首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In October 2002, 15 continuous days of Very Long Baseline Interferometry (VLBI) data were observed in the Continuous VLBI 2002 (CONT02) campaign. All eight radio telescopes involved in CONT02 were co-located with at least one other space-geodetic technique, and three of them also with a Water Vapor Radiometer (WVR). The goal of this paper is to compare the tropospheric zenith delays observed during CONT02 by VLBI, Global Positioning System (GPS), Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and WVR and to compare them also with operational pressure level data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the tropospheric zenith delays from VLBI and GPS are in good agreement at the 3–7 mm level. However, while only small biases can be found for most of the stations, at Kokee Park (Hawaii, USA) and Westford (Massachusetts, USA) the zenith delays derived by GPS are larger by more than 5 mm than those from VLBI. At three of the four DORIS stations, there is also a fairly good agreement with GPS and VLBI (about 10 mm), but at Kokee Park the agreement is only at about 30 mm standard deviation, probably due to the much older installation and type of DORIS equipment. This comparison also allows testing of different DORIS analysis strategies with respect to their real impact on the precision of the derived tropospheric parameters. Ground truth information about the zenith delays can also be obtained from the ECMWF numerical weather model and at three sites using WVR measurements, allowing for comparisons with results from the space-geodetic techniques. While there is a good agreement (with some problems mentioned above about DORIS) among the space-geodetic techniques, the comparison with WVR and ECMWF is at a lower accuracy level. The complete CONT02 data set is sufficient to derive a good estimate of the actual precision and accuracy of each geodetic technique for applications in meteorology.  相似文献   

2.
GPS数据解算对流层天顶总延迟探讨   总被引:1,自引:0,他引:1  
运用GAMIT/GLOBK软件,对南极长城站与周边的各IGS跟踪站的GPS观测数据进行组网解算。在解算各站上空总天顶延迟的过程中,利用不同的星历进行解算,并对其解算结果进行了分析和探讨得出:实时预报。星历与精密星历在解算结果上差别不大,最小差值是0mm,最大差值仅为0.5mm。所以在计算各GPS站上空大气水汽含量时,可直接采用实时预报星历,对今后实时探测水汽及实时天气预报具有一定的实用意义。  相似文献   

3.
A grid-based tropospheric product for China using a GNSS network   总被引:1,自引:0,他引:1  
Tropospheric delay accounts for one source of error in global navigation satellite systems (GNSS). To better characterize the tropospheric delays in the temporal and spatial domain and facilitate the safety-critical use of GNSS across China, a method is proposed to generate a grid-based tropospheric product (GTP) using the GNSS network with an empirical tropospheric model, known as IGGtrop. The prototype system generates the GTPs in post-processing and real-time modes and is based on the undifferenced and uncombined precise point positioning (UU-PPP) technique. GTPs are constructed for a grid form (\(2.0{^{\circ }}\times 2.5{^{\circ }}\) latitude–longitude) over China with a time resolution of 5 min. The real-time GTP messages are encoded in a self-defined RTCM3 format and broadcast to users using NTRIP (networked transport of RTCM via internet protocol), which enables efficient and safe transmission to real-time users. Our approach for GTP generation consists of three sequential steps. In the first step, GNSS-derived zenith tropospheric delays (ZTDs) for a network of GNSS stations are estimated using UU-PPP. In the second step, vertical adjustments for the GNSS-derived ZTDs are applied to address the height differences between the GNSS stations and grid points. The ZTD height corrections are provided by the IGGtrop model. Finally, an inverse distance weighting method is used to interpolate the GNSS-derived ZTDs from the surrounding GNSS stations to the location of the grid point. A total of 210 global positioning system (GPS) stations from the crustal movement observation network of China are used to generate the GTPs in both post-processing and real-time modes. The accuracies of the GTPs are assessed against with ERA-Interim-derived ZTDs and the GPS-derived ZTDs at 12 test GPS stations, respectively. The results show that the post-processing and real-time GTPs can provide the ZTDs with accuracies of 1.4 and 1.8 cm, respectively. We also apply the GTPs in real-time kinematic GPS PPP, and the results show that the convergence time of the PPP solutions is shortened. These results confirm that the GTPs can act as an efficient information source to augment GNSS positioning over China.  相似文献   

