0.021)\fracX\textFe\textLiq X\textFe\textMtc ] - 0.139( ±0.022) }0.193( ±0.004) \Updelta {\text{NNO}} = \frac{{\left\{ {\log \left[ {0.858( \pm 0.021)\frac{{X_{\text{Fe}}^{\text{Liq}} }}{{X_{\text{Fe}}^{\text{Mtc}} }}} \right] - 0.139( \pm 0.022)} \right\}}}{0.193( \pm 0.004)} where ΔNNO is the fO2 relative to that of the Nickel-bunsenite (NNO) buffer and XFeliq/XFeMtc is the ratio of mole fraction of Fe in liquid and Fe-in-monticellite (uncertainties at 2σ). The application of this oxygen barometer to natural kimberlites from both the literature and our own investigations, assuming the bulk rock FeO is that of their liquid FeO, revealed a range in fO2 from NNO-3.5 to NNO+1.7. A range of Mg/(Mg + Fe2+) (Mg#) for kimberlite melts of 0.46–0.88 was derived from the application of the experimentally determined monticellite-liquid Kd Fe2+–Mg to natural monticellites. The range in Mg# is broader and less ultramafic than previous estimates of kimberlites, suggesting an evolution under a wide range of petrologic conditions.  相似文献   

6.
A natural Ca-poor pigeonite (Wo6En76Fs18) from the ureilite meteorite sample PCA82506-3, free of exsolved augite, was studied by in situ high-temperature single-crystal X-ray diffraction. The sample, monoclinic P21/c, was annealed up to 1,093°C to induce a phase transition from P21/c to C2/c symmetry. The variation with increasing temperature of the lattice parameters and of the intensity of the b-type reflections (h + k = 2n + 1, present only in the P21/c phase) showed a displacive phase transition P21/c to C2/c at a transition temperature T Tr = 944°C, first order in character. The Fe–Mg exchange kinetics was studied by ex situ single-crystal X-ray diffraction in a range of temperatures between the closure temperature of the Fe–Mg exchange reaction and the transition temperature. Isothermal disordering annealing experiments, using the IW buffer, were performed on three crystals at 790, 840 and 865°C. Linear regression of ln k D versus 1/T yielded the following equation: ln k\textD = - 3717( ±416)/T(K) + 1.290( ±0.378);    (R2 = 0.988) \ln \,k_{\text{D}} = - 3717( \pm 416)/T(K) + 1.290( \pm 0.378);\quad (R^{2} = 0.988) . The closure temperature (T c) calculated using this equation was ∼740(±30)°C. Analysis of the kinetic data carried out taking into account the e.s.d.'s of the atomic fractions used to define the Fe–Mg degree of order, performed according to Mueller’s model, allowed us to retrieve the disordering rate constants C 0 K dis+ for all three temperatures yielding the following Arrhenius relation: ln( C0 K\textdis + ) = ln K0 - Q/(RT) = 20.99( ±3.74) - 26406( ±4165)/T(K);    (R2 = 0.988) \ln \left( {C_{0} K_{\text{dis}}^{ + } } \right) = \ln \,K_{0} - Q/(RT) = 20.99( \pm 3.74) - 26406( \pm 4165)/T(K);\quad (R^{2} = 0.988) . An activation energy of 52.5(±4) kcal/mol for the Fe–Mg exchange process was obtained. The above relation was used to calculate the following Arrhenius relation modified as a function of X Fe (in the range of X Fe = 0.20–0.50): ln( C0 K\textdis + ) = (21.185 - 1.47X\textFe ) - \frac(27267 - 4170X\textFe )T(K) \ln \left( {C_{0} K_{\text{dis}}^{ + } } \right) = (21.185 - 1.47X_{\text{Fe}} ) - {\frac{{(27267 - 4170X_{\text{Fe}} )}}{T(K)}} . The cooling time constant, η = 6 × 10−1 K−1 year−1 calculated on the PCA82506-3 sample, provided a cooling rate of the order of 1°C/min consistent with the extremely fast late cooling history of the ureilite parent body after impact excavation.  相似文献   

