首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
新疆准噶尔盆地独山子泥火山天然气地球化学特征   总被引:2,自引:0,他引:2  
独山子泥火山位于新疆准噶尔盆地南缘, 地处北天山山前坳陷带的独山子背斜轴部。本文通过分析独山子泥火山喷出天然气组分及其碳同位素研究, 对天然气的来源进行了判识。3个天然气样中δ13C1值均在–41‰左右, C1/(C2+C3)<20, 为热成因气; δ13C(C2-C1)在15‰左右, iC4/nC4和C2/C3值均较高, 说明天然气曾遭受了厌氧微生物降解作用; 其中两个喷口的天然气δ13CCO2值超过+10‰, 说明天然气在受微生物降解后发生CO2还原作用二次生成甲烷, 而另外一个喷口δ13CCO2值无正异常, 未发生CO2还原作用。不同喷口相同成因天然气在储藏或运移过程中发生不同的改造作用, 说明泥火山不同喷口对应不同的天然气运移通道或储藏条件。  相似文献   

2.
塔中奥陶系储层内硫化氢广泛分布,由于其剧毒、易溶于油水中、腐蚀性强,给勘探开发工作带来一定难度。为了弄清奥陶系储层的硫化氢成因及分布规律,在分析现有关储层中H2S来源研究成果的基础上,结合塔中地区奥陶系碳酸盐岩中的矿物组分、H2S及其硫碳同位素分析来探讨其H2S原因。结果表明:三期方解石交代硫酸盐矿物,且硫酸盐未被TSR还原;奥陶系内硫化氢硫同位素普遍比寒武系内硫化氢硫同位素低;奥陶系内硫化氢硫同位素和地层水硫酸根硫同位素具有伴生关系,TSR发生在烃水过渡带;TSR反应物与硫化氢含量无相关关系,并出现了沥青质碳同位素值的负偏;甲烷碳同位素值与硫化氢含量无相关关系,甲烷并未参与TSR。奥陶系与寒武系内硫化氢为不同阶段各自的产物;硫化氢生成时期为奥陶系良里塔格组(O3l)和鹰山组(O1-2y)内TSR发生在晚燕山期-喜山期,寒武系内TSR发生在晚海西期和晚燕山期-喜山期。总体上,奥陶系内硫化氢为原地TSR成因,受控于走滑断裂注入寒武系高矿化度、富镁地层水和油气,以及沿I号断裂运移的贫硫化氢干气稀释作用。  相似文献   

3.
高成熟度条件下,热作用和热化学硫酸盐还原反应(TSR)会强烈影响天然气的化学和同位素组成,这给气藏的气源对比带来很大的困难。考虑到TSR发生的温度与凝析油大量形成的阶段吻合,本研究选择正庚烷和甲苯两种C_7化合物在程序升温条件下开展模拟实验,重点关注轻烃中不同结构烃类的TSR行为差异,以及热作用和TSR对天然气组成的不同影响。实验结果表明:首先,甲苯在高温下可发生强烈TSR反应,地质条件下芳香烃的TSR过程可能不容忽视;其次,TSR反应导致气态烃碳同位素显著变重(480℃以下);最后,从对照组与实验组的甲烷产率与碳同位素差异来看,本研究中甲烷并未直接参与TSR反应,甲烷的化学变化更多的是TSR反应通过影响更高碳数烃类(甲烷前体物)来实现的。这些认识可以为地质条件下评估轻烃的TSR行为提供参考,有助于进一步提高热作用和TSR作用对天然气不同影响的理解。  相似文献   

4.
采用封闭黄金管高压釜体系,在恒温(365℃)、恒压(50 MPa)条件下模拟不同储层介质环境下原油的裂解生气过程。实验结果表明:(1)在模拟实验条件下,水、矿物基质对原油裂解具有促进作用,使得气体产率有所提高,其中气态烃产率大约提高1倍,H2、CO2产率也有所提高;(2)硫酸镁溶液的存在可导致原油热解体系发生明显的硫酸盐热化学还原反应(TSR),产生大量H2S气体,同时烃类气体产率也有大幅提高,气体干燥系数明显增大;气体碳同位素数据表明TSR反应使甲烷、乙烷、丙烷相对富集13C;(3)一定量氯化钠溶液的存在会促进TSR反应,使得气态烃与非烃产率明显提高,同时造成烃类气体碳同位素组成的偏重(富集13C),乙烷的增重尤其明显,最大变化可达4‰。因此,储层介质环境对原油裂解具有显著的影响,在利用气体化学和同位素组成对原油裂解气进行研究时需要考虑储层介质环境可能存在的影响。  相似文献   