4.
Troposphere-induced errors in GPS-derived geodetic time series, namely, height and zenith total delays (ZTDs), over Japan are quantitatively evaluated through the analyses of simulated GPS data using realistic cumulative tropospheric delays and observed GPS data. The numerical simulations show that the use of a priori zenith hydrostatic delays (ZHDs) derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical weather model data and gridded Vienna mapping function 1 (gridded VMF1) results in smaller spurious annual height errors and height repeatabilities (0.45 and 2.55 mm on average, respectively) as compared to those derived from the global pressure and temperature (GPT) model and global mapping function (GMF) (1.08 and 3.22 mm on average, respectively). On the other hand, the use of a priori ZHDs derived from the GPT and GMF would be sufficient for applications involving ZTDs, given the current discrepancies between GPS-derived ZTDs and those derived from numerical weather models. The numerical simulations reveal that the use of mapping functions constructed with fine-scale numerical weather models will potentially improve height repeatabilities as compared to the gridded VMF1 (2.09 mm against 2.55 mm on average). However, they do not presently outperform the gridded VMF1 with the observed GPS data (6.52 mm against 6.50 mm on average). Finally, the commonly observed colored components in GPS-derived height time series are not primarily the result of troposphere-induced errors, since they become white in numerical simulations with the proper choice of a priori ZHDs and mapping functions.  相似文献   

5.
The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.  相似文献   

6.
A single-frequency single-site GPS/Galileo algorithm for retrieval of absolute total electron content is implemented. A single-layer approximation of the ionosphere is used for data modeling. In addition to a standard mapping function, the NeQuick model (version 2) of the ionosphere is now applied to derive improved mapping functions. This model is very attractive for this purpose, because it implements a ray tracer. We compare the new algorithm with the old one using an effective global height of the ionosphere of 450 km. Combined IGS IONEX gridded data sets serve as reference data. On global average, we find a small improvement of 1 % in precision (standard deviation) of the NeQuick2 mapping method versus the conventional approach on global average. A site-by-site comparison indicates an improvement in the precision for 34 % of the 44 sites under investigation. The level of improvement for these stations is 0.5 TECU on average. No improvement was observed for 41 % of the sites. Further comparisons of the single (code ranges and carrier phases) versus dual-frequency (carrier phases only) single site algorithm show that dual-frequency VTEC estimation is more accurate for the majority of the stations, but only in the range of 0.3 TECU (2.6 %) in average.  相似文献   

7.
针对现有对流层天顶延迟模型改正法因水汽参数难以精确获取所导致的时空分辨率与精度上的不足问题,提出了一种融合WRF(weather research and forecasting model)大气数值模式的对流层天顶延迟估计方法。通过分析WRF模式的数值模拟机理及其数据结构特征,采用直接积分与模型改正相结合的混合计算方式,实现了全球任意位置上小时级的对流层天顶延迟估计。验证结果表明,该方法计算的小时级ZTD再分析值精度为13.6mm,日均值精度更是可达9.3mm,比传统模型UNB3m的49.6mm以及目前标称精度最高模型GPT2w的34.6mm,精度分别提高了约5倍和3.5倍。在30h的预报时段内,预报值精度也可达22mm。无论是ZTD再分析值还是预报值比现有模型的估计值精度均有明显提高。  相似文献   

