首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To ensure reliable ambiguity resolution, ambiguity validation is an indispensable step. It has been a challenge for many years and is far from being resolved. Over the past years, various ambiguity validation methods have been proposed, such as F-ratio test, R-ratio test, difference test, projector test, ellipsoidal integer aperture (EIA) estimator and penalized integer aperture (PIA) estimator. In this paper, through analysis and testing, we find that, when the aperture region of EIA is not allowed to be overlapped, the efficiency of ambiguity resolution with EIA is low and it is not applicable to fast static positioning or real-time kinematic (RTK) applications. Then EIA with overlapped aperture regions is recommended and the resulted fail-rate becomes upper bound of the actual one. After that, it is suggested that combined use of overlapped EIA and R-ratio test can increase the reliability of ambiguity resolution. Finally, numerical tests are carried out based on practical buoy data and simulated Galileo data.  相似文献   

2.
 Carrier phase ambiguity resolution is the key to fast and high-precision GNSS (Global Navigation Satellite System) kinematic positioning. Critical in the application of ambiguity resolution is the quality of the computed integer ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. Very high success rates are therefore required for ambiguity resolution to be reliable. Biases which are unaccounted for will lower the success rate and thus increase the chance of unsuccessful ambiguity resolution. The performance of integer ambiguity estimation in the presence of such biases is studied. Particular attention is given to integer rounding, integer bootstrapping and integer least squares. Lower and upper bounds, as well as an exact and easy-to-compute formula for the bias-affected success rate, are presented. These results will enable the evaluation of the bias robustness of ambiguity resolution. Received: 28 September 2000 / Accepted: 29 March 2001  相似文献   

3.
基于整周模糊度概率特性的有效性检验   总被引:1,自引:0,他引:1  
张勤  陈永奇 《测绘科学》2003,28(2):16-19
准确确定载波相位整周模糊度是快速高精度GPS定位的关键,已有的检验GPS整周模糊度有效性的方法几乎均是基于其为非随机常量建立的,因而都存在一定的缺陷。本文在研究整周模糊度概率特性的基础上,提出一种基于LABMBAD算法的整周模糊度概率分布函数的检验方法。实际演算表明该方法简单有效,统计概念明确。  相似文献   

4.
Global navigation satellite system (GNSS) ambiguity resolution is the process of resolving the unknown cycle ambiguities of the carrier phase data as integers. The sole purpose of ambiguity resolution is to use the integer ambiguity constraints as a means of improving significantly on the precision of the remaining GNSS model parameters. In this contribution, we consider the problem of ambiguity resolution for GNSS attitude determination. We analyse the performance of a new ambiguity resolution method for GNSS attitude determination. As it will be shown, this method provides a numerically efficient, highly reliable and robust solution of the nonlinearly constrained integer least-squares GNSS compass estimators. The analyses have been done by means of a unique set of extensive experimental tests, using simulated as well as actual GNSS data and using receivers of different manufacturers and type as well as different platforms. The executed field tests cover two static land experiments, one in the Netherlands and one in Australia, and two dynamic experiments, a low-dynamics vessel experiment and high-dynamics aircraft experiment. In our analyses, we focus on stand-alone, unaided, single-frequency, single-epoch attitude determination, as this is the most challenging case of GNSS compass processing.  相似文献   

5.
基于区域参考站网的网络实时动态定位(real-time kinematic,RTK)方法是实现全球定位系统(global positioning system,GPS)、北斗卫星导航系统(BeiDou satellite navigation system,BDS)高精度定位的主要手段.研究了一种长距离GPS/BDS双...  相似文献   