7.
Lead chloride formation constants at 25°C were derived from analysis of previous spectrophotometrically generated observations of lead speciation in a variety of aqueous solutions (HClO4–HCl and NaCl–NaClO4 mixtures, and solutions of MgCl2 and CaCl2). Specific interaction theory analysis of these formation constants produced coherent estimates of (a) PbCl+, \textPbCl20 {\text{PbCl}}_{2}^{0} , and PbCl3 formation constants at zero ionic strength, and (b) well-defined depictions of the dependence of these formation constants on ionic strength. Accompanying examination of a recent IUPAC critical assessment of lead formation constants, in conjunction with the spectrophotometrically generated formation constants presented in this study, revealed significant differences among various subsets of the IUPAC critically selected data. It was found that these differences could be substantially reduced through reanalysis of the formation constant data of one of the subsets. The resulting revised lead chloride formation constants are in good agreement with the formation constants derived from the earlier spectrophotometrically generated data. Combining these data sets provides an improved characterization of lead chloride complexation over a wide range of ionic strengths:
log \text Cl b 1 = 1. 4 9 1- 2.0 4 I 1/ 2 ( 1+ 1. 5 I 1/ 2 ) - 1 + 0. 2 3 8 I log \text Cl b 2 = 2.0 6 2- 3.0 6 I 1/ 2 ( 1+ 1. 5 I 1/ 2 ) - 1 + 0. 3 6 9 I log \text Cl b 3 = 1. 8 9 9- 3.0 6 I 1/ 2 ( 1+ 1. 5 I 1/ 2 ) - 1 + 0. 4 3 9 I. \begin{gathered} {\log}\,{}_{\text{ Cl}} \beta_{ 1} = 1. 4 9 1- 2.0 4\,I^{ 1/ 2} \left( { 1+ 1. 5\,I^{ 1/ 2} } \right)^{ - 1} +\,0. 2 3 8\,I \hfill \\ {\log}\,{}_{\text{ Cl}} \beta_{ 2} = 2.0 6 2- 3.0 6\,I^{ 1/ 2} \left( { 1+ 1. 5\,I^{ 1/ 2} } \right)^{ - 1} +\,0. 3 6 9\,I \hfill \\ {\log}\,{}_{\text{ Cl}} \beta_{ 3} = 1. 8 9 9- 3.0 6\,I^{ 1/ 2} \left( { 1+ 1. 5\,I^{ 1/ 2} } \right)^{ - 1} +\,0. 4 3 9\,I. \hfill \\ \end{gathered}  相似文献   

8.
The onset of hydrous partial melting in the mantle above the transition zone is dictated by the H2O storage capacity of peridotite, which is defined as the maximum concentration that the solid assemblage can store at P and T without stabilizing a hydrous fluid or melt. H2O storage capacities of minerals in simple systems do not adequately constrain the peridotite water storage capacity because simpler systems do not account for enhanced hydrous melt stability and reduced H2O activity facilitated by the additional components of multiply saturated peridotite. In this study, we determine peridotite-saturated olivine and pyroxene water storage capacities at 10–13 GPa and 1,350–1,450°C by employing layered experiments, in which the bottom ~2/3 of the capsule consists of hydrated KLB-1 oxide analog peridotite and the top ~1/3 of the capsule is a nearly monomineralic layer of hydrated Mg# 89.6 olivine. This method facilitates the growth of ~200-μm olivine crystals, as well as accessory low-Ca pyroxenes up to ~50 μm in diameter. The presence of small amounts of hydrous melt ensures that crystalline phases have maximal H2O contents possible, while in equilibrium with the full peridotite assemblage (melt + ol + pyx + gt). At 12 GPa, olivine and pyroxene water storage capacities decrease from ~1,000 to 650 ppm, and ~1,400 to 1,100 ppm, respectively, as temperature increases from 1,350 to 1,450°C. Combining our results with those from a companion study at 5–8 GPa (Ardia et al., in prep.) at 1,450°C, the olivine water storage capacity increases linearly with increasing pressure and is defined by the relation C\textH2 \textO\textolivine ( \textppm ) = 57.6( ±16 ) ×P( \textGPa ) - 169( ±18 ). C_{{{\text{H}}_{2} {\text{O}}}}^{\text{olivine}} \left( {\text{ppm}} \right) = 57.6\left( { \pm 16} \right) \times P\left( {\text{GPa}} \right) - 169\left( { \pm 18} \right). Adjustment of this trend for small increases in temperature along the mantle geotherm, combined with experimental determinations of D\textH2 \textO\textpyx/olivine D_{{{\text{H}}_{2} {\text{O}}}}^{\text{pyx/olivine}} from this study and estimates of D\textH2 \textO\textgt/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{gt}}/{\text{olivine}}}} , allows for estimation of peridotite H2O storage capacity, which is 440 ± 200 ppm at 400 km. This suggests that MORB source upper mantle, which contains 50–200 ppm bulk H2O, is not wet enough to incite a global melt layer above the 410-km discontinuity. However, OIB source mantle and residues of subducted slabs, which contain 300–1,000 ppm bulk H2O, can exceed the peridotite H2O storage capacity and incite localized hydrous partial melting in the deep upper mantle. Experimentally determined values of D\textH2 \textO\textpyx/\textolivine D_{{{\text{H}}_{2} {\text{O}}}}^{{{\text{pyx}}/{\text{olivine}}}} at 10–13 GPa have a narrow range of 1.35 ± 0.13, meaning that olivine is probably the most important host of H2O in the deep upper mantle. The increase in hydration of olivine with depth in the upper mantle may have significant influence on viscosity and other transport properties.  相似文献   

