首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
Mesozoic alkaline intrusive complexes are widespread in the southern portion of the North China Craton and can provide some important constraints on the evolution of the Mesozoic lithosphere beneath the region. Three selected intrusive complexes (Tongshi, Hongshan, and Longbaoshan) are generally high in alkalis (K2O+Na2O=913 wt.%) and Al2O3 (1421.6 wt.%) and low in CaO and TiO2 (<0.6 wt.%), with high and variable SiO2 contents. Rocks from these complexes are all enriched in LREE and LILE (Cs, Rb, Ba, U, Th), depleted in Nb and Ti, have a highly positive Pb anomaly, and are characterized by lack of a clear Eu anomaly despite trace element abundances and isotopic ratios that vary greatly between complexes. The Tongshi complex has high Cs (2.68.5 ppm) and REE abundances (∑REE=112.6297 ppm, (La/Yb)N=13.130.9) and MORB-like Sr–Nd–Pb isotopic ratios ((87Sr/86Sr)i<0.704; εNd>0; (206Pb/204Pb)i>18). The Hongshan complex has low REE concentrations (∑REE=28.2118.7 ppm, (La/Yb)N=4.614.7) and is moderately enriched as demonstrated by their Sr–Nd isotopic ratios ((87Sr/86Sr)i>0.706; εNd<−7). The Longbaoshan complex is extremely REE enriched (∑REE=211.3392.6 ppm, (La/Yb)N=32.460.9) and has an EM2-like Sr–Nd isotopic character ((87Sr/86Sr)i>0.7078; εNd<−11). We suggest that the Tongshi complex originated from the asthenosphere and the Hongshan complex and the Longbaoshan complex were derived from the partial melting of previously subduction-modified lithospheric mantle, in response to post-collisional lithospheric extension and asthenospheric upwelling. The occurrence of these alkaline intrusive complexes demonstrates that the lithosphere beneath the region must have been considerably thinned at the time of intrusion of these complexes. This study also shed light on the temporal evolution of the Mesozoic lithosphere and the timing of the lithospheric thinning.  相似文献   

2.
S. Jung   《Lithos》2005,84(3-4):168-184
The overwhelming part of the continental crust in the high-grade part of the Damara orogen of Namibia consists of S-type granites, metasedimentary rocks and migmatites. At Oetmoed (central Damara orogen) two different S-type granites occur. Their negative εNd values (− 3.3 to − 5.9), moderately high initial 87Sr/86Sr ratios (0.714–0.731), moderately high 206Pb/204Pb (18.21–18.70) and 208Pb/204Pb (37.74–37.89) isotope ratios suggest that they originated by melting of mainly mid-Proterozoic metasedimentary material. Metasedimentary country rocks have initial εNd of − 4.2 to − 5.6, initial 87Sr/86Sr of 0.718–0.725, 206Pb/204Pb ratios of 18.32–18.69 and 208Pb/204Pb ratios of 37.91–38.45 compatible with their variation in Rb/Sr, U/Pb and Th/Pb ratios. Some migmatites and residual metasedimentary xenoliths tend to have more variable εNd values (initial εNd: − 4.2 to − 7.1), initial Sr isotope ratios (87Sr/86Sr: 0.708–0.735) and less radiogenic 206Pb/204Pb (18.22–18.53) and 208Pb/204Pb (37.78–38.10) isotope compositions than the metasedimentary rocks. On a Rb–Sr isochron plot the metasedimentary rocks and various migmatites plot on a straight line that corresponds to an age of c. 550 Ma which is interpreted to indicate major fractionation of the Rb–Sr system at that time. However, initial 87Sr/86Sr ratios of the melanosomes of the stromatic migmatites (calculated for their U–Pb monazite and Sm–Nd garnet ages of c. 510 Ma) are more radiogenic (87Sr/86Sr: 0.725) than those obtained on their corresponding leucosomes (87Sr/86Sr: 0.718) implying disequilibrium conditions during migmatization that have not lead to complete homogenization of the Rb–Sr system. However, the leucosomes have similar Nd isotope characteristics than the inferred residues (melanosomes) indicating the robustness of the Sm–Nd isotope system during high-grade metamorphism and melting. On a Rb–Sr isochron plot residual metasedimentary xenoliths show residual slopes of c. 66 Ma (calculated for an U–Pb monazite age of 470 Ma) again indicating major fractionation of Rb/Sr at c. 540 Ma. However, at 540 Ma, these xenoliths have unradiogenic Sr isotope compositions of c. 0.7052, indicating depleted metasedimentary sources at depth. Based on the distinct Pb isotope composition of the metasedimentary rocks and S-type granites, metasedimentary rocks similar to the country rocks are unlikely sources for the S-type granites. Moreover, a combination of Sr, Nd, Pb and O isotopes favours a three-component mixing model (metasedimentary rocks, altered volcanogenic material, meta-igneous crust) that may explain the isotopic variabilty of the granites. The mid-crustal origin of the different types of granite emphasises the importance of recycling and reprocessing of pre-existing differentiated material and precludes a direct mantle contribution during the petrogenesis of the orogenic granites in the central Damara orogen of Namibia.  相似文献   

