首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Tekkehamam geothermal field is located in the South of Menderes Graben (Aegean region) and is one of the most important geothermal sites of Western Anatolia. Umut geothermal field is a part of the Tekkehamam field. This study was conducted in order to determine the origin and hydrogeochemical properties of the geothermal waters. For this purpose, sampling was done in order to check the chemistry of the water, and 18O, 2H isotope analyses done at four wells, nine natural springs and three cold water sources. According to the results of the chemical analysis, the geothermal waters were determined to be of Na + K-SO4 type. Additionally, 14C and 3H analyses were done in selected well and spring waters for the purpose of age determination of groundwater; most of the waters were determined to be submodern. Geothermometer calculations show that the reservoir temperature for the Umut geothermal field ranges between 148 and 180 °C. Stable isotope results indicate that Umut geothermal waters are meteoric in origin. Mixing between shallow and deep waters is the dominant subsurface process that determines the physical and chemical character of the waters.  相似文献   

2.
The objective of this work was to evaluate the influence of the natural degradation of the leachate organic fraction from the Belo Horizonte landfill on groundwater chemical evolution. The work focused on the modifications introduced by redox reactions in the presence of terminal electron acceptors. Twenty-one sampling points distributed along 13 monitoring wells were selected for the analysis of the chemical indicators of interest (TDS, SO 4 ?2 , Fe+2, Ba, pH and Eh). The behaviour of the variables involved in the alteration of the water quality was assessed by the spatial distribution of target parameters, elaboration of redox diagrams and chemical modelling that focused on the determination of mineral saturation indexes. The study showed a trend toward pyrite precipitation, which leads to the removal of chemical species such as divalent iron and sulphur as sulphide from the system. This removal disturbs the chemical equilibrium, typically by moving the reactions to replenish the sulphate concentration present in the groundwater. This process occurs primarily through the dissolution of compounds that have sulphate in their chemical composition, such as barite, suggesting that part of the barium concentration in the subsurface can be of geogenic origin. This study demonstrated the importance of knowing the nature of the geochemical processes in groundwater contaminated by urban solid waste.  相似文献   

3.
Groundwater is a critical resource in Deoria district, as it is the main source of drinking water and irrigation. The aquifer has deteriorated to a high degree, during the last two to three decades, in quality and quantity due to high population growth and environmental pollution. More than 90% of the population get their drinking water from subsurface waters. Fifteen wells were sampled in June 2006 to probe the hydrogeochemical components that influence the water quality. The results show that groundwater have EC, TDS, Na+, Mg2+, HCO3 and TH higher than the WHO, 1997 maximum desirable limits. A hydrogeochemical numerical model for carbonate minerals was constructed using the PHREEQC package. The regression analysis shows that there are three groups of elements which are significantly and positively correlated. The main hydrochemical facies of the aquifer (Ca + Mg–HCO3) represents 33.33% of the total wells. The geochemical modeling demonstrated that the reactions responsible for the hydrochemical evolution in the area fall into three categories: (1) dissolution of salts, (2) precipitation of dolomite, (3) ion exchange. Solubility of dolomite, calcite, aragonite and gypsum were assessed in terms of the saturation index. The thermodynamic prerequisites for dolomite supersaturation reactions are satisfied by subsurface waters, since they are supersaturated with respect to dolomite, undersaturated (or in equilibrium) with respect to calcite, and undersaturated with respect to gypsum. The Ca2+ versus SO42− and Mg2+ versus SO42− trends are also compatible with homologous trends resulting from dolomite supersaturation.  相似文献   

4.
Baozhusi reservoir is a large-scale hydropower engineering project in Sichuan Province, China. After drainage wells were drilled in the dam base, white flocculent and black gel substances, accompanied by a rotten-egg odor, were found in some of the drainage water wells. On the basis of a brief introduction of the geological setting in Baozhusi Dam area, the origin of the abnormal substances were analyzed and discussed through the following procedures: (1) the abnormal substances were sampled and their chemical and mineral compositions were analyzed; (2) the origin of drainage waters were determined using the isotope method and well flux measurement results; (3) characteristics of chemical composition of drainage waters were discussed relative to other kinds of waters in the area; (4) process of formation of the abnormal substances were determined using hydrogeochemical methods; (5) laboratory immersion experiment was carried out to verify the conclusions. Results showed that the abnormal substances were formed by interactions between recharging water from the reservoir and dam base rock as well as dam building materials. Among these, the precipitation of calcite and dolomite, the dissolution of calcium hydroxide and anhydrite as well as the reduction of SO4–2 to H2S by organic matter are the most important processes.  相似文献   

