首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
By a detailed comparison of annual and sub-annual components of EUV absorption heat input with those of the Jacchia density models, we consider the importance of EUV heating in the annual and sub-annual variations of the upper atmosphere. When all the geometrical effects of EUV heat input have been taken into account, it is found that a remarkable correspondence exists between properties of each harmonic component of EUV heat input and Jacchia model temperature and densities. Equinoctial latitude independence of diurnal averaged annual and sub-annual components of heat input and density is proposed as a test of the significance of the EUV heat input. The Jacchia model is found to satisfy this test rigourously.  相似文献   

2.
The global distribution and temporal variations of thermospheric heating due to Joule dissipation of measured ionospheric electric fields are computed. It is shown that the volume Joule dissipation rate at high and middle latitude is similar in magnitude and altitudinal profile to the global solar EUV absorption rate discussed in the previous papers. Thus, Joule dissipation contributes significantly towards reconciling the quantitatively known sources of thermospheric heat input and that required to maintain the normal thermosphere. The combined heat source due to EUV absorption and Joule dissipation varies with the annual cycle in a manner closely resembling that of the thermospheric density.  相似文献   

3.
《Planetary and Space Science》1987,35(8):1039-1052
An empirical density formula is explored as a practical model for atmospheric variations and satellite drag analyses. Expanding neutral air density as a series of spherical harmonics and normalizing to a fixed height, an analytical expression for the rate of change of the mean motion is developed for an oblate atmosphere with density scale height varying linearly with altitude. A subset of the coefficients in the density expansion is determined by least-squares adjustment to the observed orbital decay rate of Intercosmos 13 rocket (1975-22B) for the period May 1975–December 1979. Comparisons against four thermospheric models are undertaken for the solar activity effect and the diurnal and semi-annual variations. Given the even spread of data and the increase in solar activity from low to moderate, the air density variation with solar activity is particularly well determined. The results support the “J77” model revealing a greater increase in density with the daily solar index than either the “MSIS” or “DTM” thermospheric models near the solar minimum. Analyses of the diurnal and semi-annual variations are less exact.  相似文献   

4.
According to recent simulations of the Earth’s thermosphere, the exospheric temperature is not expected to rise above 7000-8000 K even under extreme solar EUV conditions anticipated for the early Earth. Rather, when the solar EUV flux exceeds some critical value, the escaping flow of the bulk upper thermosphere starts cooling it due to adiabatic expansion, which results in a decrease of the exobase temperature. Under these extreme conditions, the exobase might have expanded above the magnetopause and the magnetosphere had not been able to protect the upper atmosphere against strong non-thermal erosion by the solar wind.This study shows that a nitrogen-rich terrestrial atmosphere with a present-day composition would have been removed within a few million years during the extreme EUV and solar wind conditions that are expected to have prevailed before the late heavy bombardment period ∼3.8 Ga ago. Our results suggest that a CO2 amount in the early nitrogen-rich terrestrial atmosphere of at least two orders of magnitude higher than the present-time level was needed to confine the upper atmosphere after the onset of the geodynamo within the shielding magnetosphere and thus might have protected it from complete destruction.  相似文献   

5.
Since 1958 it is known that there exists a response time of the upper atmosphere to changes in solar activity. This response time is best described as the lag between the 27-day variation of solar decimeter flux and the observed density changes of the upper atmosphere. Roemer obtained as a mean observational value for this lag 1.0 ± 0.12 days. Volland's simplified version of the Harris-Priester model of the upper atmosphere is used to calculate the delay which can be expected from theory. Only the effect of solar EUV radiation is taken into account. A possible influence of the corpuscular component of the solar radiation is not included in our estimate.

The calculations are carried out for the Harris-Priester model with solar activity index and a variation of . The resulting delay is 0.6 days. The calculated amplitude of the variations of the diurnal average temperatures during the solar 27-days cycle is in very good agreement with Jacchia's empirical formula.  相似文献   