3.
Extensive magmatic activity developed at the northwestern part of the Anatolian block and produced basaltic lavas that are situated along and between the two segments of the North Anatolian Fault zone. This region is a composite tectonic unit formed by collision of continental fragments after consumption of Neotethyan ocean floor during the late Cretaceous. Northwestern Anatolian basalts and evolved lavas exhibit both tholeiitic and calc-alkaline characteristics. Mafic lavas are moderately enriched in LILE (except depleted part of Yuvacık and İznik samples) and depleted in HFSE (but not Zr, Hf) relative to primitive mantle values, suggesting derivation from a MORB-like mantle source that is unexpected in this subduction environment. Sr and Nd isotopes are close to the mantle array and vary beyond analytical error (87Sr/86Sr 0.70404–0.70546, 143Nd/144Nd 0.51270–0.51289). These geochemical features may result from two possible processes: (1) melting of a MORB-like mantle source that was modified by subduction-released fluids and melts or (2) modification of mafic liquids derived from a dominantly MORB-like source by crustal or lithospheric mantle material. Geochemical characteristics of the lavas (e.g., Ba/Rb, Rb/Sr, Ba/Zr, 87Sr/86Sr, Sr/P) vary systematically along the fault zone from east to west, consistent with a decrease in the degree of melting from east to west or a change in the nature of the source composition itself. Thus, the difference in incompatible elements and Sr–Nd isotopic ratios seems to result from small-scale mantle heterogeneity in a post-collisional tectonic environment.  相似文献   

4.
We have examined Re, Platinum-Group Element (PGE) and Os-isotope variations in suites of variably fractionated lavas from Kohala Volcano, Hawaii, in order to evaluate the effects of melt/crust interaction on the mantle isotopic signature of these lavas. This study reveals that the behavior of Os and other PGEs changes during magma differentiation. The concentrations of all PGEs strongly decrease with increasing fractionation for melts with MgO < 8 wt.%. Fractionation trends indicate significantly higher bulk partition coefficients for PGEs in lavas with less than 8 wt.% MgO (DPGE = 35–60) when compared to values for more primitive lavas with MgO > 8 wt.% (DPGE ≤ 6). This sudden change in PGE behavior most likely reflects the onset of sulfur saturation and sulfide fractionation in Hawaiian magmas at about 8 wt.% MgO.

The Os-rich primitive lavas (≥ 8 wt.% MgO, > 0.1 ppb Os) display a narrow range of 187Os/188Os values (0.130–0.133), which are similar to values in high-MgO lavas from Mauna Kea and Haleakala Volcanoes and likely represent the mantle signature of Kohala lavas. However, Os-isotopic ratios become more radiogenic with decreasing MgO and Os content in evolved lavas, ranging from 0.130 to 0.196 in the shield-stage Pololu basalts and from 0.131 to 0.223 in the post-shield Hawi lavas. This reflects assimilation of local oceanic crust material during fractional crystallization of the magma at shallow level (AFC processes). AFC modeling suggests that assimilation of up to 10% upper oceanic crust could produce the most radiogenic Os-isotope ratios recorded in the Pololu lavas. This amount of upper crust assimilation has a negligible effect on the Sr and Nd-isotopic compositions of Kohala lavas. Thus, these isotopic compositions likely represent the composition of the mantle source of Kohala lavas.  相似文献   


5.
Sr–Nd–Pb isotope ratios of alkaline mafic intra-plate magmatism constrain the isotopic compositions of the lithospheric mantle along what is now the eastern foreland or back arc of the Cenozoic Central Andes (17–34°S). Most small-volume basanite volcanic rocks and alkaline intrusive rocks of Cretaceous (and rare Miocene) age were derived from a depleted lithospheric mantle source with rather uniform initial 143Nd/144Nd ( 0.5127–0.5128) and 87Sr/86Sr ( 0.7032–0.7040). The initial 206Pb/204Pb ratios are variable (18.5–19.7) at uniform 207Pb/204Pb ratios (15.60 ± 0.05). A variety of the Cretaceous depleted mantle source of the magmatic rocks shows elevated Sr isotope ratios up to 0.707 at constant high Nd isotope ratios. The variable Sr and Pb isotope ratios are probably due to radiogenic growth in a metasomatized lithospheric mantle, which represents the former sub-arc mantle beneath the early Palaeozoic active continental margin. Sr–Nd–Pb isotope signatures of a second mantle type reflected in the composition of Cretaceous (one late Palaeozoic age) intra-plate magmatic rocks (143Nd/144Nd  0.5123, 87Sr/86Sr  0.704, 206Pb/204Pb  17.5–18.5, and 207Pb/204Pb  15.45–15.50) are similar to the isotopic composition of old sub-continental lithospheric mantle of the Brazilian Shield.

Published Nd and Sr isotopic compositions of Mesozoic to Cenozoic arc-related magmatic rocks (18–40°S) represent the composition of the convective sub-arc mantle in the Central Andes and are similar to those of the Cretaceous (and rare Miocene) intra-plate magmatic rocks. The dominant convective and lithospheric mantle type beneath this old continental margin is depleted mantle, which is compositionally different from average MORB-type depleted mantle. The old sub-continental lithospheric mantle did not contribute to Mesozoic to Cenozoic arc magmatism.  相似文献   