5.
Hydrogeochemical background determined for an investigated environment, defines characteristic range of its hydrochemical characteristics. This allows to observe the temporal changes of the chemical water properties taking place in the studied environments, such as due to human impact. The paper presents the results of study on the present-day hydrogeochemical background in the Lubuskie Lakeland, the region repeatedly covered by the ice sheets during the Pleistocene and little affected by anthropogenic impact. The hydrogeochemical background was established on a basis of physicochemical analyses of spring waters sampled every 3 months between November 2011 and October 2013 from 20 springs. Present-day hydrogeochemical background was assumed to be represented by values ranging between 16 and 84 percentiles. The ranges of hydrogeochemical background for the studied ions on the Lubuskie Lakeland, were in the lower range of the background considered for useful waters in Poland. The obtained results indicated that the studied spring waters were poorly diversified in terms of composition of main cations and anions, as well as electrical conductivity and total water hardness. However, large variability was observed for Fetot, Mn2+ and NO3?. Moreover, NO3? and SO42? were noted in some cases to be in excess of national hydrogeochemical background values.  相似文献   

6.
Hydrochemistry of groundwater is largely determined by both natural processes, such as dissolution, cation exchange, mixing, evaporation; and anthropogenic activities, which can affect the aquifer systems by contaminating them or by modifying their hydrological cycle. Both natural and anthropogenic processes vary in time and space; which is reflected in groundwater hydrochemistry variation. The objective of this study is the determination of the main hydrogeochemical processes that affect the quality of shallow groundwaters in the Grombalia basin, located in the Cap Bon Peninsula, north-eastern Tunisia. In this area, the chemical composition of groundwater is mostly characterized by Na–Cl–NO3–Ca water type which reveals the implication of natural and anthropogenic major factors. Natural factors are dissolution of evaporatic minerals, i.e. halite and gypsum and cation exchange with clays, while anthropogenic factors are pollution with industrial Sr-rich waste water and return flow of irrigation water, highly contaminated by MgSO4 and methyl-bromide fertilizers.  相似文献   

7.
 A hydrogeochemical study of the Salso River highlighted the chemical and isotopic space-time evolution along its flow path and the main contamination processes. Within the basin, three different hydrogeochemical facies have been individuated: (1) Ca-Mg-HCO3, (2) Ca-Mg-SO4 and (3) Na-Cl. The first facies reflects the chemical composition of the groundwaters hosted in the carbonate reliefs that belong to the Madonie Mountains. The second and the third facies are the result of the interaction processes between surface waters and the gypsum and salty clays, respectively. Two pollution sources have been also located in the basin downstream from the salt mine and downstream from a discharge area of wastewater from the town of Gangi. On the basis of the location of natural and anthropogenic pollution sources, the waters available for drinking and irrigation use are also indicated. Received: 16 July 1999 · Accepted: 22 December 1999  相似文献   

8.
Prior to mining, the water in and around the mine is rarely influenced by human activities, and hydrogeochemical processes are the major factors influencing and controlling water chemistry. To identify these natural hydrogeochemical processes in Laoheba phosphorite mine (Sichuan Province, China), correlation and multivariate statistical techniques were used. Results show that water quality in the area is generally good before the Laoheba phosphorite mine goes into construction and production. The cluster analysis classified water samples into 4 clusters (C1–C4). Samples from C1 and C2 are of HCO3?Ca·Mg and HCO3?Ca type, while those from C3 and C4 are of HCO3?Ca·Mg type. Most parameters except Cl? and pH show an increasing trend in the order of C1 to C4. Three principal components were extracted, and PC1 represents the ion exchange and the weathering of calcite, dolomite, and silicate minerals. PC2 and PC3 indicate the process of water recharge from upstream waters and the process of evaporation, respectively. The hydrochemistry of waters in the area is a result of multiple factors, and natural mineral weathering and ion exchange are the most important ones.  相似文献   

9.
The results of hydrogeochemical observations on the Yuzhno-Sakhalinsk mud volcano in 2010–2014 are considered. The chemical analysis of samples of mud–volcanic waters was carried out at various analytical centers, which is similar to the common situation where hydrochemical data for a volcano are obtained by different researchers. It is shown that the chemical composition of the mud–volcanic waters is relatively stable in time and space (for different gryphons of the volcano). This allows us to determine the characteristic range of hydrogeochemical indicators. For each year of observations, the coefficients of variation for the concentrations of Na, Mg, Ca, K, and HCO3 mostly range from 10 to 30%. However, the concentrations analyzed in individual samples may differ significantly from each other. These natural variations are a likely source of errors in the interpretation of hydrochemical data. In addition, it is necessary to account for the specifics of mud–volcanic waters as an object of analytical chemical investigations.  相似文献   

