首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Radiocarbon dates of fifteen samples representing raised shorelines on various islands of the tectonically mobile region of eastern Indonesia suggest rates of tectonic uplift ranging up to 12.5 mm/year. Low rates of 0.35–1.2 mm/year are from Biak Island and are averages for the last 31,000–36,000 years. The low rates may be explained to indicate subsidence alternating with uplift, both of which occurring under influence of the large Irian fault zone that passes to the immediate south of the island. Very young elevated strandlines (250 years BP) indicate rates of uplift between 8 and 12.5 mm/year which seem to demonstrate the episodic character of vertical diastrophic movements. Intermediate rates of uplift are in the order of 5 mm/year and may represent averages for eastern Indonesia.  相似文献   

2.
《Geodinamica Acta》1999,12(5):291-301
As a result of recent drillings in the Walensee Valley (eastern Switzerland) a new fades model for the Quaternary filling of Alpine valleys has been developed. A detailed lithological model and some new radiocarbon dating allowed the calculation of regional sedimentation and denudation rates and their change during the Late- and Postglacial period. It is shown that these changes follow the paraglacial sedimentation model by Church and Ryder [1]. The absolute quantification of the sediment budgets between the Last Glaciation and today points to denudation rates in the order of 1.5 mm y−1 for the catchment of the Lake of Walenstadt. This is 50 % higher than suggested from current tectonic and isostatic estimates up to now. In that case present day uplift of the Alps would not be in balance with denudation.  相似文献   

3.
A combination of published and new radiometric dates on uplifted Holocene fossil beaches from northeastern Sicily and southern Calabria (southern Italy) is compared with the altitude of the inner margin of the Last Interglacial (LIg) (Late Pleistocene, 124 ka) and older marine terraces in order to gain a regional-scale outline of uplift rates and their temporal changes in a region which is one of the fastest uplifting sectors of the Central Mediterranean Sea. Late Holocene radiocarbon dates from Ioppolo (southern Calabria) and Ganzirri (northeast Sicily), two newly discovered sites are here presented for the first time. The Holocene uplift rates are highest at St. Alessio and Taormina in eastern Sicily (2.4 mm/y) and at Scilla in southwestern Calabria (2.1 mm/y), two sites located across the Messina Straits and which separate the island of Sicily from mainland Italy. Uplift rates decrease towards the south and north from this centre of uplift. Late Holocene uplift rates show an apparent increase of between 64 and 124% when compared with the longer-term uplift rates calculated from the LIg highstand terraces. Furthermore, we discovered that the locations of fastest Late Pleistocene and Late Holocene uplift rates spatially coincide. To what extent the Holocene increase in uplift rates results from incomplete elastic strain release along the major extensional faults which frame the seismotectonic of the area, or indicate a true change in regional tectonic processes, is not resolved. Nonetheless, the heterogeneity of uplift, with a well-defined centre that crosses the Messina Straits, and its persistence at different time-scales indicates a tight connection between wider regional processes and fault-related displacement in controlling crustal instability in this area.  相似文献   

4.
Abstract

As a result of recent drillings in the Walensee Valley (eastern Switzerland) a new facies model for the Quaternary filling of Alpine valleys has been developed. A detailed lithological model and some new radiocarbon dating allowed the calculation of regional sedimentation and denudation rates and their change during the Late- and Postglacial period. It is shown that these changes follow the paraglacial sedimentation model by Church and Ryder [1]. The absolute quantification of the sediment budgets between the Last Glaciation and today points to denudation rates in the order of 1.5 mm y?1 for the catchment of the Lake of Walenstadt. This is 50 % higher than suggested from current tectonic and isostatic estimates up to now. In that case present day uplift of the Alps would not be in balance with denudation. © Elsevier, Paris  相似文献   