6.
The major and trace elements and Sr–Nd–Pb isotopes of the host rocks and the mafic microgranular enclaves (MME) gathered from the Dölek and Sariçiçek plutons, Eastern Turkey, were studied to understand the underlying petrogenesis and geodynamic setting. The plutons were emplaced at  43 Ma at shallow depths ( 5 to 9 km) as estimated from Al-in hornblende geobarometry. The host rocks consist of a variety of rock types ranging from diorite to granite (SiO2 = 56.98–72.67 wt.%; Mg# = 36.8–50.0) populated by MMEs of gabbroic diorite to monzodiorite in composition (SiO2 = 53.21–60.94 wt.%; Mg# = 44.4–53.5). All the rocks show a high-K calc-alkaline differentiation trend. Chondrite-normalized REE patterns are moderately fractionated and relatively flat [(La/Yb)N = 5.11 to 8.51]. They display small negative Eu anomalies (Eu/Eu = 0.62 to 0.88), with enrichment of LILE and depletion of HFSE. Initial Nd–Sr isotopic compositions for the host rocks are εNd(43 Ma) = − 0.6 to 0.8 and mostly ISr = 0.70482–0.70548. The Nd model ages (TDM) vary from 0.84 to 0.99 Ga. The Pb isotopic ratios are (206Pb/204Pb) = 18.60–18.65, (207Pb/204Pb) = 15.61–15.66 and (208Pb/204Pb) = 38.69–38.85. Compared with the host rocks, the MMEs are relatively homogeneous in isotopic composition, with ISr ranging from 0.70485 to 0.70517, εNd(43 Ma) − 0.1 to 0.8 and with Pb isotopic ratios of (206Pb/204Pb) = 18.58–18.64, (207Pb/204Pb) = 15.60–15.66 and (208Pb/204Pb) = 38.64–38.77. The MMEs have TDM ranging from 0.86 to 1.36 Ga. The geochemical and isotopic similarities between the MMEs and their host rocks indicate that the enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and mantle-derived magmas. All the geochemical data, in conjunction with the geodynamic evidence, suggest that a basic magma derived from an enriched subcontinental lithospheric mantle, probably triggered by the upwelling of the asthenophere, and interacted with a crustal melt that originated from the dehydration melting of the mafic lower crust at deep crustal levels. Modeling based on the Sr–Nd isotope data indicates that  77–83% of the subcontinental lithospheric mantle involved in the genesis. Consequently, the interaction process played an important role in the genesis of the hybrid granitoid bodies, which subsequently underwent a fractional crystallization process along with minor amounts of crustal assimilation, en route to the upper crustal levels generating a wide variety of rock types ranging from diorite to granite in an extensional regime.  相似文献   

7.
Tanya Furman  David Graham 《Lithos》1999,48(1-4):237-262
This study presents new major and trace element and Sr–Nd isotopic results for a suite of Miocene–Recent mafic lavas from the Kivu volcanic province in the western branch of the East African Rift. These lavas exhibit a very wide range in chemical and isotopic characteristics, due to a lithospheric mantle source region that is heterogeneous on a small scale, probably <1 km. The chemical and isotopic variations are mostly geographically controlled: lavas from Tshibinda volcano, which lies on a rift border fault on the northwestern margin of the province, have higher values of 87Sr/86Sr, (La/Sm)n, Ba/Nb, and Zr/Hf than the majority of Kivu (Bukavu) samples. The range of 87Sr/86Sr at Tshibinda (0.70511–0.70514) overlaps some compositions found in the neighboring Virunga province, while Bukavu group lavas include the lowest 87Sr/86Sr (0.70314) and highest Nd (+7.6) yet measured in western rift lavas. The Tshibinda compositions trend towards a convergence for Sr–Nd–Pb isotopic values among western rift lavas. Among Kivu lavas, variations in 143Nd/144Nd correlate with those for certain incompatible trace element ratios (e.g., Th/Nb, Zr/Hf, La/Nb, Ba/Rb), with Tshibinda samples defining one compositional extreme. There are covariations of isotopic and trace element ratios in mafic lavas of the East African Rift system that vary systematically with geographic location. The lavas represent a magmatic sampling of variations in the underlying continental lithospheric mantle, and it appears that a common lithospheric mantle (CLM) source is present beneath much of the East African Rift system. This source contains minor amphibole and phlogopite, probably due to widespread metasomatic events between 500 and 1000 Ma. Lava suites which do not show a strong component of the CLM source, and for which the chemical constraints also suggest the shallowest magma formation depths, are the Bukavu group lavas from Kivu and basanites from Huri Hills, Kenya. The inferred extent of lithospheric erosion therefore appears to be significant only beneath these two areas, which is generally consistent with lithospheric thickness variations estimated from gravity and seismic studies.  相似文献   

8.
P. Barbey  H. Nachit  J. Pons 《Lithos》2001,58(3-4):125-143
The Tarçouate pluton (Anti-Atlas, Morocco) is an inversely zoned laccolith emplaced 583 Ma ago into low-grade metasediments, with the following succession: leucocratic granites, biotite–granodiorites (±monzodiorites), hornblende–granodiorites (±monzodiorites) and monzodiorites syn-plutonic dykes. These rocks form two distinct, chemically coherent, units:

(1) A main unit consists of layered (572<59 wt.%) and homogeneous (632<67%) hornblende–granodiorites, biotite–granodiorites (672<72%) and aplites (702<76%). All these rocks are metaluminous to peraluminous and display fractionated HREE depleted patterns (La/YbN=14–61; YbN=0.7–6.8). Initial 87Sr/86Sr ratios (0.7072 to 0.7080) increase, whereas Nd(t) values (−1.7 to −2.8) decrease from the hornblende– to the biotite–granodiorites. Monzodiorites occur as mafic microgranular enclaves or syn-plutonic dykes.

(2) A subordinate unit consists of leucocratic, distinctly peraluminous, muscovite-bearing granites (722<75%) occurring at the northern edge of the pluton and as dykes in the surrounding schists towards the top of the pluton. These rocks are free of monzodioritic enclaves. They display less fractionated patterns with higher HREE contents (La/YbN=2–19; YbN=11–18), a distinct Nd(t) value (−11.8) and a 87Sr/86Sr initial ratio (0.7480) within those of the surrounding schists (0.7393–0.7819).