9.
Sekaninaite (XFe > 0.5)-bearing paralava and clinker are the products of ancient combustion metamorphism in the western part of the Kuznetsk coal basin, Siberia. The combustion metamorphic rocks typically occur as clinker beds and breccias consisting of vitrified sandstone–siltstone clinker fragments cemented by paralava, resulting from hanging-wall collapse above burning coal seams and quenching. Sekaninaite–Fe-cordierite (XFe = 95–45) is associated with tridymite, fayalite, magnetite, ± clinoferrosilite and ±mullite in paralava and with tridymite and mullite in clinker. Unmelted grains of detrital quartz occur in both rocks (<3 vol% in paralavas and up to 30 vol% in some clinkers). Compositionally variable siliceous, K-rich peraluminous glass is <30% in paralavas and up to 85% in clinkers. The paralavas resulted from extensive fusion of sandstone–siltstone (clinker), and sideritic/Fe-hydroxide material contained within them, with the proportion of clastic sediments ≫ ferruginous component. Calculated dry liquidus temperatures of the paralavas are 1,120–1,050°C and 920–1,050°C for clinkers, with calculated viscosities at liquidus temperatures of 101.6–7.0 and 107.0–9.8 Pa s, respectively. Dry liquidus temperatures of glass compositions range between 920 and 1,120°C (paralava) and 920–960°C (clinker), and viscosities at these temperatures are 109.7–5.5 and 108.8–9.7 Pa s, respectively. Compared with worldwide occurrences of cordierite–sekaninaite in pyrometamorphic rocks, sekaninaite occurs in rocks with XFe (mol% FeO/(FeO + MgO)) > 0.8; sekaninaite and Fe-cordierite occur in rocks with XFe 0.6–0.8, and cordierite (XFe < 0.5) is restricted to rocks with XFe < 0.6. The crystal-chemical formula of an anhydrous sekaninaite based on the refined structure is | \textK0.02 |(\textFe1.542 + \textMg0.40 \textMn0.06 )\Upsigma 2.00M [(\textAl1.98 \textFe0.022 + \textSi1.00 )\Upsigma 3.00T1 (\textSi3.94 \textAl2.04 \textFe0.022 + )\Upsigma 6.00T2 \textO18 ]. \left| {{\text{K}}_{0.02} } \right|({\text{Fe}}_{1.54}^{2 + } {\text{Mg}}_{0.40} {\text{Mn}}_{0.06} )_{\Upsigma 2.00}^{M} [({\text{Al}}_{1.98} {\text{Fe}}_{0.02}^{2 + } {\text{Si}}_{1.00} )_{\Upsigma 3.00}^{T1} ({\text{Si}}_{3.94} {\text{Al}}_{2.04} {\text{Fe}}_{0.02}^{2 + } )_{\Upsigma 6.00}^{T2} {\text{O}}_{18} ].  相似文献   

10.
The present work aims in discussing a principle that distinguishes between elastic parameters sets, $ \{ \Upphi \} \equiv \{ K_{0} , \, K^{\prime}, \, V_{0} ,\ldots\} The present work aims in discussing a principle that distinguishes between elastic parameters sets, { \Upphi } o { K0 ,  K,  V0 ,?} \{ \Upphi \} \equiv \{ K_{0} , \, K^{\prime}, \, V_{0} ,\ldots\} , on the basis of an energetic criterion: once a reference set, { \UpphiR } \{ \Upphi_{R} \} , is given, another one can be fixed, { \Upphi min } \left\{ {\Upphi_{ \min } } \right\} , so that they are as close as possible to each other, but yield non-equivalent deformation energy curves \Updelta G({ \Upphi } )\textdeform \Updelta G(\{ \Upphi \} )_{\text{deform}} , i.e. they give \Updelta G({ \UpphiR } )\textdeform \Updelta G(\{ \Upphi_{R} \} )_{\text{deform}} and \Updelta G({ \Upphi min } )\textdeform \Updelta G(\{ \Upphi_{ \min } \} )_{\text{deform}} such that | \Updelta G({ \Upphi min } )\textdeform - \Updelta G({ \UpphiR } )\textdeform | 3 1×s[\Updelta G\textdeform ]. \left| {\Updelta G(\{ \Upphi_{ \min } \} )_{\text{deform}} - \Updelta G(\{ \Upphi_{R} \} )_{\text{deform}} } \right| \ge 1\times \sigma [\Updelta G_{\text{deform}} ]. ΔG deform, calculated using the equation of state (EoS), and its uncertainty σ[ΔG deform], obtained by a propagation of the errors affecting { \Upphi } \{ \Upphi \} are crucial to fix which mineral assemblage forms at PT conditions and allow one to assess the reliability of such a prediction. We explore some properties related to the principle introduced, using the average values of the elastic parameters found in literature and related uncertainties for di-octahedral mica, olivine, garnet and clinopyroxene. Two elementary applications are briefly discussed: the effect of refining V 0 in fitting EoSs to P–V experimental data, in the case of garnet and omphacite, and the phengite 3T–2M 1 relative stability, controlled by pressure.  相似文献   