6.
We analyze observations taken with Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), to determine the current methane and haze latitudinal distribution between 60°S and 40°N. The methane variation was measured primarily from its absorption band at 0.61 μm, which is optically thin enough to be sensitive to the methane abundance at 20-50 km altitude. Haze characteristics were determined from Titan’s 0.4-1.6 μm spectra, which sample Titan’s atmosphere from the surface to 200 km altitude. Radiative transfer models based on the haze properties and methane absorption profiles at the Huygens site reproduced the observed VIMS spectra and allowed us to retrieve latitude variations in the methane abundance and haze. We find the haze variations can be reproduced by varying only the density and single scattering albedo above 80 km altitude. There is an ambiguity between methane abundance and haze optical depth, because higher haze optical depth causes shallower methane bands; thus a family of solutions is allowed by the data. We find that haze variations alone, with a constant methane abundance, can reproduce the spatial variation in the methane bands if the haze density increases by 60% between 20°S and 10°S (roughly the sub-solar latitude) and single scattering absorption increases by 20% between 60°S and 40°N. On the other hand, a higher abundance of methane between 20 and 50 km in the summer hemisphere, as much as two times that of the winter hemisphere, is also possible, if the haze variations are minimized. The range of possible methane variations between 27°S and 19°N is consistent with condensation as a result of temperature variations of 0-1.5 K at 20-30 km. Our analysis indicates that the latitudinal variations in Titan’s visible to near-IR albedo, the north/south asymmetry (NSA), result primarily from variations in the thickness of the darker haze layer, detected by Huygens DISR, above 80 km altitude. If we assume little to no latitudinal methane variations we can reproduce the NSA wavelength signatures with the derived haze characteristics. We calculate the solar heating rate as a function of latitude and derive variations of ∼10-15% near the sub-solar latitude resulting from the NSA. Most of the latitudinal variations in the heating rate stem from changes in solar zenith angle rather than compositional variations.  相似文献   

7.
Using Hinode EUV Imaging Spectrometer (EIS) spectra recorded daily at Sun center from the end of 2006 to early 2011, we studied the long-term evolution of the quiet corona. The light curves of the higher temperature emission lines exhibit larger variations in sync with the solar activity cycle while the cooler lines show reduced modulation. Our study shows that the high temperature component of the corona changes in quiet regions, even though the coronal electron density remains almost constant there. The results suggest that heat input to the quiet corona varies with the solar activity cycle.  相似文献   

8.
The theory of dissipation of ionospheric electric currents is extended to include viscosity. In a steady state (i.e. usually above about 140 km altitude) the joule plus viscous heating may be calculated by μ∇2v. E × B/B2. At lower altitudes where viscosity may, in some circumstances, be relatively unimportant the joule dissipation is calculated by the usual formula j. (E + v × B). In a prevalent model of the auroral electrojets it is found that the joule heating can be much more intense outside auroral forms than within them. Heating due to auroral electrojets cause a semi-annual variation in the thermosphere. Movement caused by auroral electric fields make a contribution to the super-rotation of the midlatitude upper atmosphere. Random electric fields lead to an eddy ‘viscosity’ or ‘exchange coefficientrs in the upper thermosphere of magnitude ρER2/B3tR2|∇E|. where tR is the correlation time of the random component of electric fields ER and ρ is air density. Theoretical conditions for significant heating by field-aligned currents are derived.  相似文献   

9.
In an earlier paper, values of exospheric density were obtained from the orbit of Echo 2 for the years 1964–1965. The results indicated a semi-annual variation in density by a factor of between 2 and 3, considerably larger than predicted by existing atmospheric models.

These studies have now been extended to the beginning of 1967, using both Echo 2 and Calsphere 1, to show how the density is responding to increasing solar activity. Variations in density during 1964 have been analysed in more detail. The long-term variation associated with the solar cycle and the short-term variations associated with magnetic and solar disturbances agree with the variations expected on the basis of current models. The semi-annual variation is persisting to higher levels of solar activity, and although its amplitude is diminishing the factor of variation was still 1.6 in 1966.  相似文献   


10.
Darrell F. Strobel 《Icarus》2008,193(2):612-619
Hydrodynamic escape of N2 molecules from Pluto's atmosphere is calculated under the assumption of a high density, slow outflow expansion driven by solar EUV heating by N2 absorption, near-IR and UV heating by CH4 absorption, and CO cooling by rotational line emission as a function of solar activity. At 30 AU, the N2 escape rate varies from in the absence of heating, but driven by an upward thermal heat conduction flux from the stratosphere, for lower boundary temperatures varying from 70-100 K. With solar heating varying from solar minimum to solar maximum conditions and a calculated lower boundary temperature, 88.2 K, the N2 escape rate range is , respectively. LTE rotational line emission by CO reduces the net solar heat input by at most 35% and plays a minor role in lowering the calculated escape rates, but ensures that the lower boundary temperature can be calculated by radiative equilibrium with near-IR CH4 heating. While an upward thermal conduction heat flux at the lower boundary plays a fundamental role in the absence of heating, with solar heating it is downward at solar minimum, and is, at most, 13% of the integrated net heating rate over the range of solar activity. For the arrival of the New Horizons spacecraft at Pluto in July 2015, predictions are lower boundary temperature, T0∼81 K, and N2 escape rate , and peak thermospheric temperature ∼103 K at 1890 km, based on expected solar medium conditions.  相似文献   