Magma–host interactions are closely related to differentiation and occurred at different levels, but mainly before emplacement. Field relationships and petrogenetic modelling show that the bt–granodiorites formed at levels deeper than the level of emplacement, by fractional crystallisation (0.65

These data preclude any significant material transfer process for the emplacement of the Tarçouate pluton, but rather suggest assembly of successive pulses of variably differentiated crystal-poor magmas. These shallow level granitic plutons can be considered as an end-member of magma emplacement with minimum interactions with the country rocks.  相似文献   


9.
In order to identify and characterise fluids associated with metamorphic rocks from the Chaves region (North Portugal), fluid inclusions were studied in quartz veinlets, concordant with the main foliation, in graphitic-rich and nongraphitic-rich lithologies from areas with distinct metamorphic grade. The study indicates multiple fluid circulation events with a variety of compositions, broadly within the C–H–O–N–salt system. Primary fluid inclusions in quartz contain low salinity aqueous–carbonic, H2O–CH4–N2–NaCl fluids that were trapped near the peak of regional metamorphism, which occurred during or immediately after D2. The calculated PT conditions for the western area of Chaves (CW) is P=300–350 MPa and T500 °C, and for the eastern area (CE), P=200–250 MPa and T=400–450 °C. A first generation of secondary fluid inclusions is restricted to discrete cracks at the grain boundaries of quartz and consists of low salinity aqueous–carbonic, H2O–CO2–CH4–N2–NaCl fluids. PT conditions from the fluid inclusions indicate that they were trapped during a thermal event, probably related with the emplacement of the two-mica granites.

A second generation of secondary inclusions occurs in intergranular fractures and is characterised by two types of aqueous inclusions. One type is a low salinity, H2O–NaCl fluid and the second consists of a high salinity, H2O–NaCl–CaCl2 fluid. These fluid inclusions are not related to the metamorphic process and have been trapped after D3 at relatively low P (hydrostatic)–T conditions (P<100 MPa and T<300 °C).

Both the early H2O–CH4–N2–NaCl fluids in quartz from the graphitic-rich lithologies and the later H2O–CO2–CH4–N2–NaCl carbonic fluid in quartz from graphitic-rich and nongraphitic-rich lithologies seem to have a common origin and evolution. They have low salinity, probably resulting from connate waters that were diluted by the water released from mineral dehydration during metamorphism. Their main component is water, but the early H2O–CH4–N2–NaCl fluids are enriched in CH4 due to interaction with the C-rich host rocks.

From the early H2O–CH4–N2–NaCl to the later aqueous–carbonic H2O–CO2–CH4–N2–NaCl fluids, there is an enrichment in CO2 that is more significant for the fluids associated with nongraphitic-rich lithologies.

The aqueous–carbonic fluids, enriched in H2O and CH4, are primarily associated with graphitic-rich lithologies. However, the aqueous–carbonic CO2-rich fluids were found in both graphitic and nongraphitic-rich units from both the CW and CE studied areas, which are of medium and low metamorphic grade, respectively.  相似文献   


10.
Neogene volcanism in the Eastern Rif (Morocco) comprises a series of calc-alkaline, potassic calc-alkaline, shoshonitic and alkaline volcanic rocks. According to new stratigraphical, along with new and previous chronological and geochemical data, the orogenic volcanism was successively (1) calc-alkaline (basaltic andesites and andesites: 13.1 to 12.5 Ma, rhyolites: 9.8 Ma), (2) K-calc-alkaline (basaltic andesitic to rhyolitic lavas and granodiorites: 9.0 to 6.6 Ma), and (3) shoshonitic (absarokites, shoshonites, latites, trachytes: 7.0 to 5.4 Ma). The later Pliocene volcanism was basaltic and alkaline (5.6 to 1.5 Ma). The calc-alkaline and K-calc-alkaline series exhibit lower K2O (0.7–5.3 wt.%), Nb (8–19 ppm) contents and higher 87Sr/86Sr (0.70773–0.71016) than the shoshonitic series (K2O: 2.4–7.2 wt.%, Nb: 21–38 ppm, 87Sr/86Sr: 0.70404–0.70778). Pliocene alkaline basalts have a sodic tendency (Na2O/K2O: 1.7–3.5), high Nb content (up to 52 ppm), and low 87Sr/86Sr ratio (0.70360–0.70413). The variations through time of K2O, Nb and Sr isotopic ratio reflect different mantle sources: (i) calc-alkaline, potassic calc-alkaline and shoshonitic series are derived from a mantle source modified by older subduction, (ii) alkaline basalts are derived mainly from an enriched mantle source. Through time, incompatible elements such as Nb increased while 87Sr/86Sr decreased, suggesting a decreasing influence of metasomatized mantle (inherited subduction). Such evolution is related to the post-collision regimes operating in this area, and could be linked to the succession of extensional, compressional and strike-slip fault tectonics.  相似文献   

