首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 704 毫秒
1.
This study provides some guidance on the choice of predictor variables from both reanalysis products and the third version of the Canadian Coupled Global Climate Model (CGCM3) outputs for regression-based statistical downscaling models (SDMs) for climate change application in southern Québec (Canada). Twenty CGCM3 grid points and four surface observation sites in the study area were employed. Twenty-five deseasonalized predictors and four deseasonalized predictands (daily maximum and minimum temperatures, precipitation occurrence and wet day precipitation amount) were used to investigate correlation coefficients among predictors and to evaluate their predictive ability when used in a multiple linear regression (MLR) downscaling model. The basic statistical characteristics of vorticity at 1,000-, 850- and 500-hPa levels, U-component of velocity at 1,000-hPa level, temperature at 2?m (T 2) and wind direction at 1,000- and 500-hPa level of CGCM3 showed a larger difference with those of the NCEP reanalysis data. Therefore, those seven variables require high caution to be included as predictors in statistical downscaling models. Specific humidity at 1,000-, 850- and 500-hPa levels, geopotential height at 850- and 500-hPa levels and T 2 were the most sensitive predictors for future climate conditions (i.e. A1B and A2 emission scenarios). Specific humidity and geopotential height at different levels and T 2 were important explainable predictors for the daily temperatures. Mean sea level pressure, specific humidity, U and V components and divergence showed potential as predictors for daily precipitation. Spatial explained variance of MLRs between predictors of every different CGCM3 grid points and the four predictands showed large values at the CGCM3 grid points located near the observation sites, whereas relatively small values were shown at the CGCM3 grid points located more than 400?km from the sites. The explained variance of the downscaled predictands by predictors of three or four CGCM3 grid points located near the observation site produced 2–5% larger R-squares than those by predictors of the nearest grid point. The results illustrated that the use of predictors from more than one AOGCM grid points located near the observation site can increase the skill of the MLR downscaling models.  相似文献   

2.
A prerequisite of a successful statistical downscaling is that large-scale predictors simulated by the General Circulation Model (GCM) must be realistic. It is assumed here that features smaller than the GCM resolution are important in determining the realism of the large-scale predictors. It is tested whether a three-step method can improve conventional one-step statistical downscaling. The method uses predictors that are upscaled from a dynamical downscaling instead of predictors taken directly from a GCM simulation. The method is applied to downscaling of monthly precipitation in Sweden. The statistical model used is a multiple regression model that uses indices of large-scale atmospheric circulation and 850-hPa specific humidity as predictors. Data from two GCMs (HadCM2 and ECHAM4) and two RCM experiments of the Rossby Centre model (RCA1) driven by the GCMs are used. It is found that upscaled RCA1 predictors capture the seasonal cycle better than those from the GCMs, and hence increase the reliability of the downscaled precipitation. However, there are only slight improvements in the simulation of the seasonal cycle of downscaled precipitation. Due to the cost of the method and the limited improvements in the downscaling results, the three-step method is not justified to replace the one-step method for downscaling of Swedish precipitation.  相似文献   

3.
Summary A regression-based methodology was used to downscale hourly and daily station-scale meteorological variables from outputs of large-scale general circulation models (GCMs). Meteorological variables include air temperature, dew point, and west–east and south–north wind velocities at the surface and three upper atmospheric levels (925, 850, and 500 hPa), as well as mean sea-level air pressure and total cloud cover. Different regression methods were used to construct downscaling transfer functions for different weather variables. Multiple stepwise regression analysis was used for all weather variables, except total cloud cover. Cumulative logit regression was employed for analysis of cloud cover, since cloud cover is an ordered categorical data format. For both regression procedures, to avoid multicollinearity between explanatory variables, principal components analysis was used to convert inter-correlated weather variables into uncorrelated principal components that were used as predictors. The results demonstrated that the downscaling method was able to capture the relationship between the premises and the response; for example, most hourly downscaling transfer functions could explain over 95% of the total variance for several variables (e.g. surface air temperature, dew point, and air pressure). Downscaling transfer functions were validated using a cross-validation scheme, and it was concluded that the functions for all weather variables used in the study are reliable. Performance of the downscaling method was also evaluated by comparing data distributions and extreme weather characteristics of downscaled GCM historical runs and observations during the period 1961–2000. The results showed that data distributions of downscaled GCM historical runs for all weather variables are significantly similar to those of observations. In addition, extreme characteristics of the downscaled meteorological variables (e.g. temperature, dew point, air pressure, and total cloud cover) were examined. Authors’ addresses: Chad Shouquan Cheng, Guilong Li, Qian Li, Atmospheric Science and Applications Unit, Meteorological Service of Canada Branch-Ontario, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada M3H 5T4; Heather Auld, Adaptation and Impacts Research Division, MSC Branch, Environment Canada, Toronto, Canada.  相似文献   