11.
Walsh  R.W.  Galtier  S. 《Solar physics》2000,197(1):57-73
X-ray and EUV observations of the solar corona reveal a very complex and dynamic environment where there are many examples of structures that are believed to outline the Sun's magnetic field. In this present study, the authors investigate the temporal response of the temperature, density and pressure of a solar coronal plasma contained within a magnetic loop to an intermittent heating source generated by Ohmic dissipation. The energy input is produced by a one-dimensional MHD flare model. This model is able to reproduce some of the statistical properties derived from X-ray flare observations. In particular the heat deposition consists of both a sub-flaring background and much larger, singular dissipative events. Two different heating profiles are investigated: (a) the spatial average of the square of the current along the loop and (b) the maximum of the square of the current along the loop. For case (a), the plasma parameters appear to respond more to the global variations in the heat deposition about its average value rather than to each specific event. For case (b), the plasma quantities are more intermittent in their evolution. In both cases the density response is the least bursty signal. It is found that the time-dependent energy input can maintain the plasma at typical coronal temperatures. Implications of these results upon the latest coronal observations are discussed.  相似文献   

12.
Long-term variations of solar wind parameters at 1 AU are correlated with sunspots for the time interval 1973 to 1993 (solar cycles 21, 22). Using theNear-Earth Heliosphere Data OMNI the plasma density, the magnitude of the interplanetary magnetic field, the solar wind velocity and the solar wind temperature show consistent long-term variations in each cycle (21 and 22) — pointing to specifictime-lags in the coupling between sunspots (and the underlying convection zone), the solar corona and the solar wind parameters at 1 AU (ecliptic).  相似文献   

13.
The fluxes of extreme ultraviolet (EUV) and soft X-ray emission are key parameters for modelling the ionosphere and upper atmosphere. A new aspect is considered in using these fluxes for diagnostics and short-term prediction of proton radiation danger from the flare. The EUV (λ < 105 nm) and soft X-ray (0.1–0.8 nm) fluxes were compared for two types of solar flares. The first type is followed by a strong enhancement in solar energetic (E >10 MeV) proton flux, the second is not followed by any enhancement in proton flux. It was discovered that the flare UV flux was considerably higher for flares with protons than for those without protons. Soft X-ray fluxes were approximately equal in both cases. An excess of EUV emission in proton flares grows with increasing proton flux. An analytic expression was found for the growth in proton flux as a function of the excess of EUV radiation at a given X-ray flux. These results can be used in predicting flare radiation danger.  相似文献   

14.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

15.
We present observations of a coronal hole made with the EUV spectroheliometer of the Harvard College aboard Skylab and with high resolution (2–4) radio telescopes at Culgoora and Fleurs Australia and Bonn, West Germany. We attempt to derive the density and temperature distributions in the transition region and inner corona from the combined observations. No one standard model can explain both sets of observations; characteristically, models based on EUV data yield higher radio brightnesses than are observed, while models based on radio data yield lower EUV line intensities than are observed. The discrepancy is essentially that the electron density inferred from the EUV data is about three times that inferred from the radio data.After examining several possible modifications of the standard models we suggest that the discrepancy would disappear if the abundances of the heavier elements were increased by about a factor of 10. Such increases could result from differential diffusion in the large temperature gradient of the transition region. We conclude therefore that models which incorporate thermal diffusion, as well as mass outflow and departures from ionization equilibrium, offer the greatest hope of reconciling the EUV and radio observations of coronal holes.  相似文献   

16.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

17.
Understanding the magnitude and temporal structure of variations in solar ultraviolet and extreme ultraviolet irradiance is critical to understanding solar forcing of the Earth's upper and middle atmosphere and hence to assessing the relative impact of natural and anthropogenic influences on Earth's atmospheric environment. Satellite based measurements of such variations are limited to recent times, are short in duration and subject to gaps making necessary ground-based surrogates with longer and more continuous coverage. Using indices derived from synoptic solar magnetograms taken at the Mount Wilson 150-foot solar tower, we have constructed models of several UV and near EUV lines and fluxes which correlate strongly (r > 0.90) with satellite data. These lines and fluxes include the Mgii h and k core-to-wing ratio, the Lα line and the 200–205 nm flux.  相似文献   