6.
Reliability of partial ambiguity fixing with multiple GNSS constellations   总被引:4,自引:3,他引:1  
Reliable ambiguity resolution (AR) is essential to real-time kinematic (RTK) positioning and its applications, since incorrect ambiguity fixing can lead to largely biased positioning solutions. A partial ambiguity fixing technique is developed to improve the reliability of AR, involving partial ambiguity decorrelation (PAD) and partial ambiguity resolution (PAR). Decorrelation transformation could substantially amplify the biases in the phase measurements. The purpose of PAD is to find the optimum trade-off between decorrelation and worst-case bias amplification. The concept of PAR refers to the case where only a subset of the ambiguities can be fixed correctly to their integers in the integer least squares (ILS) estimation system at high success rates. As a result, RTK solutions can be derived from these integer-fixed phase measurements. This is meaningful provided that the number of reliably resolved phase measurements is sufficiently large for least-square estimation of RTK solutions as well. Considering the GPS constellation alone, partially fixed measurements are often insufficient for positioning. The AR reliability is usually characterised by the AR success rate. In this contribution, an AR validation decision matrix is firstly introduced to understand the impact of success rate. Moreover the AR risk probability is included into a more complete evaluation of the AR reliability. We use 16 ambiguity variance–covariance matrices with different levels of success rate to analyse the relation between success rate and AR risk probability. Next, the paper examines during the PAD process, how a bias in one measurement is propagated and amplified onto many others, leading to more than one wrong integer and to affect the success probability. Furthermore, the paper proposes a partial ambiguity fixing procedure with a predefined success rate criterion and ratio test in the ambiguity validation process. In this paper, the Galileo constellation data is tested with simulated observations. Numerical results from our experiment clearly demonstrate that only when the computed success rate is very high, the AR validation can provide decisions about the correctness of AR which are close to real world, with both low AR risk and false alarm probabilities. The results also indicate that the PAR procedure can automatically chose adequate number of ambiguities to fix at given high-success rate from the multiple constellations instead of fixing all the ambiguities. This is a benefit that multiple GNSS constellations can offer.  相似文献   

7.
Penalized GNSS Ambiguity Resolution   总被引:1,自引:1,他引:1  
Global Navigation Satellite System (GNSS) carrier phase ambiguity resolution is the process of resolving the carrier phase ambiguities as integers. It is the key to fast and high precision GNSS positioning and it applies to a great variety of GNSS models which are currently in use in navigation, surveying, geodesy and geophysics. A new principle of carrier phase ambiguity resolution is introduced. The idea is to give the user the possibility to assign penalties to the possible outcomes of the ambiguity resolution process: a high penalty for an incorrect integer outcome, a low penalty for a correct integer outcome and a medium penalty for the real valued float solution. As a result of the penalty assignment, each ambiguity resolution process has its own overall penalty. Using this penalty as the objective function which needs to be minimized, it is shown which ambiguity mapping has the smallest possible penalty. The theory presented is formulated using the class of integer aperture estimators as a framework. This class of estimators was introduced elsewhere as a larger class than the class of integer estimators. Integer aperture estimators, being of a hybrid nature, can have integer outcomes as well as non-integer outcomes. The minimal penalty ambiguity estimator is an example of an integer aperture estimator. The computational steps involved for determining the outcome of the minimal penalty estimator are given. The additional complexity in comparison with current practice is minor, since the optimal integer estimator still plays a major role in the solution of the minimal penalty ambiguity estimator.  相似文献   

8.
GPS Single-epoch Real-Time Kinematic positioning is immune to cycle slips and can be immediately re-initialized after loss-of-lock, providing high availability. This technique requires reliable ambiguity resolution: incorrect ambiguities can cause position errors of several meters, and failed ambiguity resolution reduces availability. However, a bias or inaccuracy in a single phase observation can prevent successful resolution of the whole set of ambiguities. Partial ambiguity resolution allows a subset of ambiguities to be resolved with greater probability of success than the full set. A new algorithm for resolving a subset of ambiguities with validation from previous epochs is described. If normal ambiguity resolution fails, all ambiguity subsets are generated and ordered with the best subsets first. Each subset is then resolved in turn. Fixed subsets are validated against values from previous epochs; this validation procedure greatly reduces the proportion of epochs with incorrect ambiguities. An additional algorithm is described that uses the fixed ambiguities as precise ranges to resolve the remaining unfixed ambiguities. In order to test these new algorithms, GPS data were collected from static and ship-based GPS receivers around Harwich harbor and processed from reference stations at distances up to 111 km. In the static tests the distance over which a 90% ambiguity resolution success rate for dual-frequency data was achieved was increased from 15 to 76 km. However, in some cases, the processing time was too long for this algorithm to be practical without a time-based cut-off. There is also a risk of incorrect ambiguities being propagated, particularly for single-frequency processing. In a ship-based test, the distance over which sufficient availability to support harbor navigation was achieved using single-epoch dual-frequency RTK was increased from 1 to 66 km.  相似文献   