11.
The Maowu eclogite–pyroxenite body is a small (250×50 m) layered intrusion that occurs in the ultra-high-pressure (UHP) metamorphic terrane of Dabieshan, China. Like the adjacent Bixiling complex, the Maowu intrusion was initially emplaced at a crustal level, then subducted along with the country gneisses to mantle depths and underwent UHP metamorphism during the collision of the North and South China Blocks in the Triassic. This paper presents the results of a geochemical and isotopic investigation on the metamorphosed Maowu body. The Maowu intrusion has undergone open system chemical and isotopic behavior three times. Early crustal contamination during magmatic differentiation is manifested by high initial 87Sr/86Sr ratios (0.707–0.708) and inhomogeneous negative Nd(T) values of −3 to −10 at 500 Ma (probable protolith age). Post-magmatic and pre-UHP metamorphic metasomatism is indicated by sinusoidal REE patterns of garnet orthopyroxenites, lack of whole-rock (WR) Sm–Nd isochronal relationship, low δ18O values and an extreme enrichment of Th and REE in a clinopyroxenite. Finally, K and Rb depletion during UHP metamorphism is deduced from the high initial 87Sr/86Sr ratios unsupported by in situ Rb/Sr ratios. Laser ICP-MS spot analyses on mineral grains show that (1) Grt and Cpx attained chemical equilibrium during UHP metamorphism, (2) Cpx/Grt partition coefficients for REE correlate with Ca, and (3) LREE abundances in whole rocks are not balanced by that of the principal phases (Grt and Cpx), implying that the presence of LREE-rich accessory phases, such as monazite and apatite, is required to account for the REE budget.

Sm–Nd isotope analyses of minerals yielded three internal isochrons with ages of 221±5 Ma and (T)=−5.4 for an eclogite, 231±16 Ma and (T)=−6.2 for a garnet websterite, and 236±19 Ma and (T)=−6.9 for a garnet clinopyroxenite. The Cpx/Grt chemical equilibrium and the consistent mineral isochron ages indicate that the metasomatic processes mentioned above must have occurred prior to the UHP metamorphism. These Sm–Nd ages agree with published zircon and monazite U–Pb ages and constrain the time of UHP metamorphism to 220–236 Ma. The Maowu and Bixiling layered intrusions are similar in their in situ tectonic relationship with their country gneisses, but the two bodies are distinguished by their magma-chamber processes. The Bixiling magmas were contaminated by the lower crust, whereas the Maowu magmas were contaminated by the upper crustal rocks during their emplacement and differentiation. The two complexes represent two distinct suites of magmatic rocks, which have resided in the continental crust for about 300–400 Ma before their ultimate subduction to mantle depths, UHP metamorphism and return to the crustal level.  相似文献   


12.
U. Robert  J. Foden  R. Varne 《Lithos》1992,28(3-6):241-260
In the south-eastern Aegean several composite Upper Miocene volcanoes have erupted a variety of extrusive and intrusive rocks of mainly intermediate composition with potassic affinities. This study discusses the tectonic setting of this distinct igneous province (Dodecanese Province, DP) and presents mineralogical, geochemical and isotopic (Sr, Nd) characteristics of mafic rocks from two of its centers (Bodrum, Turkey and Samos, Greece). The mafics fall in two groups: ultrapotassics in Bodrum and shoshonitic rocks in Bodrum and Samos, with their geochemical signature varying from typical arc-like (Bodrum) to weakly orogenic (Bodrum, Samos).

The Bodrum ultrapotassic rocks are unusual and important in that while they display the petrological and geochemical characteristics of primary mantle-derived magmas they are also extraordinary LIL element-enriched. Their initial Sr and Nd isotopic compositions (87Sr86Sr =0. 7071; 143Nd/144Nd = 0.512465) lie at one extreme of the Bodrum-Samos range (87Sr86Sr = 0.7052−0.7071; 143Nd/144Nd = 0/51246−0.51264) and are evidence for the existence of an “enriched mantle” component.

Geochemical characteristics, including Nd- and Sr-isotope data, are used to discuss source component mixing arrays defined by a wide range of circum-Mediterranean igneous provinces including the DP suites. At least three endmembers are required: (1) enriched mantle, (2) depleted mantle and (3) continental crust. The enriched mantle is most probably part of the sub-continental lithosphere which may be regionally distributed throughout the Mediterranean. Enrichment by emplacement of small fractions of melts of the depleted mantle can yield such a source if the enrichment is ancient (≈1.25 Ga). Crustal involvement may be the product of the extensive role of AFC processes operating both close to the Moho and in higher level magma chambers.

The location of the DP in the transitional margin of the Aegean zone of extension may partly explain the survival to upper crustal levels of emplacement, of unmixed, ultrapotassic melts of the enriched heterogeneities in the lithospheer. Changes in Ti/Zr ratio implicate the buffering role of a titanate in the lithosphere. Loss of orogenic geochemical signature and depletion in potassium content in recent volcanics in Western Anatolia imply an increased role of depleted mantle.  相似文献   


13.
Leone Melluso  John J. Mahoney  Luigi Dallai   《Lithos》2006,89(3-4):259-274
Near-primitive picritic basalts in the northwestern Deccan Traps have MgO > 10 wt.% and consist of two groups (low-Ti and high-Ti) with markedly different incompatible element and Nd–Sr–Pb isotope characteristics. Many elemental characteristics of the low-Ti picritic basalts are similar to those of transitional or normal ocean ridge basalts. However, values of ratios like Ba/Nb (13–30) and Ce/Pb (4–11), and isotopic ratios (e.g., εNd(t) + 0.3 to − 6.3, (207Pb/204Pb)t 15.63–15.75 at (206Pb/204Pb)t 18.19–18.84, δ18Oolivine as high as + 6.2‰) are far-removed from ocean-ridge-type values, indicating a significant contribution from continental crust. The crustal signature could represent crustal contamination of ascending magmas; alternatively, it could represent a minor component within the Indian lithospheric mantle of anciently subducted sedimentary material or fluids derived from subducted material. In contrast, the high-Ti picritic basalts are chemically and isotopically rather similar to recent shield lavas of the Réunion hotspot (e.g., εNd(t) + 2 to + 4) and to volcanic rocks along the postulated pre-Deccan track of this hotspot in Pakistan. Neither type of picritic basalt is parental to the voluminous flows comprising the bulk of the Deccan Traps. However, many of the Deccan primary magmas could have been derived from mixtures of a high-Ti-type, Réunion-like source component and a component more similar to, or even more incompatible-element-depleted than, average ocean-ridge mantle.  相似文献   