5.
硫酸盐热化学还原作用的启动机制研究   总被引:1,自引:0,他引:1  
硫酸盐热化学还原作用(TSR)是导致高含硫化氢天然气生成和聚集、碳酸岩盐储层酸化和溶蚀的重要因素,是地质盆地内烃-水-岩三者之间的复杂反应。本文利用黄金管热模拟实验,对TSR反应的可能启动机制及控制因素进行了研究。通过不同盐溶液与原油的热解实验,证实了硫酸盐的存在是启动TSR反应的必要因素,MgSO4比CaSO4和Na2SO4更容易启动TSR反应,体系中盐度的增加会加速H2S的生成。实验结果表明,不同水介质条件下,TSR反应的程度与溶液的离子强度呈正相关,弱酸性环境并不足以启动TSR反应;原油中不稳定含硫化合物的含量越高越有利于TSR反应的发生,饱和链烷烃比原油中其它组分更容易引发TSR反应,且大分子烷烃比小分子烷烃更容易被硫酸盐氧化。  相似文献   

6.
川东北飞仙关组鲕滩天然气地球化学特征与成因   总被引:29,自引:3,他引:26  
四川盆地东北部下三叠统飞仙关组鲕滩气藏天然气烃类气体以甲烷为主,含量主要分布在75%~90%之间,C2 含量很少,为0%~0.15%,干燥系数为0.997 0~0.999 8,是典型的干气;非烃气体以H2S和CO2为主,含量分别为4.21%~16.24%和0.97%~10.41%.天然气δ13C1值为-29.0‰~-31.5‰,δ13C2值为-29.4‰~-32.4‰.多参数表明鲕滩气藏天然气是以腐泥型为主的高过成熟天然气.高含H2S的天然气分布区域与含石膏地层分布基本一致,这些H2S为飞仙关组气藏附近的石膏经热化学硫酸盐还原作用(TSR)而生成,CO2是其主要的副产物.在TSR过程中,C2 重烃气体比甲烷更容易与硫酸盐发生反应,也就是C2 重烃气体的消耗速率大于甲烷,从而导致发生TSR反应的天然气C2 含量低、H2S和CO2含量高.天然气δ13C1值与甲烷含量之间具有很好的负相关关系,而与天然气酸性系数[H2S/(H2S CnH2n 2)]具有正相关关系.根据同位素动力学的分馏效应,随着TSR的进行,烃类分子中的12C损耗速率大于13C,残留下来的烃类分子中则更加富集13C,也就是TSR反应使天然气碳同位素变重.  相似文献   

7.
 长兴灰岩中的原油主要表现为陆源有机质的特征。富含高分子量正烷烃,富含长链无环类异戊二烯烷烃、倍半萜烷和C2。甾烷,五环三萜烷组分中以一种未知结构的C30(X)化合物为主,还检出四种C24四环萜烷。油苗可能主要来源于龙潭组煤层。  相似文献   

8.
川东北飞仙关组甲烷为主的TSR及其同位素分馏作用   总被引:1,自引:1,他引:0  
川东北开江-梁平陆棚东北侧飞仙关组多孔鲕粒白云岩中发生了以甲烷为主的热化学硫酸盐还原作用(TSR),产生高达20%的H2S;而西南侧鲕粒灰岩以低孔、低H2S天然气为特征。东北侧白云岩主要发育白云石粒间溶孔或粒间扩大溶孔,这些溶孔可与方解石(δ13C=-10‰~-19‰)、储层沥青、元素硫、黄铁矿和石英紧密共生,可分布于片状储层沥青与白云石晶体之间,说明白云石溶解作用发生在沥青形成以后。白云石的溶解作用导致现今天然气以无机CO2为主,δ13CCO2主要介于-2‰~+2‰之间。这种溶解作用是在酸性条件下,硬石膏或天青石参与下发生的,可能先产生MgSO4配对离子,而后MgSO4又与甲烷反应产生H2S,净增大了孔隙。研究还发现,普光气田及以东天然气的来源不同于河坝和元坝天然气;对普光气田及以东天然气分析显示,甲烷δ13C值与残余烃含量 之间存在对数相关关系。这表明TSR过程中,甲烷同位素分馏作用遵从封闭体系下瑞利分馏原理。据此计算显示,渡4井约有15%甲烷被氧化了。  相似文献   