4.
Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screening procedure is used for selecting the skilful PCs as predictors used in the regression equation. The predictors include temperature at 850 hPa (7), the combination of sea-level pressure and temperature at 850 hPa (P+T) and the combination of geo-potential height and temperature at 850 hPa (H+T). The downscaling procedure is tested with the three predictors over three predictor domains. The optimum statistical model is obtained for each station and month by finding the predictor and predictor domain corresponding to the highest correlation. Finally, the optimum statistical downscaling models are applied to the Hadley Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios to construct local future temperature change scenarios for each station and month, The results show that (1) statistical downscaling produces less warming than the HadCM3 output itself; (2) the downscaled annual cycles of temperature differ from the HadCM3 output, but are similar to the observation; (3) the downscaled temperature scenarios show more warming in the north than in the south; (4) the downscaled temperature scenarios vary with emission scenarios, and the A2 scenario produces more warming than the B2, especially in the north of China.  相似文献   

5.
Regression-based statistical downscaling is a method broadly used to resolve the coarse spatial resolution of general circulation models. Nevertheless, the assessment of uncertainties linked with climatic variables is essential to climate impact studies. This study presents a procedure to characterize the uncertainty in regression-based statistical downscaling of daily precipitation and temperature over a highly vulnerable area (semiarid catchment) in the west of Iran, based on two downscaling models: a statistical downscaling model (SDSM) and an artificial neural network (ANN) model. Biases in mean, variance, and wet/dry spells are estimated for downscaled data using vigorous statistical tests for 30 years of observed and downscaled daily precipitation and temperature data taken from the National Center for Environmental Prediction reanalysis predictors for the years of 1961 to 1990. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. In daily precipitation, downscaling uncertainties were evaluated from comparing monthly mean dry and wet spell lengths and their confidence intervals, cumulative frequency distributions of monthly mean of daily precipitation, and the distributions of monthly wet and dry days for observed and modeled daily precipitation. Results showed that uncertainty in downscaled precipitation is high, but simulation of daily temperature can reproduce extreme events accurately. Finally, this study shows that the SDSM is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % confidence level, while the ANN model is the least capable in this respect. This study attempts to test uncertainties of regression-based statistical downscaling techniques in a semiarid area and therefore contributes to an improvement of the quality of predictions of climate change impact assessment in regions of this type.  相似文献   

6.
Statistical downscaling is a technique widely used to overcome the spatial resolution problem of General Circulation Models (GCMs). Nevertheless, the evaluation of uncertainties linked with downscaled temperature and precipitation variables is essential to climate impact studies. This paper shows the potential of a statistical downscaling technique (in this case SDSM) using predictors from three different GCMs (GCGM3, GFDL and MRI) over a highly heterogeneous area in the central Andes. Biases in median and variance are estimated for downscaled temperature and precipitation using robust statistical tests, respectively Mann?CWhitney and Brown?CForsythe's tests. In addition, the ability of the downscaled variables to reproduce extreme events is tested using a frequency analysis. Results show that uncertainties in downscaled precipitations are high and that simulated precipitation variables failed to reproduce extreme events accurately. Nevertheless, a greater confidence remains in downscaled temperatures variables for the area. GCMs performed differently for temperature and precipitation as well as for the different test. In general, this study shows that statistical downscaling is able to simulate with accuracy temperature variables. More inhomogeneities are detected for precipitation variables. This first attempt to test uncertainties of statistical downscaling techniques in the heterogeneous arid central Andes contributes therefore to an improvement of the quality of predictions of climate impact studies in this area.  相似文献   