8.
During past decades, precise point positioning (PPP) has been proven to be a well-known positioning technique for centimeter or decimeter level accuracy. However, it needs long convergence time to get high-accuracy positioning, which limits the prospects of PPP, especially in real-time applications. It is expected that the PPP convergence time can be reduced by introducing high-quality external information, such as ionospheric or tropospheric corrections. In this study, several methods for tropospheric wet delays modeling over wide areas are investigated. A new, improved model is developed, applicable in real-time applications in China. Based on the GPT2w model, a modified parameter of zenith wet delay exponential decay wrt. height is introduced in the modeling of the real-time tropospheric delay. The accuracy of this tropospheric model and GPT2w model in different seasons is evaluated with cross-validation, the root mean square of the zenith troposphere delay (ZTD) is 1.2 and 3.6 cm on average, respectively. On the other hand, this new model proves to be better than the tropospheric modeling based on water-vapor scale height; it can accurately express tropospheric delays up to 10 km altitude, which potentially has benefits in many real-time applications. With the high-accuracy ZTD model, the augmented PPP convergence performance for BeiDou navigation satellite system (BDS) and GPS is evaluated. It shows that the contribution of the high-quality ZTD model on PPP convergence performance has relation with the constellation geometry. As BDS constellation geometry is poorer than GPS, the improvement for BDS PPP is more significant than that for GPS PPP. Compared with standard real-time PPP, the convergence time is reduced by 2–7 and 20–50% for the augmented BDS PPP, while GPS PPP only improves about 6 and 18% (on average), in horizontal and vertical directions, respectively. When GPS and BDS are combined, the geometry is greatly improved, which is good enough to get a reliable PPP solution, the augmentation PPP improves insignificantly comparing with standard PPP.  相似文献   

9.
The revitalized Russian GLONASS system provides new potential for real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV) in order to support time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a method of real-time ZTD/PWV retrieval based on GLONASS and/or GPS observations. The performance of ZTD and PWV derived from GLONASS data using real-time precise point positioning (PPP) technique is carefully investigated and evaluated. The potential of combining GLONASS and GPS data for ZTD/PWV retrieving is assessed as well. The GLONASS and GPS observations of about half a year for 80 globally distributed stations from the IGS (International GNSS Service) network are processed. The results show that the real-time GLONASS ZTD series agree quite well with the GPS ZTD series in general: the RMS of ZTD differences is about 8 mm (about 1.2 mm in PWV). Furthermore, for an inter-technique validation, the real-time ZTD estimated from GLONASS-only, GPS-only, and the GPS/GLONASS combined solutions are compared with those derived from very long baseline interferometry (VLBI) at colocated GNSS/VLBI stations. The comparison shows that GLONASS can contribute to real-time meteorological applications, with almost the same accuracy as GPS. More accurate and reliable water vapor values, about 1.5–2.3 mm in PWV, can be achieved when GLONASS observations are combined with the GPS ones in the real-time PPP data processing. The comparison with radiosonde data further confirms the performance of GLONASS-derived real-time PWV and the benefit of adding GLONASS to stand-alone GPS processing.  相似文献   

10.
Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China   总被引:4,自引:0,他引:4  
The accuracy and feasibility of computing the zenith tropospheric delays (ZTDs) from data of the European Center for Medium-Range Weather Forecasts (ECMWF) and the United States National Centers for Environmental Prediction (NCEP) are studied. The ZTDs are calculated from ECMWF/NCEP pressure-level data by integration and from the surface data with the Saastamoinen model method and then compared with the solutions measured from 28 global positioning system (GPS) stations of the Crustal Movement Observation Network of China (CMONOC) for 1 year. The results are as follows: (1) the error of the integration method is 1–3 cm less than that of the Saastamoinen model method. The agreement between the ECMWF ZTD and GPS ZTD is better than that between NCEP ZTD and GPS ZTD; (2) the bias and root mean square difference (RMSD), especially the latter, have a seasonal variation, and the RMSD decreases with increasing altitude while the variation with latitude is not obvious; and (3) when using the full horizontal resolution of 0.5° × 0.5° of the ECMWF meteorological data in place of a reduced 2.5° × 2.5° grid, the mean RMSD between GPS and ECMWF ZTD decreases by 4.5 mm. These results illuminated the accuracy and feasibility of computing the tropospheric delays and establishing the ZTD prediction model over China for navigation and positioning with ECMWF and NCEP data.  相似文献   

