首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three groups of galactic mass models, each consisting of nine inhomogeneous spheroids of two kinds are described, according to three adopted values of the total density near the Sun: 0.10, 0.15 and 0.20 M pc–3. Approximately 20% of the total mass of each model is in the halo, constructed to adequately fit recent RR Lyrae star observations. It is shown that the maxima found in the RR Lyrae star densities towards the galactic axis (Plaut, 1970) should not be interpreted as being associated with the galactic nucleus, but as the result of the greater decrease in density with increasingz over the increase in density as the galactic axis is approached. Even at the low galactic latitude of 5° (l=0°), this effect causes a 0.5 kpc correction to the distance to the galactic centre. A basic model for kpc, km s–1, M pc–3 is first constructed, mainly to satisfy structural conditions near the sun and in the halo. An attempt to optimize the basic model is made by scaling it so as to retain constant density and angular velocity near the sun, and to best fit kinematic data, including the recent re-examination of the 21-cm data of Simonson and Mader (1972). No unknown matter is required in the models, in accordance with the results of Weistrop (1972b), and, as pointed out earlier (Innanen, 1966b) the faintM-stars must be in a highly flattened spheroid. The optimizing indicates that an adequate fit to kinematics can be achieved for km s–1. More detailed results are tabulated for a representative model for which . Two new galactic density functions are discussed in the Appendix.  相似文献   

2.
The light curved in the CM field   总被引:1,自引:0,他引:1  
In this paper we introduce the CM field in Sections 2 and 3 based on the paper by Wang and Peng (1985), and calculate the light curved in the CM field in Section 4. The result shows thatP makes CM larger than C at , and smaller at . Under a special circumstance which source, CM lens, and observer are in the same line, if we get | 0=0 , and | =/2 , we can determine theP(M) andQ(M) of the CM lens,M is the mass of the CM lens.  相似文献   

3.
The emission spectrum of comet Skoritchenko–George (C/1989 VI), unusual in its information content, was obtained on February 26.7 UT, 1990, with the use of a TV scanner installed on the 6-m BTA reflector of the Special Astronomical Observatory of the Russian Academy of Sciences (SAO RAS) in Nizhni Arkhyz. Detailed identification of the emission lines of this comet was made. The observed spectrum contains 311 emission lines, including those of the molecules. Among others, the lines of the negative carbon C 2 - ion and the lines corresponding to the electron transition in the neutral CO molecule are discovered. The presence of a large number of lines of the neutral CO molecule (the Asundi bands and the triplet bands) in the visible region is one of the uncommon features of the emission spectrum of this comet. The triplet lines : 15–3, 13–2, 11–2, 9–1, 8–1, 7–1, 7–0, 5–0, 4–0; : 7–0, 6–0, 5–0; and a" : 11–1 (K = 3, 4); 16–4 (K= 0, 1, 2, 4); 9-0 (K= 0, 1, 2); 8–0 (K= 0) were identified for the first time. Prior to this work, the lines of CO in the visible range were observed only in the spectrum of comet C/1979 VI (Bradfield) in 1989.  相似文献   

4.
The frequency spectra of the interplanetary magnetic field fluctuations are the projection of their wavenumber spectra onto one dimension. Only the frequency spectra can be measured by spacecrafts. It is studied how their measured size depends on the direction of the mean fieldB 0, which structures the symmetry of the fluctuations relative to the solar wind system. It is specialized for the slab model, Alfvén waves, magneto-acoustic waves and the isotropic case. For the slab model the frequency spectra are proportional to , whereq is the spectral index and the angle betweenB 0 and the radial direction. For the diffusion coefficientK TT the relation holds.  相似文献   

5.
The very young open star cluster NGC 2362 was investigated by the strip method on charts of two photographs taken with the 1-m Schmidt telescope of the European Southern Observatory. Up to the limiting magnitudeM v * =5 . m 8 the cluster contains 100 stars and can be described by the Gaussian density law (6). Further results are: Mass = 246 , central mass density 0 = 43.1 = 246 pc-3 , radiusR2.6 pc, mean velocity of the stars = 0.64 km s–1.