9.
四川盆地飞仙关组气藏硫化氢成因及其依据   总被引:2,自引:0,他引:2  
四川盆地东北部下三叠统飞仙关组鲕滩气藏天然气烃类气体以甲烷为主,含量主要分布在75%~90%之间,C2+含量为0~0.15%;非烃气体以H2S和CO2为主,含量分别为5%~20%和1%~10%。已有观点认为H2S为飞仙关组气藏附近的石膏经硫酸盐热化学还原作用(TSR)而成。随着川东北气区大中型高含硫化氢气田的发现,硫化氢成因机理的研究备受关注。应用金管、高压釜和石英管等实验方法模拟了硫化氢气体的生成,同时检测了模拟生成的硫化氢和石膏、硫磺等硫化物的硫同位素。实验结果表明:硫磺与正己烷在较低温度即可生成大量的硫化氢气体,而正己烷与硫酸钙的反应总体上比较困难,且生成的H2S量较少;富含黄铁矿的低成熟泥灰岩模拟生烃过程中可以生成与甲烷相当,甚至超过甲烷含量的硫化氢气体;含硫化合物与烃类反应生成的硫化氢的硫同位素值比原始物质的硫同位素值重。地层中的SO2-4是海相地层中H2S气体形成的最初来源。含硫烃源岩直接生成高硫化氢天然气和储层中单质硫与烃类的反应是川东北飞仙关组天然气中硫化氢形成的主要原因。  相似文献   

10.
TSR(硫酸盐热化学还原反应)是高含硫化氢天然气形成的重要途径,是指烃类在高温条件下将硫酸盐还原生成H2S、CO2等酸性气体的过程。由于硫化氢的剧毒和强腐蚀性,在石油天然气行业的钻井、完井、修井、净化加工以及运输等各个方面的危害一直备受人们的关注,对硫化氢和TSR的评价一直是负面的,在油气勘探中更多是在回避。最近研究发现,TSR作用对石油天然气工业具有重要的积极作用。TSR的发生,首先需要硫酸盐类溶解提供SO42-,储集空间得到初步改善;其次TSR反应形成的硫化氢,溶于水后显示出较强的酸性溶蚀作用,对白云岩储层具有最佳的溶蚀效果。在高温条件和储层中地层水的作用下,硫化氢与白云岩发生较强烈的酸性流体-岩石相互作用(水岩反应),促进了白云岩次生孔洞的发育和高孔高渗优质储集层的形成,使油气储层保存下限增大和深部天然气聚集成藏成为可能。而目前飞仙关组高含硫化氢气藏普遍压力系数小、充满度低,这与TSR及硫化氢对储层溶蚀导致储集空间增容有关。四川盆地油气勘探结果证实,所有高含硫化氢天然气藏均对应了次生孔隙十分发育的优质储层,岩性主要以白云岩为主,储层埋藏深度超过8 000 m时依然发育优质储层。  相似文献   

11.
对四川盆地东部50个天然气样品组分和碳、氢同位素组成分析结果显示,天然气以烃类气体为主,干燥系数高(C1/C1+=0.975~1.0),H2S含量变化较大(H2S=0.00%~16.89%)。利用烷烃气碳、氢同位素组成和判识油型气热演化程度图版,确定四川盆地东部天然气主要为原油裂解气,且热演化程度已处于油气裂解阶段。在四川盆地东部,烷烃气碳、氢同位素组成普遍存在局部倒转现象,即δ13C1δ13C2δ13C3和δD1δD2,这主要与研究区域不同硫酸盐热化学还原作用(TSR)强度有关,因为在该反应过程中不仅会产生大量的CH4,其碳同位素较重,同时,水参与了硫酸盐与烃类的化学还原反应使得水中的H+与烃类中H+发生同位素交换,从而引起TSR生成CH4的氢同位素分馏大于干酪根直接生烃过程造成的氢同位素分馏。异常δ13CCO2值与TSR反应过程中部分碳同位素较轻的CO2与硫酸盐中金属离子(Mg2+、Fe2+、Ca2+等)以碳酸盐的形式沉淀后,导致气藏中残余重碳同位素组成的CO2与酸性气体腐蚀碳酸盐岩储集层形成的CO2相混合有关。  相似文献   

12.
本文通过对纯烃类化合物——正十八烷的动力学模拟实验,阐述了正十八烷裂解过程中气态烃组分及其同位素的演化特征,获得了产自正十八烷的甲烷生成动力学参数。运用动力学参数将模拟实验结果外推到地质条件下,表明由烷烃裂解形成的甲烷主要生成于150~200℃(Easy%Ro介于1.0%~2.0%)的范围,裂解产生的甲烷、乙烷、丙烷的碳同位素分馏效应与Easy%Ro的关系曲线受升温速率的影响,不能直接应用于地质条件。  相似文献   