11.
对流层延迟是卫星导航定位的主要误差源,GNSS广域增强需要高精度的对流层延迟产品进行误差修正。对流层延迟可通过GNSS进行实时估计,也可通过融合多源数据的数值气象预报模型获取。IGS发布的全球对流层天顶延迟产品由GNSS解算,其精度可达4mm,时间分辨率为5min,但其分布不均匀,在广袤的海洋区域无数据覆盖。GGOS Atmosphere基于ECMWF 40年再分析资料,可提供1979年以来时间分辨率为6h、空间分辨率为2.5°×2°的全球天顶对流层总延迟格网数据。本文通过2015年全球IGS测站的ZTD资料对GGOS的ZTD产品进行了评估,研究了GGOS Atmosphere对流层延迟产品与IGS发布ZTD资料之间的系统差,通过线性拟合估计出每个测站GGOS-ZTD与IGSZTD系统差系数(包括比例误差a和固定误差b),然后对比例误差a、固定误差b进行球谐展开,建立了两种ZTD数据源之间的系统差模型。选取IGS测站和陆态网测站,对附加系统偏差改正后的GGOSZTD产品对PPP的收敛速度的影响进行研究。本文研究结果表明:GGOS-ZTD与IGS-ZTD间存在系统偏差,其bias平均为-0.54cm;两者之间较差的RMS平均为1.31cm,说明GGOS-ZTD产品足以满足广大GNSS导航定位用户对对流层延迟改正的需要。将改正了系统差后的GGOS-ZTD产品用于ALBH、DEAR、ISPA测站、PALM测站、ADIS测站、YNMH测站、WUHN测站进行PPP试验,发现可明显提高定位收敛速度,尤其是在U方向上,收敛速度分别提高10.58%、31.68%、15.96%、43.89%、51.46%、14.69%、18.40%。  相似文献   

12.
基于非差非组合PPP-RTK的大气改正模型及其性能验证   总被引:2,自引:3,他引:2  
伍冠滨  陈俊平  伍晓勐  胡金林 《测绘学报》1957,49(11):1407-1418
高精度的大气改正是加快PPP-RTK收敛的重要前提。本文以区域跟踪网台站数据为基础,基于非差非组合PPP提取斜路径电离层和天顶对流层延迟,作为PPP-RTK大气建模的数据源。电离层延迟采用基于斜路径星间单差的改正模型,对流层采用非差天顶对流层模型,设计了相关的服务端和用户端软件系统。在系统设计上,通过服务端提取数据构建大气模型并播发,用户端接收参数并用于实时PPP-RTK定位。对上海区域进行服务端和用户端的试验,服务端计算的参数表明:GPS、GALILEO、BDS系统的电离层、对流层模型内符合精度为6~7 mm。用户端的646组PPP-RTK伪动态试验表明:水平方向30 s内收敛的占比为89.16%、1 min内收敛的占比为91.80%、2 min内收敛的占比为95.98%;三维方向收敛结果中,上述收敛时间尺度分别占总数的86.22%、88.70%和93.34%。附加大气约束后,模糊度固定率为95.59%,收敛后水平方向和三维方向定位RMSE分别为2.35和4.63 cm。实时动态试验表明,PPP首次固定时间为36 s,水平和三维定位精度分别达到了1.13和3.21 cm。  相似文献   