7.
This study provides a multi-site hybrid statistical downscaling procedure combining regression-based and stochastic weather generation approaches for multisite simulation of daily precipitation. In the hybrid model, the multivariate multiple linear regression (MMLR) is employed for simultaneous downscaling of deterministic series of daily precipitation occurrence and amount using large-scale reanalysis predictors over nine different observed stations in southern Québec (Canada). The multivariate normal distribution, the first-order Markov chain model, and the probability distribution mapping technique are employed for reproducing temporal variability and spatial dependency on the multisite observations of precipitation series. The regression-based MMLR model explained 16?%?~?22?% of total variance in daily precipitation occurrence series and 13?%?~?25?% of total variance in daily precipitation amount series of the nine observation sites. Moreover, it constantly over-represented the spatial dependency of daily precipitation occurrence and amount. In generating daily precipitation, the hybrid model showed good temporal reproduction ability for number of wet days, cross-site correlation, and probabilities of consecutive wet days, and maximum 3-days precipitation total amount for all observation sites. However, the reproducing ability of the hybrid model for spatio-temporal variations can be improved, i.e. to further increase the explained variance of the observed precipitation series, as for example by using regional-scale predictors in the MMLR model. However, in all downscaling precipitation results, the hybrid model benefits from the stochastic weather generator procedure with respect to the single use of deterministic component in the MMLR model.  相似文献   

8.
Assessing future climate and its potential implications on river flows is a key challenge facing water resource planners. Sound, scientifically-based advice to decision makers also needs to incorporate information on the uncertainty in the results. Moreover, existing bias in the reproduction of the ‘current’ (or baseline) river flow regime is likely to transfer to the simulations of flow in future time horizons, and it is thus critical to undertake baseline flow assessment while undertaking future impacts studies. This paper investigates the three main sources of uncertainty surrounding climate change impact studies on river flows: uncertainty in GCMs, in downscaling techniques and in hydrological modelling. The study looked at four British catchments’ flow series simulated by a lumped conceptual rainfall–runoff model with observed and GCM-derived rainfall series representative of the baseline time horizon (1961–1990). A block-resample technique was used to assess climate variability, either from observed records (natural variability) or reproduced by GCMs. Variations in mean monthly flows due to hydrological model uncertainty from different model structures or model parameters were also evaluated. Three GCMs (HadCM3, CCGCM2, and CSIRO-mk2) and two downscaling techniques (SDSM and HadRM3) were considered. Results showed that for all four catchments, GCM uncertainty is generally larger than downscaling uncertainty, and both are consistently greater than uncertainty from hydrological modelling or natural variability. No GCM or downscaling technique was found to be significantly better or to have a systematic bias smaller than the others. This highlights the need to consider more than one GCM and downscaling technique in impact studies, and to assess the bias they introduce when modelling river flows.  相似文献   

9.
The authors have applied an automated regression-based statistical method, namely, the automated statistical downscaling (ASD) model, to downscale and project the precipitation climatology in an equatorial climate region (Peninsular Malaysia). Five precipitation indices are, principally, downscaled and projected: mean monthly values of precipitation (Mean), standard deviation (STD), 90th percentile of rain day amount, percentage of wet days (Wet-day), and maximum number of consecutive dry days (CDD). The predictors, National Centers for Environmental Prediction (NCEP) products, are taken from the daily series reanalysis data, while the global climate model (GCM) outputs are from the Hadley Centre Coupled Model, version 3 (HadCM3) in A2/B2 emission scenarios and Third-Generation Coupled Global Climate Model (CGCM3) in A2 emission scenario. Meanwhile, the predictand data are taken from the arithmetically averaged rain gauge information and used as a baseline data for the evaluation. The results reveal, from the calibration and validation periods spanning a period of 40 years (1961–2000), the ASD model is capable to downscale the precipitation with reasonable accuracy. Overall, during the validation period, the model simulations with the NCEP predictors produce mean monthly precipitation of 6.18–6.20 mm/day (root mean squared error 0.78 and 0.82 mm/day), interpolated, respectively, on HadCM3 and CGCM3 grids, in contrast to 6.00 mm/day as observation. Nevertheless, the model suffers to perform reasonably well at the time of extreme precipitation and summer time, more specifically to generate the CDD and STD indices. The future projections of precipitation (2011–2099) exhibit that there would be an increase in the precipitation amount and frequency in most of the months. Taking the 1961–2000 timeline as the base period, overall, the annual mean precipitation would indicate a surplus projection by nearly 14~18 % under both GCM output cases (HadCM3 A2/B2 scenarios and CGCM3 A2 scenario). According to the model simulation, the September–November periods might be the more significant months projecting the increment of the precipitation amount around over 50 %, while the precipitation deficit would be seen in March–May periods.  相似文献   