Mitteilungen Serie A.  相似文献   

6.
Spherically symmetric, steady-state, optically thick accretion onto a nonrotating black hole with the mass of is studied. The gas accreting onto the black hole is assumed to be a fully ionized hydrogen plasma withn 0=108 cm–3 andT 0=104 K far from the black hole, and a new approximate expression for the Eddington factor is introduced. The luminosity is estimated to beL=1.875×1033 erg s–1, which primarily arises from the optical surface (1) ofT104 K. The accretion flow is characterized by 1 and (v/c)10. In the optically thin region, the flow remains isothermal, and the increase of temperature occurs at 1. The radiative equilibrium is strictly realized at (v/c)10.  相似文献   

7.
On the basis of a globular cluster study a crude estimate of the total mass of the galactic halo within 20 kpc from the centre is done. It gives a minimal halo mass of the order of , yielding possibilities for a mass as large as . The content of the interstellar matter in the halo is estimated too. It is found that the gas content is a few percents the minimal mass, the gas temperature is very high — about 1×106 K, the magnetic field weak — about 0.25 nT. A weak nonthermal radio emission might be expected from such a halo.  相似文献   

8.
The differential equations governing relativistic polytropic fluid spheres have been integrated numerically for polytropic indexn = 0.0 (0.1) 4.9 and relativity parameter = 0.0 (0.1) 0.9, and the resulting boundary conditions for and other related quantities are presented in this paper.  相似文献   

9.
Since there are reasons for expecting supersymmetry in an underlying quantum theory of gravity, one is led to study quantum and classical cosmology with supergravity. In particular, classical solutions corresponding to these models could also be used to generate the quantization of supersymmetric minisuperspaces. In generating these solutions, the solution to the Rarita-Schwinger field in the cosmological background is also obtained. In this paper the supercosmological equations of Einstein-Rarita-Schwinger are solved for the micro-superspace sector of the Taub model, under the assumption =11*22 and . The solution for the parameters of the metric and are proportional to each other in each order, the zeroth-order and also the second-order terms. The zeroth-order terms correspond to the solution in general relativity and are logarithmic in time, the 12 terms have an hyperbolic time-dependence. The Rarita-Schwinger field has the form cos((2/D 3)ln |t–t 0|) and oscillates an infinite number of times astt 0. This oscillating behaviour of the solution for is not only present when spinor fields are treated in a curved background, but also some cosmological wave functions behave in this manner. This solution is at the same time the supercosmological solution for the microsuperspace sector of the Taub model and also the Rarita-Schwinger field in this background.This work was supported in part by CONACYT grant P228CCOX891723, and DGICSA SEP grant C90-03-0347.  相似文献   