13.
采用高温模拟技术,对原油样品进行模拟实验,并对其裂解过程中正构烷烃的组成和变化特征进行了地球化学研究。结果表明,原油大量裂解生成气态烃之前,原油中的高分子量正构烷烃已经开始裂解,以C1+5烃类裂解成C6~C14化合物为主。随成熟度的增加,C6~C14化合物进一步转化为C1~C5化合物,并伴随苯系物的产出,最终形成甲烷和裂解沥青。在正构烷烃的裂解过程中,苯及其同系物的丰度呈明显增加趋势,可以作为原油裂解程度的潜在判识标志。此外,利用同样的实验条件对正十六烷进行了对比模拟实验,其产物的组成和变化特征与原油中正构烷烃的基本相同。  相似文献   

14.
甲烷和固态硫酸钙的热化学还原反应模拟实验初步研究   总被引:14,自引:4,他引:14  
碳酸盐岩地层中常伴有硫酸盐岩的沉积,在一定的温度和压力条件下,干酪根热降解生成的气态烃与硫酸盐岩接触后发生热化学还原反应(简称为TSR反应),使气态烃消失,这可能是造成生气死亡线的主要原因之一。本文对CH4-CaSO4热化学还原反应的热力学问题进行了探讨,发现该反应能够自发进行,而且升高温度对反应有利。利用高温高压模拟装置对CH4-CaSO4反应体系进行了初步的模拟实验研究,通过微库仑、气相色谱和傅里叶变换红外光谱(FT-IR)等分析手段对实验结果进行了进一步验证。结果表明,甲烷和固态硫酸钙能够发生热化学还原反应,生成硫化氢、碳酸钙和水。最后,将CH4-CaSO4反应体系同国内外的研究工作进行了对比,认为本实验研究能够更好地补充和完善TSR反应体系,解释地质条件下工业气藏的死亡线问题。  相似文献   

15.
四川盆地H2S的硫同位素组成及其成因探讨   总被引:23,自引:3,他引:20  
四川盆地天然气绝大部分含有硫化氢,部分含量高达15%以上。其中高含硫化氢天然气主要分布在三叠系飞仙关组、雷口坡组和嘉陵江组;震旦系、石炭系、二叠系属于低含硫化氢,上三叠统须家河组和侏罗系属于微含硫化氢或不含硫化氢天然气藏。研究表明,三叠系飞仙关组、雷口坡组和嘉陵江组、震旦系、石炭系储层中发育的膏质岩类为TSR形成硫化氢提供了物质基础;富含有机硫源岩的高温裂解是二叠系低含硫化氢天然气的主要成因。硫同位素组成表明,高含硫化氢天然气的硫同位素比储层硫酸盐硫同位素δ34S亏损7‰~11‰;而低含硫化氢天然气硫同位素分布区间较宽,在0‰~20‰之间,大部分比同期硫酸盐的硫同位素轻15‰左右。四川盆地三叠系膏岩的硫同位素值分布较宽,并呈现阶梯状变化,而硫化氢的硫同位素则呈现出相似的分布规律,表明各气层硫化氢中的硫来自于本层系的硫酸盐,即TSR发生在各自的储集层中;另外四川盆地三叠系TSR发生时各气藏的温度条件相近,即各气藏的硫化氢在大致相同的温度条件下发生;同时也说明TSR过程中硫同位素的分馏过程与硫酸盐本身硫同位素数值的高低无关,而与TSR反应的温度条件和反应程度有关。还建立了运用硫化氢的硫同位素和含量判识硫化氢成因类型的模式。  相似文献   

16.
塔里木盆地中高氮天然气的成因及其与天然气聚集的关系   总被引:18,自引:0,他引:18  
陈世加  赵孟军 《沉积学报》2000,18(4):615-618,623
塔里木盆地塔北和塔中地区的海相腐泥型天然气,N2含量较高,尤其是湿气,N2含量分布在10.1%~36.2%,而干气的N2含量则低于10%,即湿气的N2含量高于干气的N2含量。同是下古生界寒武-奥陶系来源的海相腐泥型天然气,为什么湿气和干气的氮气含量相差如此之大?根据与氮气相伴生的烃类气体、非烃气体及稀有气体的组份及同位素特征,认为塔里木盆地的中高氮天然气属于有机成因,来源于下古生界海相烃源岩。文章还提出塔北和塔中地区湿气和干气N2含量差异与源岩的演化程度和圈闭的捕获条件有关。  相似文献   