10.
统计降尺度法对华北地区未来区域气温变化情景的预估   总被引:32,自引:1,他引:31  
迄今为止,大部分海气耦合气候模式(AOGCM)的空间分辨率还较低,很难对区域尺度的气候变化情景做合理的预测。降尺度法已广泛用于弥补AOGCM在这方面的不足。作者采用统计降尺度方法对1月和7月华北地区49个气象观测站的未来月平均温度变化情景进行预估。采用的统计降尺度方法是主分量分析与逐步回归分析相结合的多元线性回归模型。首先,采用1961~2000年的 NCEP再分析资料和49个台站的观测资料建立月平均温度的统计降尺度模型,然后把建立的统计降尺度模型应用于HadCM3 SRES A2 和 B2 两种排放情景, 从而生成各个台站1950~2099年1月份和7月份温度变化情景。结果表明:在当前气候条件下,无论1月还是7月,统计降尺度方法模拟的温度与观测的温度有很好的一致性,而且在大多数台站,统计降尺度模拟气温与观测值相比略微偏低。对于未来气候情景的预估方面,无论1月还是7月,也无论是HadCM3 SRES A2 还是B2排放情景驱动统计模型,结果表明大多数的站点都存在温度的明显上升趋势,同时7月的上升趋势与1月相比偏低。  相似文献   

11.
Given the coarse resolution of global climate models, downscaling techniques are often needed to generate finer scale projections of variables affected by local-scale processes such as precipitation. However, classical statistical downscaling experiments for future climate rely on the time-invariance assumption as one cannot know the true change in the variable of interest, nor validate the models with data not yet observed. Our experimental setup involves using the Canadian regional climate model (CRCM) outputs as pseudo-observations to estimate model performance in the context of future climate projections by replacing historical and future observations with model simulations from the CRCM, nested within the domain of the Canadian global climate model (CGCM). In particular, we evaluated statistically downscaled daily precipitation time series in terms of the Peirce skill score, mean absolute errors, and climate indices. Specifically, we used a variety of linear and nonlinear methods such as artificial neural networks (ANN), decision trees and ensembles, multiple linear regression, and k-nearest neighbors to generate present and future daily precipitation occurrences and amounts. We obtained the predictors from the CGCM 3.1 20C3M (1971–2000) and A2 (2041–2070) simulations, and precipitation outputs from the CRCM 4.2 (forced with the CGCM 3.1 boundary conditions) as predictands. Overall, ANN models and tree ensembles outscored the linear models and simple nonlinear models in terms of precipitation occurrences, without performance deteriorating in future climate. In contrast, for the precipitation amounts and related climate indices, the performance of downscaling models deteriorated in future climate.  相似文献   