9.
冯威  黄丁发  张熙 《测绘学报》2012,41(4):0-590
根据GNSS不同频率间整周模糊度的约束关系,提出一种基于多频整周模糊度间关系约束的模糊度新算法(dual-frequency integer relationship constrained ambiguity resolution,FirCAR)。FirCAR可快速动态解算出高高度角卫星的整周模糊度,将已经固定的整周模糊度视为高精度的伪距观测值应用到下一步的浮点解重算中。结合模糊度搜索算法,如LAMBDA,在模糊度搜索方面的高效性,根据重算后的浮点解进一步解算其他未固定的模糊度解。模糊度固定成功后,即可实现OTF(on the fly)快速定位。实测数据表明,FirCAR算法在静态和动态观测条件下,模糊度初始化所用的平均观测历元数分别为1.04和1.10。与常规的模糊度搜索算法的对比试验表明,结合FirCAR算法模糊度固定所用的观测历元数分别减少了39%和18%。  相似文献   

10.
基于格论的GNSS模糊度解算   总被引:1,自引:1,他引:0  
快速、准确地解算整周模糊度是实现GNSS载波相位实时高精度定位的关键,由于模糊度之间的强相关,基于整数最小二乘估计准则时,需要较长的时间才能搜索出最优的整周模糊度向量。为了提高模糊度的搜索效率,本文在扼要介绍格论的理论框架基础上,引入基于格论的模糊度解算方法,通过格基规约来降低模糊度之间的相关性,从而快速搜索出最优的整数模糊度向量。与此同时,将GNSS领域的主要降相关方法统一到格论框架下,探讨了并建议采用Bootstrapping成功率作为格基规约的性能指标之一。最后实验分析了三频多系统长基线相对定位情况下,不同格基规约可获得的性能。  相似文献   

11.
In order to achieve a precise positioning solution from GPS, the carrier-phase measurements with correctly resolved integer ambiguities must be used. Based on the integration of GPS with pseudolites and Inertial Navigation Systems (INS), this paper proposes an effective procedure for single-frequency carrier-phase integer ambiguity resolution. With the inclusion of pseudolites and INS measurements, the proposed procedure can speed up the ambiguity resolution process and increase the reliability of the resolved ambiguities. In addition, a recently developed ambiguity validation test, and a stochastic modelling scheme (based on-line covariance matrix estimation) are adapted to enhance the quality of ambiguity resolution. The results of simulation studies and field experiments indicate that the proposed procedure indeed improves the performance of single-frequency ambiguity resolution in terms of both reliability and time-to-fix-ambiguity.  相似文献   

12.
Han  Houzeng  Wang  Jian  Wang  Jinling  Moraleda  Alberto Hernandez 《GPS Solutions》2017,21(1):251-264
GPS Solutions - Correctly fixing carrier phase integer ambiguities is a prerequisite to achieve high-precision positioning solutions from global navigation satellite system (GNSS). However, for the...  相似文献   