14.
Calc-alkaline magmatism in the south-west Ukraine occurred between 13.8 and 9.1 Ma and formed an integral part of the Neogene subduction-related post-collisional Carpathian volcanic arc. Eruptions occurred contemporaneously in two parallel arcs (here termed Outer Arc and Inner Arc) in the Ukrainian part of the Carpathians. Outer Arc rocks, mainly andesites, are characterized by LILE enrichment (e.g. K and Pb), Nb depletion, low compatible trace element abundances, high 87Sr/86Sr, high δ18O and low 143Nd/144Nd isotopic ratios (0.7085–0.7095, 7.01–8.53, 0.51230–0.51245, respectively). Inner Arc rocks are mostly dacites and rhyolites with some basaltic and andesitic lavas. They also show low compatible element abundances but have lower 87Sr/86Sr, δ18O and higher 143Nd/144Nd ratios (0.7060–0.7085, 6.15–6.64, 0.5125–0.5126, respectively) than Outer Arc rocks. Both high-Nb and low-Nb lithologies are present in the Inner Arc. Based on the LILE enrichment (especially Pb), a higher fluid flux is suggested for the Outer Arc magmas compared with those of the Inner Arc.

Combined trace element and Sr–Nd–O isotopic modelling suggests that the factors which controlled the generation and evolution of magmas were complex. Compositional differences between the Inner and Outer Arcs were produced by introduction of variable proportions of slab-derived sediments and fluids into a heterogeneous mantle wedge, and by different extents of upper crustal contamination. Degrees of magmatic fractionation also differed between the two arcs. The most primitive magmas belong to the Inner Arc. Isotopic modelling shows that they can be produced by adding 3–8% subducted terrigenous flysch sediments to the local mantle wedge source. Up to 5% upper crustal contamination has been modelled for fractionated products of the Inner Arc. The geochemical features of Outer Arc rocks suggest that they were generated from mantle wedge melts similar to the Inner Arc primitive magmas, but were strongly affected by both source enrichment and upper crustal contamination. Assimilation of 10–20% bulk upper crust is required in the AFC modelling, assuming an Inner Arc parental magma. We suggest that magmagenesis is closely related to the complex geotectonic evolution of the Carpathian area. Several tectonic and kinematic factors are significant: (1) hydration of the asthenosphere during subduction and plate rollback directly related to collisional processes; (2) thermal disturbance caused by ascent of hot asthenospheric mantle during the back-arc opening of the Pannonian Basin; (3) clockwise translational movements of the Intracarpathian terranes, which facilitated eruption of the magmas.  相似文献   


15.
Lamprophyres consisting mainly of diopside, phlogopite and K-feldspar formed in the early Tertiary around 60 Ma in the Beiya area and are characterized by low SiO2 ± 46–50 wt.%), Rb (31–45 ppm) and Sr (225–262 ppm), high Al2O3, (11.2–13.1 wt.%), CaO (8.0–8.7 wt.%), MgO (11.5–12.1 wt.%), K2O(4.9–5.5 wt.%), TiO2 (2.9–3.3 wt.%) and REE (174–177 ppm), and compatible elements (e.g. Sc, Cr and Ni) and HSF elements (e.g. Th, U, Zr, Nb, Ta, Ti and Y), and low 143Nd/144Nd 0.512372–0.512536, middle 87Sr/86Sr 0.707322–0.707395, middle 206Pb/204Pb 18.50–18.59, 207Pb/204Pb 15.60–15.65 and 208Pb/204Pb 38.75–38.8. These rocks developed peculiar quartz megacrysts with poly-layer reaction zones, melt inclusions, and partial melted K-feldspar and plagioclase inclusions, and plastic shapes. Important features of these rocks include: (1) hybrid composition of elements, (2) abrupt increase of SiO2 content of the melt, recorded by zoned diopside, (3) development of sanidine and aegirine-augite reaction zones, (4) alkaline melt and partial melted K-feldspar and plagioclase inclusions, (5) deformed quartz inclusions associated with quartz megacrysts, (6) the presence of quartz megacrysts in plastic shape with their parent melts, (7) the occurrence of olivine, high-MgO ilmenite and spinel inclusions within earlier formed diopside, phlogopite and magnetite. Median 87Sr/86Sr values between Tertiary alkaline porphyries in the Beiya area and the western Yunnan and Tertiary basalt in the western Yunnan indicate that the Beiya lamprophyre melts were derivative and resulted from the mixing between basic melts that were related to the partial melting of phenocrysts of spinel iherzolite from a mantle source. The alkaline melts originated from partial melting along the Jinshajiang subduction ductile shear zone at the contact between the buried Palaeo-Tethyan oceanic lithosphere and the upper mantle lithosphere. The alkaline melts are composed of 65% sanidine (Or70Ab28An2) and 35% SiO2. The melt mixing occurred in magma chambers in the middle-shallow crust at 8–10 km before the derivative lamprophyre melts intruded into the shallow cover in Beiya area. This mixing of basic and alkaline melts might represent a general process for the formation of lamprophyre in the western Yunnan.  相似文献   