5.
通过青藏高原东部川西地区雀儿山花岗岩体磷灰石裂变径迹分析,新获得了4个磷灰石裂变径迹年龄值,分别为4.9 ±0.3Ma、6.2 ±0.5 Ma、7.2 ±0.4 Ma和7.3 ±0.7 Ma。运用径迹年龄-地形高差法计算出雀儿山花岗岩体新近纪的隆升速率,为0.15~2 mm/a,平均隆升速率为0.78mm/a。隆升速率在每个阶段有所不同,但呈现出一种快速隆升→缓慢隆升的过程,为整个青藏高原东缘的隆升过程提供了约束条件。  相似文献   

6.
The eastern Central Alps consist of several Pennine nappes with different tectonometamorphic histories. The tectonically uppermost units (oceanic Avers Bündnerschiefer, continental Suretta and Tambo nappes, oceanic Vals Bündnerschiefer) show Cretaceous/early Tertiary W-directed thrusting with associated blueschist facies metamorphism related to subduction of the Pennine units beneath the Austroalpine continental crust. This event caused eclogite facies metamorphism in the underlying continental Adula nappe. The gross effect was crustal thickening. The tectonically lower, continental Simano nappe is devoid of any imprint from this event. In the course of continent-continent collision, high- T metamorphism and N-directed movements occurred. Both affected the whole nappe pile more or less continuously from amphibolite to greenschist facies conditions. Crustal thinning commenced during the regional temperature peak. A final phase is related to differential uplift under retrograde P–T conditions. Further thinning of the crust was accommodated by E- to NE-directed extensional deformation.  相似文献   

7.
The Sierra de Pie de Palo located between 67°30′–68°30′ W and 31°00′–32°00′ S in the Argentine Western Sierras Pampeanas in Argentina is a distinct basement range, which lacks thermochronological data deciphering its exhumation and uplift history below 200 °C. Integrated cooling histories constrained by apatite fission-track data as well as (U–Th)/He measurements of zircon and apatite reveal that the structural evolution of this mountain range commenced during the Late Paleozoic and was mainly controlled by tectonically triggered erosion. Following further erosional controlled exhumation in a more or less extensional regime during the Mesozoic, the modern topography was generated by denudation in the Paleogene during the early stage of the Andean deformation, whereupon deformation propagated towards the west since the Late Mesozoic to Paleogene. This evolution is characterised by a total of 3.7–4.2 km vertical rock uplift and by 1.7–2.2 km exhumation with a rate of 0.03–0.04 mm/a within the Sierra de Pie de Palo since ca. 60 Ma. Onset of uplift of peak level is also referred to that time resulting in a less Pliocene amount of uplift than previously assumed.  相似文献   

8.
Previously published radiocarbon-dated horizons relating to early and middle Holocene relative sea-level change along the eastern coast of mainland Scotland are examined and trends determined. The data are modified to ensure comparability and are compared against the pattern of glacio-isostatic uplift in the area. Results show that the rate of relative sea-level rise during the Main Postglacial Transgression in the middle Holocene becomes greater towards the edge of the uplifted area, whilst the age of the Main Postglacial Shoreline becomes younger in the same direction. Linear and quadratic regression analyses disclose trends which indicate that at the 0 m HWMOST isobase of the Main Postglacial Shoreline the rate of relative sea level rise between c. 8400 and c . 7000 14 C years BP ( c . 9500 to c . 7900 cal. BP) was 5-11 mm/radiocarbon year or 6-11 mm/calibrated year, whilst at the same isobase the Main Postglacial Shoreline was reached between 5500 and 6100 14 C years BP (between 6300 and 7000 cal. BP). The relative sea-level changes identified are compatible with a rising sea surface level offshore, which may have involved three episodes, possibly related to regional and wider deglaciation.  相似文献   