12.
The outputs of three GCMs, ECHAM5, CCSM3 and HadCM3, are downscaled for the eastern Mediterranean–Black Sea region for the period 1961–1990 using a regional climate model, RegCM3, to assess the capability of these models in simulating the climatology of the region. In addition, the NCEP/NCAR Reanalysis data are also downscaled for the same period to display the performance of the regional climate model for the same region, which constitutes a relatively complex terrain and rich variety of climates. The gridded observational dataset of CRU is primarily used in the evaluation of the models, however, a regional dataset, which is based on a relatively dense gauging network, is also used to see how it affects the performance measures of the models. The reanalysis simulation indicates that RegCM3 is able to simulate the precipitation and surface temperature as well as the upper level fields reasonably well. However, it tends to overestimate the precipitation over the mountainous areas. All three GCM models are found to be highly skilled in simulating the winter precipitation and temperature in the region. The two models, ECHAM5 and HadCM3, are also good at simulating the summer precipitation and temperature, but the CCSM3 simulation generates dryer and warmer conditions than the observations for the whole region, which are most likely a result of the dryness in the upper levels of the original outputs. The use of the regional observational dataset does not necessarily improve the pattern correlations, but it yields better match between the modeled and observed precipitation in terms of variability and root-mean-square difference. It could be said that the outputs of these GCMs can be used in the climate change downscaling and impact assessment studies for the region, given that their strengths and weaknesses that are displayed in the present study are considered.  相似文献   

13.
De Li Liu  Heping Zuo 《Climatic change》2012,115(3-4):629-666
This paper outlines a new statistical downscaling method based on a stochastic weather generator. The monthly climate projections from global climate models (GCMs) are first downscaled to specific sites using an inverse distance-weighted interpolation method. A bias correction procedure is then applied to the monthly GCM values of each site. Daily climate projections for the site are generated by using a stochastic weather generator, WGEN. For downscaling WGEN parameters, historical climate data from 1889 to 2008 are sorted, in an ascending order, into 6 climate groups. The WGEN parameters are downscaled based on the linear and non-linear relationships derived from the 6 groups of historical climates and future GCM projections. The overall averaged confidence intervals for these significant linear relationships between parameters and climate variables are 0.08 and 0.11 (the range of these parameters are up to a value of 1.0) at the observed mean and maximum values of climate variables, revealing a high confidence in extrapolating parameters for downscaling future climate. An evaluation procedure is set up to ensure that the downscaled daily sequences are consistent with monthly GCM output in terms of monthly means or totals. The performance of this model is evaluated through the comparison between the distributions of measured and downscaled climate data. Kruskall-Wallis rank (K-W) and Siegel-Tukey rank sum dispersion (S-T) tests are used. The results show that the method can reproduce the climate statistics at annual, monthly and daily time scales for both training and validation periods. The method is applied to 1062 sites across New South Wales (NSW) for 9 GCMs and three IPCC SRES emission scenarios, B1, A1B and A2, for the period of 1900–2099. Projected climate changes by 7 GCMs are also analyzed for the A2 emission scenario based on the downscaling results.  相似文献   

14.
This study analyzes the ability of statistical downscaling models in simulating the long-term trend of temperature and associated causes at 48 stations in northern China in January and July 1961–2006. The statistical downscaling models are established through multiple stepwise regressions of predictor principal components (PCs). The predictors in this study include temperature at 850 hPa (T850), and the combination of geopotential height and temperature at 850 hPa (H850+T850). For the combined predictors, Empirical Orthogonal Function (EOF) analysis of the two combined fields is conducted. The modeling results from HadCM3 and ECHAM5 under 20C3M and SERS A1B scenarios are applied to the statistical downscaling models to construct local present and future climate change scenarios for each station, during which the projected EOF analysis and the common EOF analysis are utilized to derive EOFs and PCs from the two general circulation models (GCMs). The results show that (1) the trend of temperature in July is associated with the first EOF pattern of the two combined fields, not with the EOF pattern of the regional warming; (2) although HadCM3 and ECHAM5 have simulated a false long-term trend of temperature, the statistical downscaling method is able to well reproduce a correct long-term trend of temperature in northern China due to the successful simulation of the trend of main PCs of the GCM predictors; (3) when the two-field combination and the projected EOF analysis are used, temperature change scenarios have a similar seasonal variation to the observed one; and (4) compared with the results of the common EOF analysis, those of the projected EOF analysis have been much more strongly determined by the observed large-scale atmospheric circulation patterns.  相似文献   