13.
High accurate global navigation satellite systems (GNSS) require to correct a signal delay caused by the troposphere. The delay can be estimated along with other unknowns or introduced from external models. We assess the impact of the recently developed augmentation tropospheric model on real-time kinematic precise point positioning (PPP). The model is based on numerical weather forecast and thus reflects the actual state of weather conditions. Using the G-Nut/Geb software, we processed GNSS and meteorological data collected during the experiment using a hot-air balloon flying up to an altitude of 2000 m. We studied the impacts of random walk noise setting of zenith total delay (ZTD) on estimated parameters and the mutual correlations, the use of external tropospheric corrections, the use of data from a single or dual GNSS constellation and the use of Kalman filter and backward smoothing processing methods. We observed a significant negative correlation of the estimated rover height and ZTD which depends on constraining ZTD estimates. Such correlation caused a degraded performance of both parameters when estimated simultaneously, in particular for a single GNSS constellation. The impact of ZTD constraining reached up to 50-cm differences in the rover height. Introducing external tropospheric corrections improved the PPP solution regarding: (1) shortened convergence, (2) better overall robustness, particularly, in case of degraded satellite geometry, (3) less adjusted parameters with lower correlations. The numerical weather model-driven PPP resulted in 9–12- and 5–6-cm uncertainties in the rover altitude using the Kalman filter and the backward smoothing, respectively. Compared to standard PPP, it indicates better performance by a factor of 1–2 depending on the availability of GNSS constellations, the troposphere constraining and the processing strategy.  相似文献   

14.
Precise positioning with the current Chinese BeiDou Navigation Satellite System is proven to be of comparable accuracy to the Global Positioning System, which is at centimeter level for the horizontal components and sub-decimeter level for the vertical component. But the BeiDou precise point positioning (PPP) shows its limitation in requiring a relatively long convergence time. In this study, we develop a numerical weather model (NWM) augmented PPP processing algorithm to improve BeiDou precise positioning. Tropospheric delay parameters, i.e., zenith delays, mapping functions, and horizontal delay gradients, derived from short-range forecasts from the Global Forecast System of the National Centers for Environmental Prediction (NCEP) are applied into BeiDou real-time PPP. Observational data from stations that are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiments network are processed, with the introduced NWM-augmented PPP and the standard PPP processing. The accuracy of tropospheric delays derived from NCEP is assessed against with the IGS final tropospheric delay products. The positioning results show that an improvement in convergence time up to 60.0 and 66.7% for the east and vertical components, respectively, can be achieved with the NWM-augmented PPP solution compared to the standard PPP solutions, while only slight improvement in the solution convergence can be found for the north component. A positioning accuracy of 5.7 and 5.9 cm for the east component is achieved with the standard PPP that estimates gradients and the one that estimates no gradients, respectively, in comparison to 3.5 cm of the NWM-augmented PPP, showing an improvement of 38.6 and 40.1%. Compared to the accuracy of 3.7 and 4.1 cm for the north component derived from the two standard PPP solutions, the one of the NWM-augmented PPP solution is improved to 2.0 cm, by about 45.9 and 51.2%. The positioning accuracy for the up component improves from 11.4 and 13.2 cm with the two standard PPP solutions to 8.0 cm with the NWM-augmented PPP solution, an improvement of 29.8 and 39.4%, respectively.  相似文献   

15.
基于单基站的超长基线定位技术在地壳形变监测、高精度授时等领域具有广泛应用,但仍有诸多因素制约着超长基线解算精度。从观测方程出发,利用单差观测值对长(超长)基线(146~1 724 km)解算中的卫星轨道误差、对流层延迟误差、地球潮汐误差和相位缠绕误差等误差特性进行了详细分析。分析结果表明,当基线小于500 km时广播星历误差可忽略不计;超过500 km时需要采用精密星历,同时需要考虑地球潮汐误差的影响;利用参数估计法同时估计基线两端的天顶对流层延迟误差可获得1~2 cm精度;相位缠绕误差对基线小于2 000 km的解算影响可忽略。基于估计天顶对流层延迟的方法解算了5条长(超长)基线(146 km、491 km、837 km、 1 043 km和1 724 km)。实验结果表明,当基线小于500 km时,采用广播星历可获得水平方向优于0.05 m、高程方向优于0.08 m的定位精度;当基线小于2 000 km时,采用超快速精密星历可获得水平方向优于0.025 m、高程方向优于0.055 m的定位精度。解算的初始收敛时间随着基线长度增加而缩短。  相似文献   