9.
A survey of raised coral reef terraces in locations along the southern coast of Iran was carried out with the aim of assessing regional Late Quaternary tectonic uplift rates influenced by salt doming. Two islands were studied: Kish, where no previous data were available, and Qeshm, where a previous survey had already attributed the lowest step in two sequences of raised marine terraces to the Last Interglacial.Twenty-five ESR and seven Th/U ages were obtained from Kish Island. The results show that this flat, about 32 m high, gently domed island was totally submerged during the last two interglacial periods. Corals ascribed to MIS 5 and MIS 7 have been dated at the same elevations, near the present sea level, and in the uppermost, inner part of the island, giving evidence of a polycyclic origin for the island surface deposits. Following a discussion on the possible position of eustatic peaks during MIS 7, a maximal average uplift rate of 0.20±0.02 mm/yr has been deduced from the above data.Furthermore, the survey obtained some new results from Qeshm, where seven ESR ages confirmed the MIS 5 age of the lowest raised marine terrace (that also corresponds to an uplift rate of about 0.2 mm/yr), failing, however, to date older steps, due to significant coral-sample re-crystallisation. In the western part of Qeshm, five new radiocarbon ages of elevated beach material demonstrated the variability of uplift rates even along short distances around an active salt dome.  相似文献   

10.
S.C. Stiros 《Geoarchaeology》1998,13(7):731-741
Archaeological and biological evidence indicates that the approximate sea level position of A.D. 150–250, the period of construction of the ancient harbor of Aigeira (Gulf of Corinth, Greece), can be identified at the height of 4 m above present sea level. The exposed ancient structure permits a direct observation of harbor construction techniques of the Roman period and study of the Late Holocene uplift of the area, characterized by a terrace staircase morphology. The harbor uplift is related to a series of earthquakes, one of which was possibly responsible for the demise of Aigeira in the 3rd century A.D. The corresponding rate of uplift is estimated to 2.4–3.0 mm/yr; it is consistent with available radiocarbon data and is among the highest uplift rates ever recorded in normal faulting environments. © 1998 John Wiley & Sons, Inc.  相似文献   

11.
Shoreline displacement in the eastern part of the Gulf of Finland during the past 9000 radiocarbon years was reconstructed by studying a total of 10 isolated lake and mire basins located in Virolahti in southeastern Finland and on the Karelian Isthmus, and in Ingermanland in Russia. Study methods were diatom analyses, sediment lithostratigraphical interpretation and radiocarbon dating. In southeastern Finland, the marine (Litorina) transgression maximum occurred ca. 6500–6200 14C yr BP (7400–7100 cal. yr BP). In areas of the slower land uplift rate on the Karelian Isthmus and in Ingermanland, the transgression maximum occurred ca. 6400–6000 14C yr BP (7300–6800 cal. yr BP). The highest Litorina shoreline is located at ca. 23 m above present sea-level in southeastern Finland, whereas in the eastern part of the Karelian Isthmus, near St. Petersburg, it is located at ca. 8 m above present sea-level. The amplitude of the Litorina transgression in Virolahti area is ca. 4 m, whereas on the Karelian Isthmus and in Ingermanland the amplitude has varied between 5 and 7 m. The regional differences between areas are solely due to different glacio-isostatic land uplift rates. The seven basins studied in this research were connected to the Baltic Sea basin during the Litorina Sea stage and their diatom and lithostratigraphical records indicate a single, smooth Litorina transgression.  相似文献   