16.
Li contents and isotopic compositions were determined for a suite of well-characterized basaltic lavas from the Central American Volcanic Arc (CAVA). Variable Li/Y (0.2–0.5), Li/Sc (0.1–0.4), and δ6Li values (+2.6 to −7.7‰) attest to significant compositional heterogeneity in the subarc mantle. Within specific arc segments, these parameters correlate strongly with each other and with a number of other constituents (e.g., K, Rb, Ba, B/La, 10Be/9Be, 87Sr/86Sr, U/Ce, and 230Th/232Th, among others); these correlations are particularly strong for Nicaragua samples. Coupling of this particular set of constituents is best explained in terms of addition of ‘subduction components' to the subarc mantle. Moreover, their selective enrichment with respect to relatively fluid-immobile incompatible elements signifies the dominance of fluid vs. silicate melt transport of slab components to the subarc mantle. Several interesting nuances are revealed by the Li data. First, although Li and B are strongly correlated in both Costa Rica and Nicaragua, there are systematic along-strike variations in Li/B that are consistent with these elements having different ‘fluid release patterns' from subducted slab segments. For example, Li/B is highest in Costa Rica where auxiliary evidence indicates higher subduction zone temperatures; apparently B is preferentially depleted and Li retained in the slab under warmer conditions. The same relations are reflected in Li/10Be and other subduction tracer systematics, all of which point to larger subduction contributions below Nicaragua. Yet, even Nicaragua lavas vary widely in levels of subduction enrichment. High-Ti basalts from Nejapa are the least enriched and have the highest δ6Li (1.4 to 2.6‰); these values are greater than in fresh MORB (ca. −4‰) and are not easily explained by additions of subducted Li because most oceanic crustal rocks and marine sediments have lower δ6Li than MORB (with typical values between −8 and −20‰). Thus, it appears the Nejapa data may be representative of isotopically light mantle domains. Relatively light δ6Li values in an undepleted spinel lherzolite (+11.3‰) from Zabargad Is. (Red Sea) and in primitive backarc basalts (−1.6 to −0.5‰) from Lau Basin support this conclusion. Considering representative fluid and mantle endmember compositions, the CAVA data are consistent with limited (up to a few percent) additions of slab-derived fluids to a heterogeneous mantle containing variably depleted and enriched domains to form the respective magma sources. In our view, the subarc mantle is heterogeneous on a small scale, but some arc sectors clearly received greater slab inputs than others.  相似文献   

17.
Primitive olivine-mica-K-feldspar lamprophyre dykes, dated at 1831 ± 6 Ma, intrude lower greenschist facies rocks of the Early Proterozoic Pine Creek Inlier, of northern Australia. They are spatially, temporally and probably genetically associated with a post-tectonic composite granite-syenite pluton (Mt. Bundey pluton). The dykes have unusually high contents of large-ion-lithophile (LILE) and LREE elements (e.g. Ba up to 10,000 ppm, Ce up to 550 ppm, K2O up to 7.5 wt. %) that resemble the concentrations found in the West Kimberley olivine and leucite lamproites. However, mineralogically the Mt. Bundey lamprophyres resemble shoshonitic lamprophyres and lack any minerals diagnostic of lamproites; leucite or leucite-pseudomorphs are absent. Mineral compositions are also unlike those in lamproites: micas contain higher Al2O3 than lamproitic mica; amphiboles are secondary actinolites after diopside; and oxides consist of zincian-chromian magnetite and groundmass magnetite. Heavy mineral concentrates contain mantle-derived xenocrysts of magnesiochromite, pyrope, Cr-diopside and rutile indicating a depth of sampling > 70 km. The Mt. Bundey lamprophyres are non-peralkaline to borderline peralkaline (molar (K + Na)/Al = 0.8 − 1.0) and potassic rather than ultrapotassic (molar K/Na < 2.5). They have distinctive major element compositions (≈46−49 wt. % SiO2, ≈1.5−2 wt. % MgO, ≈7 wt. % CaO), and element ratios (e.g. molar Al/Ti ≈10, K/Na ≈2) that indicate they are best classified amongst transitional lamproites, i.e. potassic rocks such as cocites, jumillites and Navajominettes, that have geochemical characteristics transitional between Groups I and III. (Foley et al., 1987). The Mt. Bundey lamprophyres have LILE enrichment patterns that resemble the W. Kimberley pamproites but have moderate negative Ta---Nb---Ti anomalies and HREE abundances that are closely similar to the jumillites of southeastern Spain and Mediterranean-type lamproites. Single-stage modelling of Rb---Sr data is consistent with enrichment of the source-region of the Mt. Bundey lamprophyres ≈ 120–170 Ma before partial melting; i.e. at 1.95–2.10 Ga. Source enrichment does not appear to be associated with subduction processes, but may instead relate to incipient rifting of the Archaean basement. Negative Ta---Nb---Ti anomalies in the Mt. Bundey dykes may, therefore, relate to stability of residual titanate minerals in an oxidized subcontinental mantle source. This view is supported by high Fe3+/ΣFe ratios of mantle-derived magnesiochromite xenocrysts which indicate oxidized mantle conditions (ƒo2 ≈ FMQ + 1 long units), and by the presence of xenocrystic Cr-bearing rutile. Although the Mt. Bundey dykes have sampled upper mantle material, the oxidized nature of the magma source-region, and of the magma itself, suggests that conditions may not be favourable for diamond survival at depth nor for diamond transport in transitional lamproite magmas of this kind.  相似文献   