11.
The system Ca2Al3Si3O11(O/OH)-Ca2Al2FeSi3O11(O/OH), with emphasis on the Al-rich portion, was investigated by synthesis experiments at 0.5 and 2.0 GPa, 500-800 °C, using the technique of producing overgrowths on natural seed crystals. Electron microprobe analyses of overgrowths up to >100 µm wide have located the phase transition from clinozoisite to zoisite as a function of P-T-Xps and a miscibility gap in the clinozoisite solid solution. The experiments confirm a narrow, steep zoisite-clinozoisite two-phase loop in T-Xps section. Maximum and minimum iron contents in coexisting zoisite and clinozoisite are given by Xpszo (max) = 1.9*10 - 4 T+ 3.1*10 - 2 P - 5.36*10 - 2{\rm X}_{{\rm ps}}^{{\rm zo}} {\rm (max) = 1}{\rm .9*10}^{ - 4} T{\rm + 3}{\rm .1*10}^{ - 2} P - {\rm 5}{\rm .36*10}^{ - 2} and Xpsczo (min) = (4.6 * 10 - 4 - 4 * 10 - 5 P)T + 3.82 * 10 - 2 P - 8.76 * 10 - 2{\rm X}_{{\rm ps}}^{{\rm czo}} {\rm (min)} = {\rm (4}{\rm .6} * {\rm 10}^{ - {\rm 4}} - 4 * {\rm 10}^{ - {\rm 5}} P{\rm )}T + {\rm 3}{\rm .82} * {\rm 10}^{ - {\rm 2}} P - {\rm 8}{\rm .76} * {\rm 10}^{ - {\rm 2}} (P in GPa, T in °C). The iron-free end member reaction clinozoisite = zoisite has equilibrium temperatures of 185ᇆ °C at 0.5 GPa and 0ᇆ °C at 2.0 GPa, with (Hr0=2.8ǃ.3 kJ/mol and (Sr0=4.5ǃ.4 J/mol2K. At 0.5 GPa, two clinozoisite modifications exist, which have compositions of clinozoisite I ~0.15 to 0.25 Xps and clinozoisite II >0.55 Xps. The upper thermal stability of clinozoisite I at 0.5 GPa lies slightly above 600 °C, whereas Fe-rich clinozoisite II is stable at 650 °C. The schematic phase relations between epidote minerals, grossular-andradite solid solutions and other phases in the system CaO-Al2O3-Fe2O3-SiO2-H2O are shown.  相似文献   

12.
Single-crystal electron paramagnetic resonance (EPR) spectra of fast-electron-irradiated quartz, after annealing at 120 and 200°C, reveal five new E′ type centers, herein labeled E 5E 6E 7E 8 , \textand E 9 E_{ 5}^{\prime } ,\,E_{ 6}^{\prime } ,\,E_{ 7}^{\prime } ,\,E_{ 8}^{\prime } ,\,{\text{and}}\,E_{ 9}^{\prime } . Centers E 5E 7 , \textand E 9 E_{ 5}^{\prime } ,\,E_{ 7}^{\prime } ,\,{\text{and}}\,E_{ 9}^{\prime } are characterized by the orientations of the unique principal g and A(29Si) axes close to a short Si–O bond direction, hence representing new variants of the well-established E 1 E_{ 1}^{\prime } center. Centers E 6 E_{ 6}^{\prime } and E 8 E_{ 8}^{\prime } have the orientations of the unique principal g and A(29Si) axes approximately along a long Si–O bond direction, similar to the E 2 E_{ 2}^{\prime } centers. Therefore, these new E′ type centers apparently arise from the removal of different oxygen atoms and represent variable local distortions around the oxygen vacancies.  相似文献   

13.
Quartz and rutile were synthesized from silica-saturated aqueous fluids between 5 and 20 kbar and from 700 to 940°C in a piston-cylinder apparatus to explore the potential pressure effect on Ti solubility in quartz. A systematic decrease in Ti-in-quartz solubility occurs between 5 and 20 kbar. Titanium K-edge X-ray absorption near-edge structure (XANES) measurements demonstrate that Ti4+ substitutes for Si4+ on fourfold tetrahedral sites in quartz at all conditions studied. Molecular dynamic simulations support XANES measurements and demonstrate that Ti incorporation onto fourfold sites is favored over interstitial solubility mechanisms. To account for the PT dependence of Ti-in-quartz solubility, a least-squares method was used to fit Ti concentrations in quartz from all experiments to the simple expression
RTlnX\textTiO 2 \textquartz = - 60952 + 1.520 ·T(K) - 1741 ·P(kbar) + RTlna\textTiO 2 RT\ln X_{{{\text{TiO}}_{ 2} }}^{\text{quartz}} = - 60952 + 1.520 \cdot T(K) - 1741 \cdot P(kbar) + RT\ln a_{{{\text{TiO}}_{ 2} }}  相似文献   