12.
Forty-eight new and previously published radiocarbon ages constrain deglacial and postglacial sea levels on southern Vancouver Island, British Columbia. Sea level fell rapidly from its high stand of about +75 m elevation just before 14 000 cal BP (12 000 radiocarbon yrs BP) to below the present shoreline by 13 200 cal BP (11 400 radiocarbon years BP). The sea fell below its present level 1000 years later in the central Strait of Georgia and 2000 years later in the northern Strait of Georgia, reflecting regional differences in ice sheet retreat and downwasting. Direct observations only constrain the low stand to be below ?11 m and above ?40 m. Analysis of the crustal isostatic depression with equations utilizing exponential decay functions appropriate to the Cascadia subduction zone, however, places the low stand at ?30 ± 5 m at about 11 200 cal BP (9800 BP). The inferred low stand for southern Vancouver Island, when compared to the sea-level curve previously derived for the central Strait of Georgia to the northwest, generates differential isostatic depression that is consistent with the expected crustal response between the two regions. Morphologic and sub-bottom features previously interpreted to indicate a low stand of ?50 to ?65 m are re-evaluated and found to be consistent with a low stand of ?30 ± 5 m. Submarine banks in eastern Juan de Fuca Strait were emergent at the time of the low stand, but marine passages persisted between southern Vancouver Island and the mainland. The crustal uplift presently occurring in response to the Late Pleistocene collapse of the southwestern sector of the Cordilleran Ice Sheet amounts to about 0.1 mm/yr. The small glacial isostatic adjustment rate is a consequence of low-viscosity mantle in this tectonically active region.  相似文献   

13.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

14.
陈孟莪  曹瑞骥 《地质科学》1966,7(2):185-188
本文记述的古藻化石,是中国科学院地质研究所刘鸿允、刘钰等1960年夏在滇东马龙县纳章村震旦系灯影组底部采集的。笔者采用古藻类化石微体研究法对标本进行了较详细的研究,发现藻类微体构造保存良好,值得描述。  相似文献   

15.
天山东段隆升过程的裂变径迹年龄证据及构造意义   总被引:18,自引:3,他引:18  
东天山基底隆升过程主要发生在新生代之前,白垩纪后该地区没有发生过快速隆升。东天山隆起带构造面貌基本继承了中生代的特征,这与天山西段主要是新生代陆内造山形成的构造地貌明显不同。其原因可能与古生代南天山洋盆自东向西的剪刀状闭合和塔里木板块的斜向碰撞有关。  相似文献   

16.
The Taiwan Strait is a part of the continental-margin rift of eastern China, which can tectonically be divided into the Taiwan Strait basin, southwestern Taiwan basin and Penhu-Beigang uplift. The basins are structurally semi-graban down-faulted ones in character. The Cretaceous-Cenozoic sedimentary strata in the basins have a maximum thickness of over 10,000 m. The formation and development of the Taiwan Strait rift were not only affected by both the East China Sea basin and South China Sea basin but also closely related to the Central Range collision orogen of Taiwan. In the Cenozoic, the Taiwan Strait area experienced, under the influence of a multiple of tectonic mechanisms, three stages of evolution: poly-centre downfault-ing, down warping-faulting and foreland basin formation. The depositional centres of the basins migrated from west to east during the Tertiary, resulting in the thinning of the Palaeogene strata from west to east but that of the Neogene in the reverse direction. All this determine  相似文献   

17.
Low-temperature thermochronological data from two profiles across central Madagascar give apatite fission track and apatite (U–Th)/He ages ranging between 258 Ma and 176 Ma and from 239 Ma to 48 Ma, respectively. Thermal models derived from these data, as well as modelling of basement denudation and the sedimentary record, indicate that first order topography of central Madagascar developed mainly due to flexural uplift during Mesozoic times. This was in response to successive erosion and depositional loading associated with the sedimentation in the Morondava and Majunga basins, both of which are now exposed along the western margin of Madagascar. Our data suggest that the eastern margin of the island had a similar denudation history and was probably at a similar topographic level before the late Cretaceous break-up of Madagascar and the India/Seychelles block. Cretaceous normal faulting, without major amounts of denudation, led to the development of the present east coast topography defined by a tectonically juvenile escarpment. In the centre of the island Cenozoic tectonics and volcanism has had a minor and localised influence on the landscape of central Madagascar.  相似文献   