13.
GNSS algebraic structures   总被引:4,自引:3,他引:1  
The first objective of this paper is to show that some basic concepts used in global navigation satellite systems (GNSS) are similar to those introduced in Fourier synthesis for handling some phase calibration problems. In experimental astronomy, the latter are at the heart of what is called ‘phase closure imaging.’ In both cases, the analysis of the related structures appeals to the algebraic graph theory and the algebraic number theory. For example, the estimable functions of carrier-phase ambiguities, which were introduced in GNSS to correct some rank defects of the undifferenced equations, prove to be ‘closure-phase ambiguities:’ the so-called ‘closure-delay’ (CD) ambiguities. The notion of closure delay thus generalizes that of double difference (DD). The other estimable functional variables involved in the phase and code undifferenced equations are the receiver and satellite pseudo-clock biases. A related application, which corresponds to the second objective of this paper, concerns the definition of the clock information to be broadcasted to the network users for their precise point positioning (PPP). It is shown that this positioning can be achieved by simply having access to the satellite pseudo-clock biases. For simplicity, the study is restricted to relatively small networks. Concerning the phase for example, these biases then include five components: a frequency-dependent satellite-clock error, a tropospheric satellite delay, an ionospheric satellite delay, an initial satellite phase, and an integer satellite ambiguity. The form of the PPP equations to be solved by the network user is then similar to that of the traditional PPP equations. As soon as the CD ambiguities are fixed and validated, an operation which can be performed in real time via appropriate decorrelation techniques, estimates of these float biases can be immediately obtained. No other ambiguity is to be fixed. The satellite pseudo-clock biases can thus be obtained in real time. This is not the case for the satellite-clock biases. The third objective of this paper is to make the link between the CD approach and the GNSS methods based on the notion of double difference. In particular, it is shown that the information provided by a maximum set of independent DDs may not reach that of a complete set of CDs. The corresponding defect is analyzed. One of the main results of the corresponding analysis concerns the DD–CD relationship. In particular, it is shown that the DD ambiguities, once they have been fixed and validated, can be used as input data in the ‘undifferenced CD equations.’ The corresponding algebraic operations are described. The satellite pseudo-clock biases can therefore be also obtained via particular methods in which the notion of double differencing is involved.  相似文献   

14.
An optimality property of the integer least-squares estimator   总被引:36,自引:15,他引:21  
A probabilistic justification is given for using the integer least-squares (LS) estimator. The class of admissible integer estimators is introduced and classical adjustment theory is extended by proving that the integer LS estimator is best in the sense of maximizing the probability of correct integer estimation. For global positioning system ambiguity resolution, this implies that the success rate of any other integer estimator of the carrier phase ambiguities will be smaller than or at the most equal to the ambiguity success rate of the integer LS estimator. The success rates of any one of these estimators may therefore be used to provide lower bounds for the LS success rate. This is particularly useful in case of the bootstrapped estimator. Received: 11 January 1999 / Accepted: 9 July 1999  相似文献   

15.
On the probability density function of the GNSS ambiguity residuals   总被引:1,自引:0,他引:1  
Integer GNSS ambiguity resolution involves estimation and validation of the unknown integer carrier phase ambiguities. A problem then is that the classical theory of linear estimation does not apply to the integer GPS model, and hence rigorous validation is not possible when use is made of the classical results. As with the classical theory, a first step for being able to validate the integer GPS model is to make use of the residuals and their probabilistic properties. The residuals quantify the inconsistency between data and model, while their probabilistic properties can be used to measure the significance of the inconsistency. Existing validation methods are often based on incorrect assumptions with respect to the probabilistic properties of the parameters involved. In this contribution we will present and evaluate the joint probability density function (PDF) of the multivariate integer GPS carrier phase ambiguity residuals. The residuals and their properties depend on the integer estimation principle used. Since it is known that the integer least-squares estimator is the optimal choice from the class of admissible integer estimators, we will only focus on the PDF of the ambiguity residuals for this estimator. Unfortunately the PDF cannot be evaluated exactly. It will therefore be shown how to obtain a good approximation. The evaluation will be completed by some examples.  相似文献   

16.
An enhanced strategy for GNSS data processing of massive networks   总被引:2,自引:1,他引:1  
Although the computational burden of global navigation satellite systems (GNSS) data processing is nowadays already a big challenge, especially for huge networks, integrated processing of denser networks with data of multi-GNSS and multi-frequency is desired in the expectation of more accurate and reliable products. Based on the concept of carrier range, in this study, the precise point positioning with integer ambiguity resolution is engaged to obtain the integer ambiguities for converting carrier phases to carrier ranges. With such carrier ranges and pseudo-ranges, rigorous integrated processing is realized computational efficiently for the orbit and clock estimation using massive networks. The strategy is validated in terms of computational efficiency and product quality using data of the IGS network with about 460 stations. The experimental validation shows that the computation time of the new strategy increases gradually with the number of stations. It takes about 14 min for precise orbit and clock determination with 460 stations, while the current strategy needs about 82 min. The overlapping orbit RMS is reduced from 27.6 mm with 100 stations to 24.8 mm using the proposed strategy, and the RMS could be further reduced to 23.2 mm by including all 460 stations. Therefore, the new strategy could be applied to massive networks of multi-GNSS and multi-frequency receivers and possibly to achieve GNSS data products of higher quality.  相似文献   