10.
The relative abundances of cool neutral hydrogen, carbon monoxide and formaldehyde are studied using all the available observational data in the literature. The obtained mean valuesN H 1/ ,N H 1/N CO,N CO/ are approximately constant in the dark clouds of the solar neighbourhood and in the distant molecular clouds.The observed correlationsN CO,A v and ,A v show that formaldehyde can also be used as an indicator of molecular hydrogen. The ratioN H1/A v depends on densities and decays considerably in the ranges of visual absorptions in which the molecules become detectable (A v 2 mg); an average of /N H 110 is calculated for the dense dark clouds.Indications of systematic temperature gradiens T/A v are found for formaldehyde and neutral hydrogen inside the dark clouds, and qualitative comparisons are made with theoretical quantum mechanics calculations.The observed carbon monoxide and formaldehyde abundances, the free electron layer in the Galaxy, the distribution of neutral hydrogen in different states are only compatible if an ionization rate of 10–16 is accepted, provided presumably by 2 MeV protons of cosmic radiation.Three main states for neutral hydrogen and dust are identified from different kinds of observational data (21 cm line in emission, absorption in galactic radio sources and self-absorption in the hot gas background): (1) a homogeneous intercloud stratum of tenuous gas and dust with a galactic halfwidth of 350 pc and mean parametersn H=0.2 atom cm–3, spin temperatureT s 10000 K andn d 0.3 mg kpc–1; (2) cool gas and dust concentrated in spiral features with a galactic half-width of less than 100 pc, probably forming clouds with diffuse and indefinite limits, with mean parametersn H2 atom cm–3,T s <1100 K (probable average,T s =135 K) andn d 3 mg kpc–1; (3) dense gas and dust clouds with a mean diameter of 7 pc and mean parametersn H700 atom cm–3 (90% in a molecular state),T s 63 K andn d 1 mg pc–1 on which molecules as CO and H2CO are formed.The application of the Jeans criteria for gravitational instability shows that the dense clouds are gravitationally bound while the gas in the intermediate state (2) can be protected against collapse by the total internal energy in the medium increasing due to cosmic rays and the magnetic field in the Galaxy.The observed velocity halfwidths and galacticZ-halfwidths in states (1) and (2) are compatible with a total mass density in the galactic layer of 90M pc–2 (gas plus stars) according to the barometric equation.The relative abundancesN H 1/N CO, calculated from C12O and C13O data and comparisons with studies in the 21 cm emission line, show that the antenna temperatureT A + in the 2.6 mm line of C12O is a good indicator of the cool gas densities in the Galaxy. The possible application of this for studies in galactic structure is discussed and hypothetical distributions of carbon monoxide in the zones outside the galactic planeB=0° are presented.From a synthesis based on the results obtained, a cycle is postulated for the neutral hydrogen in the Galaxy: condensation and cooling of gas molecular formation gravitational collapse and star formation gas dissipation and heating by cosmic rays and UV radiation.  相似文献   

11.
For the theory described by the action and taking the FRW flat space metric we find an exact non-singular de Sitter model universe exp(t 2), with . It is also proved that the standard general relativity de Sitter cosmology , >0 is also a model of this higher derivative theory of gravity. If the metric is conformally flatS could describe a consistent quantum theory and its classical solutions would correspond to cosmological models in this theory.This work was supported in part by CONACYT grand P228CCOX891723, and DGICSA SEP grant C90-03-0347.  相似文献   

12.
The diffusion of charged particles through a weak stochastic electro-magnetic field which is superimposed on a constant background magnetic field is considered. The stochastic electromagnetic fields are assumed to consist of unpolarized Alfvén waves propagating at arbitrary angles to the direction . When the Alfvén waves are propagating in directions other than and the particle gyro-radius,r g, is sufficiently large (but may be smaller than the correlation length of the stochastic fields) it is shown that the particle flux perpendicular to the direction is , wherev is the particle speed andf the particle density. The expression forK differs from those calculated by previous authors. For small particle gyro-radii the flux S has a different functional form and is identical to that found by Urch (1977) to describe particle diffusion when the Alfvén waves only propagate in the direction .  相似文献   