14.
Comparison of polarized optical absorption spectra of natural Ca-rich diopsides and synthetic NaCrSi2O6 and LiCrSi2O6 clinopyroxenes, evidences as vivid similarities, as noticeable differences. The similarities reflect the fact that in all cases Cr3+ enters the small octahedral M1-site of the clinopyroxene structure. The differences are due to some iron content in the natural samples causing broad intense near infrared bands of electronic spin-allowed dd transitions of Fe2+(M1, M2) and intervalence Fe2+/Fe3+ charge-transfer transition, and by different symmetry and different local crystal fields strength of Cr3+ in the crystal structures. The positions of the spin-allowed bands of Cr3+, especially of the low energy one caused by the electronic 4 A 2g → 2 T 1g transition, are found to be in accordance with mean M1–O distances. The local relaxation parameter ε calculated for limCr 3+ → 0 from the spectra and interatomic á Cr - O ñ \left\langle {Cr - O} \right\rangle and á Mg - O ñ \left\langle {Mg - O} \right\rangle distances yields a very high value, 0.96, indicating that in the clinopyroxene structure the local lattice relaxation around the “guest” ion, Cr3+, deviates greatly from the “diffraction” value, ε = 0, than in any other known Cr3+-bearing systems studied so far. Under pressure the spin-allowed bands of Cr3+ shift to higher energies and decrease in intensity quite in accordance with the crystal field theoretical expectations, while the spin-forbidden absorption lines remain practically unshifted, but also undergo a strong weakening. There is no evident dependence of the Racah parameter B of Cr3+ reflecting the covalence of the oxygen-chromium bond under pressure: within the uncertainty of determination it may be regarded as practically constant. The values of CrO6 octahedral modulus, k\textpoly\textloc k_{\text{poly}}^{\text{loc}} , derived from high-pressure spectra of natural chromium diopside and synthetic NaCrSi2O6 kosmochlor are very close, ~203 and ~196 GPa, respectively, being, however, nearly twice higher than that of MgO6 octahedron in diopside, 105(4) GPa, obtained by Thompson and Downs (2008). Such a strong stiffening of the structural octahedron, i.e. twice higher value of k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} comparing with that of k\textMg2 + \textloc k_{{{\text{Mg}}^{2 + } }}^{\text{loc}} , may be caused by simultaneous substitution of Ca2+ by larger Na+ in the neighboring M2 sites at so-called jadeite-coupled substitution Mg2+ + Ca2+ → Cr3+ + Na+. It is also remarkable that the values of CrO6 octahedral modulus of NaCrSi2O6 kosmochlor obtained here are nearly twice larger than that of 90(16) GPa, evaluated by high-pressure X-ray structural refinement by Origlieri et al. (2003). Taking into account that the overall compressibility of the clinopyroxene structure should mainly be due to the compressibility of M1- and M2-sites, our k\textCr3 + \textloc k_{{{\text{Cr}}^{3 + } }}^{\text{loc}} -value, ~196 GPa, looks much more consistent with the bulk modulus value, 134(1) GPa.  相似文献   

15.
Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted ( [`(X)]\textFe \bar{X}_{\text{Fe}}  = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients K\textD\textAtg/\textOl K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.  相似文献   

16.
The effect of crystal structure relaxation in oxygen-based Cr3+-containing minerals on the crystal field stabilization energy (CFSE) is considered. It is shown that the dependence of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} , which is found from optical absorption spectra, on the average interatomic distances is described by the power function with a negative exponent c \mathord
/ \vphantom c [`(R)]n [`(R)]n {c \mathord{\left/ {\vphantom {c {\bar{R}^{n} }}} \right. \kern-\nulldelimiterspace} {\bar{R}^{n} }} , where n approaches 5, as predicted theoretically, for pure Cr3+ compounds, but decreases to 1.0–1.5 for Cr3+-containing oxide and silicate solid solutions. The deviation of the experimental dependence for solid solutions from the theoretical curve is due to structure relaxation, which tends to bring the local structure of Cr3+ ions closer to the structure in the pure Cr compound, thus producing changes in interatomic distances between the nearest neighbors with respect to those in the average structure determined by X-ray diffraction. As a consequence, the mixing enthalpy of Cr3+-bearing solid solutions can be represented by the sum of contributions from lattice strain and CFSE. The latter contribution is most often negative in sign and, therefore, brings the Al–Cr solid solutions close to an ideal solid solution. It is supposed that the increased Cr content in minerals from deep-seated mantle xenoliths and mineral inclusions in diamonds results from the effect of \textCFSE\textCr 3+ {\text{CFSE}}_{{{\text{Cr}}^{ 3+ } }} enhanced by high pressure.  相似文献   