15.
基于统计降尺度模型的江淮流域极端气候的模拟与预估   总被引:4,自引:0,他引:4  
利用江淮流域29个代表站点1961--2000年逐日最高温度、最低温度和逐日降水资料,以及NCEP逐日大尺度环流场资料,引入基于多元线性回归与随机天气发生器相结合的统计降尺度模型SDSM(statistical downscalingmodel),通过对每个站点建模,确立SDSM参数,并将该模型应用于SRESA2排放情景下HadCM3和cGcM3模式,得到了江淮流域各代表台站21世纪的逐日最高、最低温度和降水序列以及热浪、霜冻、强降水等极端气候指数。结果表明,当前气候下,统计降尺度方法模拟的极端温度指数与观测值有很好的一致性,能有效纠正耦合模式的“冷偏差”,如SDSM对江淮平均的冬季最高、最低温度的模拟偏差较CGCM3模式分别减少3℃和4.5℃。对于极端降水则能显著纠正耦合模式模拟的降水强度偏低的问题,如CGCM3对江淮流域夏季降水强度的模拟偏差为-60.6%,但降尺度后SDSM—CGCM3的偏差仅为-6%,说明降尺度模型SDSM的确有“增加值”的作用。21世纪末期在未来SRESA2情景下,对于极端温度,无论Had.CM3还是CGCM3模式驱动统计模型,江淮流域所有代表台站,各个季节的最高、最低温度都显著增加,且以夏季最为显著,增幅在2—4℃;与之相应霜冻天数将大幅减少,热浪天数大幅增多,各站点冬季霜冻天数减少幅度为5—25d,夏季热浪天数增加幅度为4~14d;对于极端降水指数,在两个不同耦合模式HadCM3和CGCM3驱动下的变化尤其是变化幅度的一致性比温度差,但大部分站点各个季节极端强降水事件将增多,强度增强,SDSM—HadCM3和SDSM-CGCM3预估的夏季极端降水贡献率将分别增加26%和27%。  相似文献   

16.
The potential impact of climate warming on patterns of malaria transmission has been the subject of keen scientific and policy debate. Standard climate models (GCMs) characterize climate change at relatively coarse spatial and temporal scales. However, malaria parasites and the mosquito vectors respond to diurnal variations in conditions at very local scales. Here we bridge this gap by downscaling a series of GCMs to provide high-resolution temperature data for four different sites and show that although outputs from both the GCM and the downscaled models predict diverse but qualitatively similar effects of warming on the potential for adult mosquitoes to transmit malaria, the predicted magnitude of change differs markedly between the different model approaches. Raw GCM model outputs underestimate the effects of climate warming at both hot (3-fold) and cold (8–12 fold) extremes, and overestimate (3-fold) the change under intermediate conditions. Thus, downscaling could add important insights to the standard application of coarse-scale GCMs for biophysical processes driven strongly by local microclimatic conditions.  相似文献   

17.
郭彦  李建平 《大气科学》2012,36(2):385-396
针对预报量变化中存在受不同物理因子控制的不同时间尺度变率特征, 本文提出了分离时间尺度的统计降尺度模型。应用滤波方法, 将不同尺度的变率分量分开, 在各自对应的时间尺度上利用不同的大尺度气候因子分别建立降尺度模型。华北汛期 (7~8月) 降水具有年际变率和年代际变率, 本文以华北汛期降水为例利用分离时间尺度的统计降尺度模型进行预测研究。采用的预报因子来自海平面气压场、 500 hPa位势高度场、 850 hPa经向风场和海表温度场以及一些已知的大尺度气候指数。利用基于交叉检验的逐步回归法建立模型。结果表明, 年际尺度上, 华北汛期降水与前期6月赤道中东太平洋海温以及同期中国东部的低层经向风密切相关; 年代际尺度上, 在东印度洋—西太平洋暖池海温的作用下, 华北降水与前期6月西南印度洋海平面气压有同步变化关系。年际模型和年代际模型的结果相加得到对总降水量的降尺度结果。1991~2008年的独立检验中, 模型估计的降水和观测降水的相关系数是0.82, 平均均方根误差是14.8%。结合模式的回报资料, 利用降尺度模型对1991~2001年的华北汛期降水进行回报试验。相比于模式直接预测的降水, 降尺度模型预测的结果有明显改进。改进了模式预测中年际变率过小的问题, 与观测降水的相关系数由0.12提高到0.45。  相似文献   