16.
A modified mixed-differenced approach for estimating multi-GNSS real-time clock offsets is presented. This approach, as compared to the earlier presented mixed-differenced approach which uses epoch-differenced and undifferenced observations, further adds a satellite-differenced process. The proposed approach, based on real-time orbit products and a mix of epoch-differenced and satellite-differenced observations to estimate only satellite clock offsets and tropospheric zenith wet delays, has fewer estimated parameters than other approaches, and thus its implementing procedure is efficient and can be performed and extended easily. To obtain high accuracy, the approach involves three steps. First, the high-accuracy tropospheric zenith wet delay of each station is estimated using mixed-differenced carrier phase observations. Second, satellite clock offset changes between adjacent epochs are estimated using also mixed-differenced carrier phase observations. Third, the satellite clock offsets at the initial epoch are estimated using satellite-differenced pseudorange observations. Finally, the initial epoch clock results and clock offset changes are concatenated to obtain the clock results of the current epoch. To validate the real-time satellite clock results, multi-GNSS post-processing clock products from IGS ACs were selected for comparison. From the comparison, the standard deviations of the GPS, GLONASS, BeiDou and Galileo systems clock results are approximately 0.1–0.4 ns, except for the BeiDou GEO satellites. The root mean squares are about 0.4–2.3 ns, which are similar to those of other international real-time products. When the clock estimates were assessed based on a pseudo-kinematic PPP procedure, the positioning accuracies in the East, North and Up components reach 5.6, 5.5 and 7.6 cm, respectively, which meet the centimeter level and are comparable to the application of other products.  相似文献   

17.
Three-dimensional ray tracing through a numerical weather model has been applied to a global precise point positioning (PPP) campaign for modeling both the elevation angle- and azimuth-dependence of the tropospheric delay. Rather than applying the ray-traced slant delays directly, the delay has been parameterized in terms of slant factors, which are applied in a similar manner to traditional mapping functions, but which can account for the azimuthal asymmetry of the delay. Five strategies are considered: (1) Vienna Mapping Functions 1 (VMF1) and estimation of a residual zenith delay parameter; (2) VMF1, estimation of a residual zenith delay and estimation of two tropospheric gradient parameters; (3) three-dimensional ray-traced slant factors and estimation of a residual zenith delay; (4) using only ray-traced slant factors and no estimation of any tropospheric parameters and; (5) using both ray-traced slant factors and estimating a residual zenith delay and two tropospheric gradient parameters. The use of the ray-traced slant factors (solution 3) showed a 3.8% improvement in the repeatability of the up component when compared to the assumption of a symmetric atmosphere (solution 1), while the estimation of two tropospheric gradient parameters gave the best results showing an 7.6% improvement over solution 1 in the up component. Solution 4 performed well in the horizontal domain, allowing for sub-centimeter repeatability but the up component was degraded due to deficiencies in the modeling of the zenith delay, particularly for stations located at equatorial latitudes. The magnitude of the differences in the mean coordinates between solution 2 and solution 3, and the strong correlation with the differences between the north component and the ray-traced gradients (coefficient of correlation of 0.83), as well as the impact of observation geometry on the gradient solution indicate that the use of the ray-traced slant factors could have an implication on the realization of reference frames. The estimated tropospheric products from the PPP solutions were compared to those derived from ray tracing. For the zenith delay, a root mean square (RMS) of 5.4 mm was found, while for the gradient terms, a correlation coefficient of 0.46 for the N–S and 0.42 for the E–W was found for the north–south and east–west components, suggesting that there are still important differences in the gradient parameters which could be due to either errors in the NWM or to non-tropospheric error sources leaking into the PPP-estimated gradients.  相似文献   