17.
New data concerning glaucophane are presented. New high temperature drop calorimetry data from 400 to 800 K are used to constrain the heat capacity at high temperature. Unpublished low temperature calorimetric data are used to estimate entropy up to 900 K. These data, corrected for composition, are fitted for C p and S to the polynomial expressions (J · mol?1 · K?2) for T> 298.15 K: $$\begin{gathered} C_p = 11.4209 * 10^2 - 40.3212 * 10^2 /T^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - 41.00068 * 10^6 /T^2 \hfill \\ + 52.1113 * 10^8 /T^3 \hfill \\ \end{gathered} $$ $$\begin{gathered} S = 539 + 11.4209 * 10^2 * \left( {\ln T - \ln 298.15} \right) - 80.6424 * 10^2 \hfill \\ * \left( {T^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - 1/\left( {298.15} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right) + 20.50034 * 10^6 \hfill \\ * \left( {T^{ - 2} - 1/\left( {298.15} \right)^2 } \right) - 17.3704 * 10^8 * \left( {T^{ - 3} - \left( {1/298.15} \right)^3 } \right) \hfill \\ \end{gathered} $$ IR and Raman spectra from 50 to 3600 cm?1 obtained on glaucophane crystals close to the end member composition are also presented. These spectroscopic data are used with other data (thermal expansion, acoustic velocities etc.) in vibrational modelling. This last method provides an independent way for the determination of the thermodynamic properties (Cp and entropy). The agreement between measured and calculated properties is excellent (less than 2% difference between 100 and 1000 K). It is therefore expected that vibrational modelling could be applied to other amphiboles for which spectroscopic data are available. Finally, the enthalpy of formation of glaucophane is calculated.  相似文献   

18.
Sogdianite, a double-ring silicate of composition ( \textZr0. 7 6 \textTi0. 3 84 + \textFe0. 7 33 + \textAl0.13 )\Upsigma = 2 ( \square 1. 1 5 \textNa0. 8 5 )\Upsigma = 2 \textK[\textLi 3 \textSi 1 2 \textO 30 ] ( {\text{Zr}}_{0. 7 6} {\text{Ti}}_{0. 3 8}^{4 + } {\text{Fe}}_{0. 7 3}^{3 + } {\text{Al}}_{0.13} )_{\Upsigma = 2} \left( {\square_{ 1. 1 5} {\text{Na}}_{0. 8 5} } \right)_{\Upsigma = 2} {\text{K}}[{\text{Li}}_{ 3} {\text{Si}}_{ 1 2} {\text{O}}_{ 30} ] from Dara-i-Pioz, Tadjikistan, was studied by the combined application of 57Fe M?ssbauer spectroscopy and electronic structure calculations. The M?ssbauer spectrum confirms published microprobe and X-ray single-crystal diffraction results that indicate that Fe3+ is located at the octahedral A-site and that no Fe2+ is present. Both the measured and calculated quadrupole splitting, ΔE Q, for Fe3+ are virtually 0 mm s−1. Such a value is unusually small for a silicate and it is the same as the ΔE Q value for Fe3+ in structurally related sugilite. This result is traced back to the nearly regular octahedral coordination geometry corresponding to a very symmetric electric field gradient around Fe3+. A crystal chemical interpretation for the regular octahedral geometry and the resulting low ΔE Q value for Fe3+ in the M?ssbauer spectrum of sogdianite is that structural strain is largely “taken up” by weak Li–O bonds permitting highly distorted LiO4 tetrahedra. Weak Li–O bonding allows the edge-shared more strongly bonded Fe3+O6 octahedra to remain regular in geometry. This may be a typical property for all double-ring silicates with tetrahedrally coordinated Li.  相似文献   