13.
Cosmic ray (c. r.) propagation in interstellar magnetic fields is often considered in the diffusion approximation, i.e. by the diffusion equation in the coordinate space. Cosmic ray momentum distribution in this case is considered isotropic when the space gradients of c.r density are absent. This approach, with the use of an unfixed effective diffusion coefficientD independent of the energyE enables one to describe all the data available However, neither the diffusion mechanism nor the limits of applicability of the diffusion approximation is clear particularly ifD is independent ofE. Furthermore, the diffusion coefficientD must be expressed through the characteristics of the interstellar medium and possibly through the flux velocity and density of c.r. etc. One of the possible approaches for the analysis of the mechanism and characteristic features of c.r. distribution and isotropization is the account taken of the plasma effects and specifically, the study of c.r. flux instability arising when c.r. are moving in the interstellar plasma. As a result of such instability c.r. may generate waves of different types (magnetohydrodynamic, high-frequency plasma and other waves). Generation of waves and scattering on them result in isotropization of cosmic rays while their propagation under certain conditions turns out similar to that under diffusion.An attempt is made here to systematically analyse the avove mentioned plasma effects and to find out to what extent they are responsible for the behaviour of c.r. in the Galaxy. It turns out that c.r. In any case this is true if this mechanism is regarded as the only c.r. isotropization mechanizm within a wide energy range from 1 to 1000 GeV. Isotropization and spatial diffusion of c.r. up toE100–1000 GeV on the waves from external sources (for example, on the waves from the supernova shells) also proved impossible if the diffusion coefficient is assumed to be independent of c.r. energy. Some new possibilities of c.r. isotropization are also considered.A List of Notations D cosmic ray (c.r.) space diffusion coefficient - degree of c.r. anyisotropy - E,E kin total and kinetic particle energy - p,p particle momentum and its absolute value - angle between the particle momentum direction and the magnetic field direction (z-axis) - cos - v, particle velocity and its absolute value - c light velocity - f(p),f(E) momentum and energy particle distribution function - N( > E) = N( > p) = f(p) dp/(2)3 = E f dE c.r. particle density - c.r. spectrum index,N(>E)=KE –+1 - n H neutral particle density - n=n e=n i ion and electron density - H niagnetic field - T temperature - thermal velocities of electrons and ions - Boltzmann constant - Alfén velocity - M, m proton and electron masses - e electron charge - wave frequency - H =eH/Mc, = H (Mc 2/E) gyrofrequency of a plasma proton and relativistic particle - H =eH/mc gyrofrequency of an electron - plasma frequency - v ii,v ei,v en,v in collision frequencies between ions, electrons and ions, electrons and neutrals, ions and neutrals - growth rate of wave amplitude - k,k wave vector and its absolute value - angle between the directions of the vectorsk andH - wave energy density  相似文献   

14.
We have studied the effect of the flow in the accretion disk. The specific angular momentum of the disk is assumed to be constant and the polytropic relation is used. We have solved the structure of the disk and the flow patterns of the irrotational perfect fluid.As far as the obtained results are concerned, the flow does not affect the shape of the configuration in the bulk of the disk, although the flow velocity reaches even a half of the sound velocity at the inner edge of the disk. Therefore, in order to study accretion disk models with the moderate mass accretion rate—i.e.,
  相似文献   

15.
The problem on linear waves in a radiating and scattering grey medium is studied using Whitham's method. Analysis of the basic equations distinguishes two limiting cases: the one is theequilibrium case in which the energy exchange between the gas and radiation plays an essential role, and the other is theScattering case in which the effect of energy exchange is negligible. A new type ofradiation acoustic wave with the speed is found in the scattering case. The governing equations for linearized one-dimensional flow are reduced to one equation of radiative acoustics valid to order 1/c, and the criterion for the two limiting cases is derived from studying this equation. The harmonic solution is analytically studied to show that theeffective optical depth corresponding to the wavelength of perturbation gives the measure of the interaction between the gas and radiation. When eff1, the sound speeda g 2 =P g / and the propagating speed of radiative disturbancea f 2 =fc 2 appear as the modified classical and radiation-induced modes respectively, wheref is the Eddington factor. When eff1, the isentropic sound speeda s 2 =(P g +P r / appears in the equilibrium case, and the radiation acoustic speeda A 2 appears in the scattering case. The dispersion relation of the harmonic solution is numerically calculated. The result shows that the wave pattern depends critically on the ratio=P g /(P g +P r ). When , the speeda S anda A arise from the modified classical mode, and when , they originate from the radiation-induced mode.  相似文献   

16.
The equation of state of the terrestrial material obtained from seismic data is adopted to construct three zone earth models under hypothesis of variable constant of gravityG as proposed by Dirac. Three hypotheses are investigated: variableG without creation, creation such thatm (mass) G –1, and multiplicative creation,mG –2. It is shown that, with the currently accepted value of the Hubble constant, , and for each hypothesis. On the multiplicative creation, the Earth radius would have been 5100 km, which is in agreement with estimate by some geophysicists.  相似文献   