17.
塔里木盆地中高氮天然气的成因及其与天然气聚集的关系   总被引:2,自引:0,他引:2  
《沉积学报》2000,18(4)
塔里木盆地塔北和塔中地区的海相腐泥型天然气,N2含量较高,尤其是湿气,N2含量分布在10.1%~36.2%,而干气的N2含量则低于10%,即湿气的N2含量高于干气的N2含量。同是下古生界寒武-奥陶系来源的海相腐泥型天然气,为什么湿气和干气的氮气含量相差如此之大?根据与氮气相伴生的烃类气体、非烃气体及稀有气体的组份及同位素特征,认为塔里木盆地的中高氮天然气属于有机成因,来源于下古生界海相烃源岩。文章还提出塔北和塔中地区湿气和干气N2含量差异与源岩的演化程度和圈闭的捕获条件有关。  相似文献   

18.
本文通过对纯烃类化合物——正十八烷的动力学模拟实验,阐述了正十八烷裂解过程中气态烃组分及其同位素的演化特征,获得了产自正十八烷的甲烷生成动力学参数。运用动力学参数将模拟实验结果外推到地质条件下,表明由烷烃裂解形成的甲烷主要生成于150~200C(Easy%Ro介于1.0%~2.0%)的范围,裂解产生的甲烷、乙烷、丙烷的碳同位素分馏效应与Easy%Ro的关系曲线受升温速率的影响,不能直接应用于地质条件。  相似文献   

19.
综合分析四川盆地高石梯—磨溪地区(高-磨地区)震旦系—寒武系天然气、储层沥青及膏盐分布等,发现高-磨地区天然气发生过不同程度硫酸盐热化学还原作用(TSR)反应。主要基于:①天然气中含一定丰度H_2S,震旦系灯影组H_2S含量为0.6%~3%,寒武系龙王庙组为0.2%~0.8%;其δ~(34)S值普遍较重(21‰~23‰),为TSR反应产物;②储层沥青S/C原子比介于0.06~0.4之间,远远超过有机质裂解生成沥青中S/C比的最高上限(0.034),峰值甚至超过了TSR反应强烈的川东北普光气田飞仙关组储层沥青的比值(0.06~0.12),为TSR过程无机S加入所致;③四川盆地寒武系底部发育膏盐类沉积,为TSR反应提供了SO_4~(2-)和Mg~(2+)等物质,灯影组发育富Ca~(2+)/Mg~(2+)、贫Na~+/K~+型地层水,证明盐、膏类溶解的普遍性。地层水中相对缺乏SO_4~(2-),应为TSR反应消耗所致。TSR反应明显氧化乙烷,导致天然气干燥系数增加、δ~(13)C_2变重;TSR反应程度不同造成了龙王庙组和灯影组天然气特征的差异,龙王庙组TSR反应程度相对较弱,天然气甲乙烷碳同位素明显倒转;而灯影组TSR反应程度相对要强,甲乙烷同位素正序分布。考虑TSR效应,恢复原始组成,高-磨地区寒武系—震旦系天然气应有明显的甲烷、乙烷碳同位素倒转现象,这种倒转跟该盆地及世界高—过成熟页岩气特征高度一致,暗示高-磨地区主力气源可能为源岩晚期所成天然气。这一认识可以很好诠释甲烷δ~(13)C_1值较重、普遍低于储层沥青这一为现在主流认识(高-磨地区主体为原油裂解气)所不好解释的现象。对于重新认识天然气成藏聚集规律具有重要意义。  相似文献   

20.
矿物对原油裂解影响的实验研究   总被引:5,自引:1,他引:4  
在限定体系下(密封金管),对原油、原油+蒙脱石和原油+方解石进行了裂解产气模拟实验。结果表明,原油+蒙脱石裂解的甲烷和总气态烃(C1-C5)产率在大多数实验温度点与纯原油裂解基本相同,只有在高温度点才相对偏高,反映了蒙脱石对原油裂解的催化效应。原油+方解石裂解的甲烷和总气态烃的产率则在大多数实验温度点比纯原油裂解相对偏低,并且在高温度点明显偏低,表明方解石对原油裂解具有抑制作用。纯原油和原油+方解石裂解气态烃产物中异构烷烃和烯烃的相对含量基本相同,而原油+蒙脱石裂解气态烃产物中异构烷烃和烯烃的含量则明显偏高。依据2℃/h和20℃/h两个升温速率甲烷和总气态烃产率,应用美国Lawrence Liverinore国家实验室开发的Kinetics软件模拟了纯原油、原油+蒙脱石和原油+方解石裂解生成甲烷和总气态烃的动力学参数,推算了在地质条件下原油裂解主要阶段的温度范围。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号