19.
Static elasticity measurements at high pressures were carried out on oriented fluorapatite single crystals, some of which contained oriented amorphous ion tracks (ITs) implanted with relativistic Au ions (2.2 GeV) from the UNILAC linear accelerator at GSI, Darmstadt. High-pressure experiments on irradiated and non-irradiated crystal sections were carried out in diamond-anvil high-pressure cells under hydrostatic conditions. In situ single-crystal diffraction was performed to determine the high-precision lattice parameters, simultaneously monitoring the widths of X-ray diffraction Bragg peaks. High-pressure Raman spectra were analyzed with respect to the frequency shift and widths of bands, which correspond to the Raman-active vibrational modes of the phosphate tetrahedra. Swift heavy ion irradiation was found to induce anisotropic lattice expansion and tensile strain within the host lattice dependent on the ion-track orientation. The relatively low Grüneisen parameter for the ν 1b(A g) mode, which has been assigned to originate from the volume fraction of the amorphous tracks, and the γ(ν 1a)/γ(ν 1b) ratio reveals compressive strain on the amorphous ITs. The comparative compressibilities for the host lattice reveal approximately equivalent bulk moduli, but significantly different pressure derivatives (K T = 88.4 ± 0.7 GPa, ∂K/∂P = 6.3 ± 0.3 for non-irradiated, K T = 90.0 ± 1.7 GPa, ∂K/∂P = 3.8 ± 0.5 for irradiated samples). The axial compressibility moduli β −1 reveal significant differences, which correlate with the ion-track orientation [ba - 1 \beta_{a}^{ - 1}  = 240 ± 5 GPa, bc - 1 \beta_{c}^{ - 1}  = 361 ± 14 GPa, ∂( ba - 1 ) \left( {\beta_{a}^{ - 1} } \right) /∂P = 11.3 ± 1.2, ∂( bc - 1 ) \left( {\beta_{c}^{ - 1} } \right) /∂P = 11.6 ± 3.4 for irradiation ⊥(100); 246 ± 9 GPa, 364 ± 57 GPa, 9.5 ± 2.9, 14.7 ± 14.1 for irradiation ⊥(001), 230.7 ± 3.6 GPa, 373.5 ± 5.1 GPa, 19.2 ± 1.4, 20.1 ± 1.8 for no irradiation]. Line widths of XRD Bragg peaks in irradiated apatites confirm the strain of the host lattice, which appears to decrease with increasing pressure. By contrast, the bandwidths of Raman modes increase with pressure, and this is attributed to increasing strain gradients on the length scale of the short-range order. The investigations reveal considerable deviatoric stress on the [100]-oriented tracks due to the anisotropic elasticity, while the compression is uniform for the directions perpendicular to the tracks, which are aligned parallel to the c-axis. This difference might be considered to control the diffusion properties related to the annealing kinetics and its observed anisotropy, and hence to cause potential pressure effects on track-fading rates.  相似文献   