18.
王瑜  万景林  李齐  王非  王二七 《地质学报》2002,76(2):191-198
阿尔金山北段阿克塞—当金山口一带的裂变径迹测年证据表明,该地区于9~7 Ma以来发生过快速抬升和剥蚀,并且一直持续形成了现今所见的阿尔金山。新生代以来至少经历了三次抬升:早期43.6~24.3Ma、中期19.6~13.6 Ma、晚期9~7 Ma。抬升速率先缓慢、后相对快速,9~7 Ma以来的抬升速率为0.94 mm/a。晚期的构造拾升可能与阿尔金断裂带左行走滑活动有关,而与相邻的柴达木盆地北缘地区的构造抬升并不一致。  相似文献   

19.
Chronostratigraphically-justified records of regional transgressions and regressions are important for understanding the nature of the Paleocene shoreline shifts on a global scale. Review of previously synthesized data from 7 tectonically “stable” regions, namely the eastern Russian Platform, Northwestern Europe, Northwestern Africa, Northeastern Africa, the Arabian Platform, the northern Gulf of Mexico, and Southern Australia, allows a comparison of transgressions and regressions interpreted in these regions. No common patterns are found in the early Danian and late Selandian, which reflects small or zero eustatic fluctuations that are overwhelmed locally on coastlines by regional tectonic motions and local changes in dynamic support of surface topography by mantle flow. Sea level was stabilized during these stages by a warm climate and a lack of planetary-scale tectonic changes. We have detected a middle–late Danian regression that occurred in 5 of 7 study regions, and can be explained by glacial advance at ~62–63 Ma or by concurrent subduction of the Izanagi–Pacific ridge beneath eastern Asia. An early–middle Selandian transgression also occurred in 5 regions, probably, as a result of a hyperthermal at ~61 Ma that coincided with emplacement of large igneous provinces in the oceanic domain. Both events are characterized by significant diachroneity, which can also be explained by the influence of regional tectonic subsidence or uplift. Results of the present study permit us to propose a tentative framework for a new Paleocene eustatic curve that is constrained globally using available records of transgressions and regressions.  相似文献   

20.
The Kachchh region of Western India is a pericratonic basin experiencing periodic high magnitude earthquakes events. In 2001 a catastrophic seismic event occurred at Bhuj measuring Mw = 7.7. The epicenters of both the 1956 and 2001 earthquakes were along the Kachchh Mainland Fault (KMF), proximal to the eastern end of the Northern Hill Range (NHR). The latter is a topographic expression of an active fault related fold on the hanging wall, and is controlled by a south dipping blind thrust.The present study deals with the eastern sector of NHR and uses optical dating to reconstruct the chronology of tectonically caused incisions. Along the backlimb of the NHR, incision ages on, channel fills and valley fill terraces progressively decrease from  12 ka to 4.3 ka. This age progression along with geomorphic evidences (decrease in topographic relief, drainage capture and drainage migration across the fold nose) suggests an active vertical and lateral fold growth along the KMF. Optical ages suggest that during the Late Holocene, the average uplift rate along the eastern NHR was 10 ± 1 mm/a. Recent GPS based estimates on crustal shortening are  12 mm/a.The KMF and the South Wagad Fault (SWF) represent the bounding faults of a transtensional basin that formed during the initial rifting. This basin is termed as the Samakhiali basin. The compressive stresses on account of structural inversion from normal to reverse phase resulted in lobate-shaped anticlines along KMF and SWF zone. These anticlines subsequently coalesced and formed linked and overlap segments. The present study suggests that eastward lateral deformation across the eastern portion of KMF has continued and has now resulted in its interaction with a left step over transfer fault called the South Wagad Master Fault (SWMF). This implies an increasing transpersional deformation of the Samakhiali basin. We therefore, suggest that the eastward NHR ridge propagation along KMF resulted in the thrust faulting on the south dipping SWMF resulting in the Bhuj 2001 event. The increasing strain on this basin may cause enhanced seismicity in the future along the eastern KMF and Wagad region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号