17.
The model is based on the assumption that logarithmic spiral arms of most spiral galaxies are due to the totating density wave obeying the steady wave equation . It is shown that this equation accounts also for the so-called Titius-Bode's law in the solar system.  相似文献   

18.
A new modified Kramers Kronig Integral is derived and shown to produce excellent results when k data is only known over a limited range. By considering the effect of resonance features simulated using the Dirac-Delta function, the new integral is shown to be more rapidly converging than both the conventional Kramers Kronig integral and a modified (Subtractive Kramers Kronig – SKK) integral introduced by Ahrenkiel (1971). The new integral does not require extensive extrapolation of reflectance data outside the measured region in order to produce reliable results. By extending the above procedure to include n data points, it is shown that at wavelength 0, \[ n(_0)=\sum_{i=1}^{\rm n}(-1)^{\rm n+1}\prod_{\stackrel{j=1}{j \not=i}}^{\rm n} \frac{(_j^2-_0^2)}{(_i^2- _j^2)}n(_i)+\frac{2}{\pi}P\int_{0}^{\infty}(-1)^{\rm n+1} \frac{\prod_{i=1}^{\rm n}(_i^2-_0^2)}{\prod_{i=0}^{\rm n}(^2-_i^2)} k()d \] with relative error given by, \[ R_n(_0)=\prod_{i=1}^{\rm n}\frac{_i^2- _0^2}{_^2-_i^2} . \] This nth order expression should prove useful in establishing the internal self-consistency of data sets for which both optical coefficients have been theoretically derived.  相似文献   

19.
Both the critical content c ( N m /N B , whereN m ,N B are the total numbers of monopoles and nucleons, respectively, contained in the object), and the saturation content s of monopoles in a rotating relativistic object are found in this paper. The results are:
  相似文献   

20.
Closely spaced microphotometer tracings parallel to the dispersion of one excellent frame of a K-line time sequence have been utilized for a study of the nature of the K2v , K2R intensities in the case of the solar chromosphere. The frequency of occurrence of the categories of intensity ratio are as follows: per cent; per cent; per cent; per cent; per cent. Two types of absorbing components are postulated to explain the pattern of observed K2v , k2R intensity ratios. One component with minor Doppler displacements acting on the normal K232 profile, where K2V >K2R , produces the cases K2v K2R , K2v = K2R , K2v <K2R . The other component arises from dark condensations which are of size 3500 kms as seen in K2R . They have principally large down flowing velocities in the range 5–8 km/sec and are seen on K3 spectroheliograms with sizes of about 5000 kms, within the coarse network of emission. These dark condensations give rise to the situation K2R = 0.K2-line widths are measured for all tracings where K2v , K2R are measurable simultaneously. The distribution curve of these widths is extremely sharp. The K2 emission source is identified with the bright fine mottles visible on the surface. Evidence for this interpretation comes from the study of auto-correlation functions of K2 intensity variations and the spacing between the bright fine mottles from both spectrograms and spectroheliograms. The life time of the fine mottling is 200 sec.The supergranular boundaries which constitute the coarse network come in two intensity classes. A low intensity network has the fine mottles as its principal contributor to the K emission. When the network is bright, the enhancement is caused by increased K emission due to the accumulation of magnetic fields at the supergranule boundary. The K2 widths of the low intensity supergranular boundary agree with the value found for the bright mottles. Those for the brighter network are lower than this value, similar to the K2 widths as seen in the active regions.It is concluded that bright fine mottling is responsible for the relation, found by Wilson and Bappu, between K emission line widths and absolute magnitudes of the stars.The paper discusses the solar cycle equivalents that stellar chromospheres can demonstrate and indicates a possible line of approach for successful detection of cyclic activity in stellar chromospheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号