20.
Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa   总被引:1,自引:0,他引:1  
Volume diffusion rates of Ce, Sm, Dy, and Yb have been measured in a natural pyrope-rich garnet single crystal (Py71Alm16Gr13) at a pressure of 2.8 GPa and temperatures of 1,200-1,450 °C. Pieces of a single gem-quality pyrope megacryst were polished, coated with a thin layer of polycrystalline REE oxide, then annealed in a piston cylinder device for times between 2.6 and 90 h. Diffusion profiles in the annealed samples were measured by SIMS depth profiling. The dependence of diffusion rates on temperature can be described by the following Arrhenius equations (diffusion coefficients in m2/s): % MathType!MTEF!2!1!+- % feaaeaart1ev0aaatCvAUfKttLearuavTnhis1MBaeXatLxBI9gBam % XvP5wqSXMqHnxAJn0BKvguHDwzZbqegm0B1jxALjhiov2DaeHbuLwB % Lnhiov2DGi1BTfMBaebbfv3ySLgzGueE0jxyaibaieYlf9irVeeu0d % Xdh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9 % pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaaca % qabeaadaabauaaaOqaauaabeqaeeaaaaqaaiGbcYgaSjabc+gaVjab % cEgaNnaaBaaaleaacqaIXaqmcqaIWaamaeqaaOGaemiraq0aaSbaaS % qaaiabbMfazjabbkgaIbqabaGccqGH9aqpcqGGOaakcqGHsislcqaI % 3aWncqGGUaGlcqaI3aWncqaIZaWmcqGHXcqScqaIWaamcqGGUaGlcq % aI5aqocqaI3aWncqGGPaqkcqGHsisldaqadaqaaiabiodaZiabisda % 0iabiodaZiabgglaXkabiodaZiabicdaWiaaysW7cqqGRbWAcqqGkb % GscaaMe8UaeeyBa0Maee4Ba8MaeeiBaW2aaWbaaSqabeaacqqGTaql % cqqGXaqmaaGccqGGVaWlcqaIYaGmcqGGUaGlcqaIZaWmcqaIWaamcq % aIZaWmcqWGsbGucqWGubavaiaawIcacaGLPaaaaeaacyGGSbaBcqGG % VbWBcqGGNbWzdaWgaaWcbaGaeGymaeJaeGimaadabeaakiabdseaen % aaBaaaleaacqqGebarcqqG5bqEaeqaaOGaeyypa0JaeiikaGIaeyOe % I0IaeGyoaKJaeiOla4IaeGimaaJaeGinaqJaeyySaeRaeGimaaJaei % Ola4IaeGyoaKJaeG4naCJaeiykaKIaeyOeI0YaaeWaaeaacqaIZaWm % cqaIWaamcqaIYaGmcqGHXcqScqaIZaWmcqaIWaamcaaMe8Uaee4AaS % MaeeOsaOKaaGjbVlabb2gaTjabb+gaVjabbYgaSnaaCaaaleqabaGa % eeyla0IaeeymaedaaOGaei4la8IaeGOmaiJaeiOla4IaeG4mamJaeG % imaaJaeG4mamJaemOuaiLaemivaqfacaGLOaGaayzkaaaabaGagiiB % aWMaei4Ba8Maei4zaC2aaSbaaSqaaiabigdaXiabicdaWaqabaGccq % WGebardaWgaaWcbaGaee4uamLaeeyBa0gabeaakiabg2da9iabcIca % OiabgkHiTiabiMda5iabc6caUiabikdaYiabigdaXiabgglaXkabic % daWiabc6caUiabiMda5iabiEda3iabcMcaPiabgkHiTmaabmaabaGa % eG4mamJaeGimaaJaeGimaaJaeyySaeRaeG4mamJaeGimaaJaaGjbVl % abbUgaRjabbQeakjaaysW7cqqGTbqBcqqGVbWBcqqGSbaBdaahaaWc % beqaaiabb2caTiabbgdaXaaakiabc+caViabikdaYiabc6caUiabio % daZiabicdaWiabiodaZiabdkfasjabdsfaubGaayjkaiaawMcaaaqa % aiGbcYgaSjabc+gaVjabcEgaNnaaBaaaleaacqaIXaqmcqaIWaamae % qaaOGaemiraq0aaSbaaSqaaiabboeadjabbwgaLbqabaGccqGH9aqp % cqGGOaakcqGHsislcqaI5aqocqGGUaGlcqaI3aWncqaI0aancqGHXc % qScqaIYaGmcqGGUaGlcqaI4aaocqaI0aancqGGPaqkcqGHsisldaqa % daqaaiabikdaYiabiIda4iabisda0iabgglaXkabiMda5iabigdaXi % aaysW7cqqGRbWAcqqGkbGscaaMe8UaeeyBa0Maee4Ba8MaeeiBaW2a % aWbaaSqabeaacqqGTaqlcqqGXaqmaaGccqGGVaWlcqaIYaGmcqGGUa % GlcqaIZaWmcqaIWaamcqaIZaWmcqWGsbGucqWGubavaiaawIcacaGL % Paaaaaaaaa!0C76!
log10 DYb = ( - 7.73 ±0.97) - ( 343 ±30  kJ  mol- 1 /2.303RT )
log10 DDy = ( - 9.04 ±0.97) - ( 302 ±30  kJ  mol- 1 /2.303RT )
log10 DSm = ( - 9.21 ±0.97) - ( 300 ±30  kJ  mol- 1 /2.303RT )
log10 DCe = ( - 9.74 ±2.84) - ( 284 ±91 &nbs\matrix{ {\log _{10} D_{{\rm Yb}} = ( - 7.73 \pm 0.97) - \left( {343 \pm 30\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr {\log _{10} D_{{\rm Dy}} = ( - 9.04 \pm 0.97) - \left( {302 \pm 30\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr {\log _{10} D_{{\rm Sm}} = ( - 9.21 \pm 0.97) - \left( {300 \pm 30\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr {\log _{10} D_{{\rm Ce}} = ( - 9.74 \pm 2.84) - \left( {284 \pm 91\;{\rm kJ}\;{\rm mol}^{{\rm - 1}} /2.303RT} \right)} \cr } . There is no significant influence of ionic radius on diffusion rates; at each temperature the diffusion coefficients for Ce, Sm, Dy, and Yb are indistinguishable from each other within the measurement uncertainty. However, comparison with other diffusion data suggests that there is a strong influence of ionic charge on diffusion rates in garnet, with REE3+ diffusion rates more than two orders of magnitude slower than divalent cation diffusion rates. This implies that the Sm-Nd isotopic chronometer may close at significantly higher temperatures than thermometers based on divalent cation exchange, such as the garnet-biotite thermometer. REE diffusion rates in pyrope are similar to Yb and Dy diffusion rates in diopside at temperatures near the solidus of garnet lherzolite (~1,450 °C at 2.8 GPa), and are an order of magnitude faster than Nd, Ce, and La in high-Ca pyroxene at these conditions. At lower temperatures relevant to the lithospheric mantle and crust, REE diffusion rates in garnet are much faster than in high-Ca pyroxene, and closure temperatures for Nd isotopes in slowly-cooled garnets are ~200 °C lower than in high-Ca pyroxene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号