18.
The Global Positioning System (GPS) observations from the EUREF Permanent Network (EPN) are routinely analyzed by the EPN analysis centers using a tropospheric delay modeling based on standard pressure values, the Niell Mapping Functions (NMF), a cutoff angle of 3° and down-weighting of low elevation observations. We investigate the impact on EPN station heights and Zenith Total Delay (ZTD) estimates when changing to improved models recommended in the updated 2003 International Earth Rotation and Reference Systems Service (IERS) Conventions, which are the Vienna Mapping Functions 1 (VMF1) and zenith hydrostatic delays derived from numerical weather models, or the empirical Global Mapping Functions (GMF) and the empirical Global Pressure and Temperature (GPT) model. A 1-year Global Positioning System (GPS) data set of 50 regionally distributed EPN/IGS (International GNSS Service) stations is processed. The GPS analysis with cutoff elevation angles of 3, 5, and 10° revealed that changing to the new recommended models introduces biases in station heights in the northern part of Europe by 2–3 mm if the cutoff is lower than 5°. However, since large weather changes at synoptic time scales are not accounted for in the empirical models, repeatability of height and ZTD time series are improved with the use of a priori Zenith Hydrostatic Delays (ZHDs) derived from numerical weather models and VMF1. With a cutoff angle of 3°, the repeatability of station heights in the northern part of Europe is improved by 3–4 mm.  相似文献   

19.
Precise positioning requires an accurate a priori troposphere model to enhance the solution quality. Several empirical models are available, but they may not properly characterize the state of troposphere, especially in severe weather conditions. Another possible solution is to use regional troposphere models based on real-time or near-real time measurements. In this study, we present the total refractivity and zenith total delay (ZTD) models based on a numerical weather prediction (NWP) model, Global Navigation Satellite System (GNSS) data and ground-based meteorological observations. We reconstruct the total refractivity profiles over the western part of Switzerland and the total refractivity profiles as well as ZTDs over Poland using the least-squares collocation software COMEDIE (Collocation of Meteorological Data for Interpretation and Estimation of Tropospheric Pathdelays) developed at ETH Zürich. In these two case studies, profiles of the total refractivity and ZTDs are calculated from different data sets. For Switzerland, the data set with the best agreement with the reference radiosonde (RS) measurements is the combination of ground-based meteorological observations and GNSS ZTDs. Introducing the horizontal gradients does not improve the vertical interpolation, and results in slightly larger biases and standard deviations. For Poland, the data set based on meteorological parameters from the NWP Weather Research and Forecasting (WRF) model and from a combination of the NWP model and GNSS ZTDs shows the best agreement with the reference RS data. In terms of ZTD, the combined NWP-GNSS observations and GNSS-only data set exhibit the best accuracy with an average bias (from all stations) of 3.7 mm and average standard deviations of 17.0 mm w.r.t. the reference GNSS stations.  相似文献   

20.
The global navigation satellite system (GNSS) can provide centimeter positioning accuracy at low costs. However, in order to obtain the desired high accuracy, it is necessary to use high-quality atmospheric models. We focus on the troposphere, which is an important topic of research in Brazil where the tropospheric characteristics are unique, both spatially and temporally. There are dry regions, which lie mainly in the central part of the country. However, the most interesting area for the investigation of tropospheric models is the wet region which is located in the Amazon forest. This region substantially affects the variability of humidity over other regions of Brazil. It provides a large quantity of water vapor through the humidity convergence zone, especially for the southeast region. The interconnection and large fluxes of water vapor can generate serious deficiencies in tropospheric modeling. The CPTEC/INPE (Center for Weather Forecasting and Climate Studies/Brazilian Institute for Space Research) has been providing since July 2012 a numerical weather prediction (NWP) model for South America, known as Eta. It has yield excellent results in weather prediction but has not been used in GNSS positioning. This NWP model was evaluated in precise point positioning (PPP) and network-based positioning. Concerning PPP, the best positioning results were obtained for the station SAGA, located in Amazon region. Using the NWP model, the 3D RMS are less than 10 cm for all 24 h of data, whereas the values reach approximately 60 cm for the Hopfield model. For network-based positioning, the best results were obtained mainly when the tropospheric characteristics are critical, in which case an improvement of up to 7.2 % was obtained in 3D RMS using NWP models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号