17.
GNSS ambiguity resolution is the key issue in the high-precision relative geodetic positioning and navigation applications. It is a problem of integer programming plus integer quality evaluation. Different integer search estimation methods have been proposed for the integer solution of ambiguity resolution. Slow rate of convergence is the main obstacle to the existing methods where tens of ambiguities are involved. Herein, integer search estimation for the GNSS ambiguity resolution based on the lattice theory is proposed. It is mathematically shown that the closest lattice point problem is the same as the integer least-squares (ILS) estimation problem and that the lattice reduction speeds up searching process. We have implemented three integer search strategies: Agrell, Eriksson, Vardy, Zeger (AEVZ), modification of Schnorr–Euchner enumeration (M-SE) and modification of Viterbo-Boutros enumeration (M-VB). The methods have been numerically implemented in several simulated examples under different scenarios and over 100 independent runs. The decorrelation process (or unimodular transformations) has been first used to transform the original ILS problem to a new one in all simulations. We have then applied different search algorithms to the transformed ILS problem. The numerical simulations have shown that AEVZ, M-SE, and M-VB are about 320, 120 and 50 times faster than LAMBDA, respectively, for a search space of dimension 40. This number could change to about 350, 160 and 60 for dimension 45. The AEVZ is shown to be faster than MLAMBDA by a factor of 5. Similar conclusions could be made using the application of the proposed algorithms to the real GPS data.  相似文献   

18.
It has been discovered that (a) the variance of all entries of the ambiguity vector transformed by a (inverse) paired Cholesky integer transformation is reduced relative to that of the corresponding entries of the original ambiguity vector; (b) the higher the dimension of the ambiguity vector, the more significantly the transformed variance will be decreased. The property of variance reduction is explained theoretically in detail. In order to better measure the property of variance reduction, an efficiency factor on variance reduction of ambiguities is defined. Since the (inverse) paired Cholesky integer transformation is generally performed many times for the GNSS high-dimensional ambiguity vector, the computation formula of the efficiency factor on the multi-time (inverse) paired Cholesky integer transformation is deduced. The computation results in the example show that (a) the (inverse) paired Cholesky integer transformation has a very good property of variance reduction, especially for the GNSS high-dimensional ambiguity vector; (b) this property of variance reduction can obviously improve the success rate of the transformed ambiguity vector.  相似文献   

19.
一种无须变换参考星的GNSS单基线卡尔曼滤波算法   总被引:1,自引:0,他引:1  
处理单基线全球导航卫星系统观测数据可获取位置、时间、大气延迟等信息,其应用包括相对定位、时频传递等。为实现实时性,常采用卡尔曼滤波递归地估计各类参数;为确保可靠性,还需形成一组独立的双差模糊度,并将其正确地固定为整数。实践中,滤波函数模型较常采用双差观测方程(即双差滤波模型)。若在当前历元原先的参考星不再可视时,双差滤波模型则需要定义新的参考星,并"映射"双差模糊度预报值以确保滤波连续。此外,双差滤波模型所计算的接收机相位钟差估值吸收了对应于参考星的站间单差模糊度,因此当参考星变换后可能会发生"整周跳跃"。在仍将双差模糊度作为一类可估参数的前提下,本文推导出以站间单差观测方程为滤波函数模型的算法(单差滤波模型),并证明了其与双差滤波模型具备理论上的等价性和实施上的差异性。与双差滤波模型相比,单差滤波模型不再需要"映射"双差模糊度预报值等运算,从而具备了更高的计算效率和灵活性;单差滤波模型所提供的接收机相位钟差估值也不受"整周跳跃"的影响,因此特别有利于频率传递应用。  相似文献   

20.
模糊度整周解检验是评价模糊度解算正确性的关键,决定着最终定位结果的可靠性。对原有的假设检验存在的缺陷和不足进行了分析,提出了一种更可靠的比值(Ratio)检验方法。理论分析和数值试验结果都显示改进的检验方法更能正确评价模糊度整数解解算的正确性。该新检验方法,又提出了一种最终模糊度整数解确定的新方法即模糊度候选值再分析法。实验表明:应用该方法能提高模糊度整数解确定的成功率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号