18.
Paleogene volcanic rocks crop out in three sedimentary basins, namely, Sanshui, Heyuan and Lienping, in the attenuated continental margin of south China. Lavas from the Sanshui basin which erupted during 64-43 Ma are bimodal, consisting of intraplate tholeiitic basalt and trachyte/rhyolite associations. Similar to Cretaceous A-type granites from the nearby region, the felsic member shows peralkaline nature [Na2O + K2O ≈ 10–12%; (Na + K)/Al≈ 0.98−1.08], general enrichment in the incompatible trace elements and significant depletion in Ba, Sr, Eu, P and Ti. Although both types of the Sanshui lavas have rather uniform Nd isotope compositions [Nd(T) ≈ +6 to +4]that are comparable to Late Cenozoic basalts around the South China Sea, the felsic rocks possess apparently higher initial Sr isotope ratios (ISr up to 0.713) and form a horizontal array to the right in the Nd vs. Sr isotope plot. Closed system differentiation of mantle-derived magmas in a ‘double diffusive’ magma chamber is considered for the bimodal volcanism, in which the trachytes and rhyolites represent A-type melts after extensive crystal fractionation in the upper portion of the chamber. Such A-type melts were later contaminated by small amounts (1–3%) of upper crustal materials during ascent. On the other hand, composition of lavas in the other two basins varies from tholeiitic basalt to andesite. Their Sr and Nd isotope ratios [ISr ≈ 0.705 to 0.711; Nd(T) ≈ +1 to − 5] and generally correlative Nb-Ta depletions suggest a distinct magma chamber process involving fractional crystallization concomitant with assimilation of the country rock. We conclude that these Paleogene volcanic activities resulted from the lithospheric extension in south China that migrated southwards and eventually led to opening of the South China Sea during 30-16 Ma.  相似文献   

19.
Spinel harzburgite and websterite mantle xenoliths from Simcoe volcano in southern Washington represent fragments of mantle lithosphere from the back-arc side of the Cascade arc front. Previous studies have shown that metasomatism by either silica-rich fluids or hydrous melts crystallized phlogopite, imparted high oxygen fugacities (0.3 to 1.4 log units above QFM), and more radiogenic Os isotopic compositions on these peridotites. These features are consistent with part or all of the metasomatic agent being derived from the Juan de Fuca slab. New Re–Os, Sm–Nd, Sr, and U–Th–Pb isotopic data shed further light on the origin and composition of the metasomatic agent. The clinopyroxenes from the xenoliths have correlated Pb isotopic compositions (206Pb/204Pb=18.63–19.55, 207Pb/204Pb=15.56–15.63, 208Pb/204Pb=38.22–38.87). The most radiogenic Pb isotopic compositions extend beyond the most radiogenic Pb isotopic compositions for the Cascade arc lavas and display a shallower trend. Mixtures between Juan de Fuca basalts and pelagic or terrigenous sediments would result in Pb isotopic compositions that are not radiogenic enough in 207Pb/204Pb and 208Pb/204Pb at the high 206Pb/204Pb end of this array. Therefore, models for rapid transfer of components from the slab to the mantle lithosphere are not viable in this case. Instead, a multi-stage model is preferred. In the first stage, the slab component is transferred via fluid or melt into, and reacts with the hanging wall mantle. This results in a residual slab depleted in Pb relative to U and Th, and consequent high U/Pb and Th/Pb. Additional dehydration or melting of the slab imparts this chemical signature to the peridotite in the hanging wall. In the second stage, the hybridized hanging wall peridotite evolves for tens of million years until corner flow drags it down to deeper levels in the mantle wedge where melting occurs in response to higher temperatures. In the third stage, this melt migrates upward where it metasomatizes the mantle lithosphere represented by the Simcoe xenoliths. Trace element compositions of the clinopyroxenes, and the presence of high alkali glasses in the xenoliths, are consistent with the metasomatic agent derived from the hybridized hanging wall being alkali-rich, and possibly similar to potassic-rich lavas found in arc and back-arc settings. These data therefore demonstrate the importance of the hybridized hanging wall mantle above slabs as a source for melts which can be metasomatic agents in the upper mantle, and as a site for storage of material derived from the slab for periods of at least tens of million years.  相似文献   

20.
The Indosinian granites in the South China Block (SCB) have important tectonic significance for the evolution of East Asia. Samples collected from Hunan Province can be geochemically classified into two groups. Group 1 is strongly peraluminous (A/CNK > 1.1), similar to S-type granites, and Group 2 has A/CNK = 1.0–1.1, with an affinity to I-type granites. Group 1 has lower FeOt, Al2O3, MgO, CaO, TiO2 and εNd(t) values but higher K2O + Na2O, Rb/Sr, Rb/Ba and 87Sr/86Sr(t) than those of Group 2. Samples of both groups have similar LREE enriched pattern, with (Eu/Eu) = 0.19–0.69, and strongly negative Ba, Sr, Nb, P and Ti anomalies. Geothermobarometry study indicates that the precursor magmas were emplaced at high-level depth with relatively low temperature (734–827 °C). Geochemical data suggest that Group 1 was originated from a source dominated by pelitic composition and Group 2 was from a mixing source of pelitic and basaltic rocks with insignificant addition of newly mantle-derived magma. Eight granitic samples in Hunan Province are dated at the cluster of 243–235 and 218–210 Ma by zircon U–Pb geochronology. Together with recent zircon U–Pb ages for other areas in the SCB, two age-clusters, including 243–228 Ma just after peak-metamorphism ( 246–252 Ma) and 220–206 Ma shortly after magma underplating event (224 Ma), are observed. It is proposed that in-situ radiogenic heating from the over-thickened crust induced dehydrated reaction of muscovite and epidote/zoisite to form the early Indosinian granites in response to the isostatic readjustments of tectonically thickened crust. Conductive heating from the underplating magma in the postcollisional setting triggered the formation of late Indosinian granites. Such a consideration is supported by the results from FLAC numerical simulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号