18.
Regression-based statistical downscaling model (SDSM) is an appropriate method which broadly uses to resolve the coarse spatial resolution of general circulation models (GCMs). Nevertheless, the assessment of uncertainty propagation linked with climatic variables is essential to any climate change impact study. This study presents a procedure to characterize uncertainty analysis of two GCM models link with Long Ashton Research Station Weather Generator (LARS-WG) and SDSM in one of the most vulnerable international wetland, namely “Shadegan” in an arid region of Southwest Iran. In the case of daily temperature, uncertainty is estimated by comparing monthly mean and variance of downscaled and observed daily data at a 95 % confidence level. Uncertainties were then evaluated from comparing monthly mean dry and wet spell lengths and their 95 % CI in daily precipitation downscaling using 1987–2005 interval. The uncertainty results indicated that the LARS-WG is the most proficient model at reproducing various statistical characteristics of observed data at a 95 % uncertainty bounds while the SDSM model is the least capable in this respect. The results indicated a sequences uncertainty analysis at three different climate stations and produce significantly different climate change responses at 95 % CI. Finally the range of plausible climate change projections suggested a need for the decision makers to augment their long-term wetland management plans to reduce its vulnerability to climate change impacts.  相似文献   

19.
Many impact studies require climate change information at a finer resolution than that provided by global climate models (GCMs). This paper investigates the performances of existing state-of-the-art rule induction and tree algorithms, namely single conjunctive rule learner, decision table, M5 model tree, and REPTree, and explores the impact of climate change on maximum and minimum temperatures (i.e., predictands) of 14 meteorological stations in the Upper Thames River Basin, Ontario, Canada. The data used for evaluation were large-scale predictor variables, extracted from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis dataset and the simulations from third generation Canadian coupled global climate model. Data for four grid points covering the study region were used for developing the downscaling model. M5 model tree algorithm was found to yield better performance among all other learning techniques explored in the present study. Hence, this technique was applied to project predictands generated from GCM using three scenarios (A1B, A2, and B1) for the periods (2046–2065 and 2081–2100). A simple multiplicative shift was used for correcting predictand values. The potential of the downscaling models in simulating predictands was evaluated, and downscaling results reveal that the proposed downscaling model can reproduce local daily predictands from large-scale weather variables. Trend of projected maximum and minimum temperatures was studied for historical as well as downscaled values using GCM and scenario uncertainty. There is likely an increasing trend for T max and T min for A1B, A2, and B1 scenarios while decreasing trend has been observed for B1 scenarios during 2081–2100.  相似文献   

20.
Future climate projections from general circulation models (GCMs) predict an acceleration of the global hydrological cycle throughout the 21st century in response to human-induced rise in temperatures. However, projections of GCMs are too coarse in resolution to be used in local studies of climate change impacts. To cope with this problem, downscaling methods have been developed that transform climate projections into high resolution datasets to drive impact models such as rainfall-runoff models. Generally, the range of changes simulated by different GCMs is considered to be the major source of variability in the results of such studies. However, the cascade of uncertainty in runoff projections is further elongated by differences between impact models, especially where robust calibration is hampered by the scarcity of data. Here, we address the relative importance of these different sources of uncertainty in a poorly monitored headwater catchment of the Ecuadorian Andes. Therefore, we force 7 hydrological models with downscaled outputs of 8 GCMs driven by the A1B and A2 emission scenarios over the 21st century. Results indicate a likely increase in annual runoff by 2100 with a large variability between the different combinations of a climate model with a hydrological model. Differences between GCM projections introduce a gradually increasing relative uncertainty throughout the 21st century. Meanwhile, structural differences between applied hydrological models still contribute to a third of the total uncertainty in late 21st century runoff projections and differences between the two emission scenarios are marginal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号