18.
In the framework of future space missions to Ganymede, a pre-study of this satellite is a necessary step to constrain instrument performances according to the mission objectives. This work aims at characterizing the impact of the solar UV flux on Ganymede’s atmosphere and especially at deriving some key physical parameters that are measurable by an orbiter. Another objective is to test several models for reconstructing the solar flux in the Extreme-UV (EUV) in order to give recommendations for future space missions.Using a Beer–Lambert approach, we compute the primary production of excited and ionized states due to photoabsorption, neglecting the secondary production that is due to photoelectron impacts as well as to precipitated suprathermal electrons. Ions sputtered from the surface are also neglected. Computations are performed at the equator and close to the pole, in the same conditions as during the Galileo flyby. From the excitations, we compute the radiative relaxation leading to the atmospheric emissions. We also propose a simple chemical model to retrieve the stationary electron density. There are two main results: (i) the modelled electron density and the one measured by Galileo are in good agreement. The main atmospheric visible emission is the atomic oxygen red line at 630 nm, both in equatorial and in polar conditions, in spite of the different atmospheric compositions. This emission is measurable from space, especially for limb viewing conditions. The OH emission (continuum between 260 and 410 nm) is also probably measurable from space. (ii) The input EUV solar flux may be directly measured or reconstructed from only two passbands solar observing diodes with no degradation of the modelled response of the Ganymede’s atmosphere. With respect to these results, there are two main conclusions: (i) future missions to Ganymede should include the measurement of the red line as well as the measurement of OH emissions in order to constrain the atmospheric model. (ii) None of the common solar proxies satisfactorily describes the level of variability of the solar EUV irradiance. For future atmospheric planetary space missions, it would be more appropriate to derive the EUV flux from a small radiometer rather than from a full-fledged spectrometer.  相似文献   

19.
The solar atmosphere may be divided into a number of isolated active components and a quiet residue. On the largest scale the latter is dominated by a general dipole magnetic field of strength 1–2 G; its observable components are flux concentrations in supergranule boundary regions (SBRs), spicules, mottles and polar plumes. The velocity field in the SBRs is discussed. There are continuous gas streaming motions up and down between the photosphere and the corona; spicules may be mainly downward moving gas.A unifying model is developed of these various components, as well as the heating mechanism of the whole quiet atmosphere. Highly ordered velocity fields of the cell, together with a gravitational wave, cause a vertical magnetic force tube to collapse below a critical level; the result is an upward eruption of a vortex ring at the Alfvén velocity. The complex mass velocity pattern may explain spicules, mottles and plumes, as well as unobservable streaming motions.The quiet atmosphere is divided into regions above SBRs and those above the inner parts of the cells. Hydromagnetic eruptions from the former may account for the entire heat requirement of the atmosphere. The model atmosphere has a chromosphere-corona transition layer which bulges upwards above the SBRs and so conforms with EUV data. The energy and mass balances in this solar atmosphere are considered, and it is also shown to be consistent with the radio data.  相似文献   

20.
Although back conduction from the corona has been shown to be inadequate for powering EUV emission below T 2 × 105 K, it is thought to be adequate in the temperature range 2 × 105 K < T < 106 K. No models to date, however, have included the large magnetic constriction which should occur in the legs of coronal loops where conductive transition regions, hitherto thought to contain the bulk of the plasma in this higher temperature range, are located. On the basis of fine scale magnetograms, Dowdy et al. (1986) have estimated that these magnetic flux tubes are constricted from end to end by an areal factor of approximately 100. Furthermore, on the basis of simple steady-state conductive models, Dowdy et al. (1985) have shown that the large constriction can inhibit the conductive flow of heat by an order of magnitude. We are thus led to re-examine static models of this region of the atmosphere which incorporate not only conduction and radiation but also the effects of large magnetic constrictions. We find that the structure of this plasma depends not only on the magnitude of the constriction but also on the tube's shape.Our results show that no model with a constriction of order 100 can simultaneously (a) produce the variation of differential emission measure with temperature derived from measured line intensities and (b) satisfy the observed constraint (Reeves, 1976) that EUV emission from below T 7 × 105 K be confined to the supergranular network, covering no more than 0.45 of the solar surface. The failure of the models suggests that the bulk of the 105–106 K plasma in the quiet solar atmosphere is not in transition region structures, but is instead magnetically isolated from the corona and heated internally. Even though the transition region component of 105–106 K plasma in the legs of coronal loops should exist, it comprises only a small fraction of the total 105–106 K plasma and, hence, produces only a small fraction of the observed EUV emission from this temperature range.We also find that for any permitted tube shape, constriction factors of order 100 reduce the coronal conductive energy losses to the transition region to a value which is less than a third of the value for an unconstricted field, i.e., to less than 2 × 105 erg cm –2 s –1. In particular, if the magnetic geometry of the upper transition region is extremely concave (i.e., horn-shaped geometry with most of the areal divergence near the hot end), then a constriction of order 100 results in a conductive loss of less than 1 × 104 erg cm–2 s–1 and, hence, much less than the coronal radiative energy loss. For such geometries, the constriction in the magnetic field hence provides an effective thermal insulation of the corona from the cooler parts of the solar atmosphere.Presidential Young Investigator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号