10.
An industrial area contaminated by As was studied to determine the source of this element and its speciation in As-bearing solids and in run-off waters. Mineral precipitates and water samples were collected and analyzed to assess processes controlling As mobility at this site. The integrated study of a contaminated industrial area allowed identification of the source of the As and of the nature of secondary As-bearing phases. The results obtained both on solid and water samples were used to model As behavior during waste leaching on carbonate rocks. At the upper end of a topographic transect across the site, run-off waters (pH=7.9) interact with surficial waste piles (containing arsenolite, arsenopyrite and pyrite), becoming acidic (pH=2.2) and concentrated in dissolved arsenate species (As5+) (ΣAs ranging from 0.961 to 3.149·10−3 mol/l). Those acidic waters interact with the limestone substratum, providing dissolved Ca which reacts with As to precipitate 1:1 Ca arsenates (weilite CaHAsO4, haidingerite CaHAsO4.H2O and pharmacolite CaHAsO4.2H2O) and, in minor amounts, Ca–Mg arsenates (picropharmacolite (Ca,Mg)3(AsO4)2 6H2O). The 1:1 Ca arsenates identified are known to precipitate at low pH (3–6) and seem to be stable in media with high dissolved CO2, in comparison with other types of Ca arsenates. However, due to their high solubilities, they are not strictly relevant candidates to immobilize As in contaminated surficial environments. Although reported solubilities decrease to values close to the French and US drinking standards in Ca-rich solutions, a thorough examination of the precipitation/dissolution kinetics of Ca arsenates should be undertaken to assess their long-term stability and their efficiency in rapidly immobilizing As in contaminated surficial environments.  相似文献   

11.
Analyses of groundwater samples collected from several locations in a small watershed of the Deccan Trap Hydrologic Province, indicated anomalously higher values of nitrate than the background. However, the NO3 concentrations in water from dug wells under pastureland where the subsurface material consisted of stony waste were minimum. The maximum values were reported for water from dug wells where the principal land use was agricultural. Lowering of NO3 values under shallow water-table conditions suggests denitrification. Higher concentrations of nitrate determined for samples collected from the wells with a deeper water-table indicate that denitrification process is inactive. The high values of nitrate coinciding with agricultural land use indicate fertilizers as the main source of nitrate pollution of ground-water. Decrease in Cl/NO3 ratio for agricultural land use confirms this inference.  相似文献   

12.
The hydrogeochemical characteristics of shallow groundwater in the Grombalia region, northeastern Tunisia, were investigated to evaluate suitability for irrigation and other uses and to determine the main processes that control its chemical composition. A total of 21 groundwater samples were collected from existing wells in January–February 2015 and were analyzed for the major cations and anions concentrations. Conductivity, pH, T°, O2 and salinity were also measured. Interrelationships between chemical parameters were determined by using the scatter matrix method. The suitability of groundwater for irrigation and other uses was assessed by determining the sodium adsorption ratio, soluble-sodium percentage, total dissolved solids, total hardness, Kelly’s index and permeability index values of water samples. The spatial distribution of key parameters was assessed using a GIS-based spatial gridding technique. This analysis indicated that the chemical composition of groundwater in the study area is of Cl–SO4–Na–Ca mixed facies with concentrations of many chemical constituents exceeding known guideline values for irrigation. The salinity of groundwater is controlled by most dominant cation and anion (Na–Cl). A correlation analysis shows that Na+ is the dominant cation and that reverse ion exchange is a dominant process that controls the hydrogeochemical evolution of groundwater in the area. Geospatial mapping of hydrochemical parameters and indices analyzed with the USSL and Wilcox diagrams show distinctive areas of irrigation suitability. In contrast, 76.2% of samples fall in the highly doubtful to unsuitable category and indicate that the central and north-eastern parts of the study area are unsuitable for irrigation due to a high salinity and alkalinity.  相似文献   

13.
In the Alberta Basin there is a significant difference in the content of Fe between formation waters from drillstem tests and formation waters from producing wells. This was demonstrated using a data set comprising 525 formation waters from drillstem tests and 107 formation waters from producing wells. Both a cross-plot of Mn and Fe in the two sets of formation waters and box plots of the same data sets showed that formation waters from producing wells have dominantly Fe>Mn, compared with those from drillstem tests which are characterized by Mn>Fe. Suspecting that “rust” contamination from well casing and ancillary equipment was the cause, the pH values of the samples were compared to see if the two data sets also differed in pH. It was demonstrated that not only are formation waters from drillstem tests less acidic than those from producing wells, but there is a systematic statistical trend of increasing acidity with age of the strata (temperature, depth, and increased amounts of the acid gases — H2S and CO2). The difference between the pH of formation waters from drillstem tests and producing wells is attributed to the partial scrubbing of the acid gases from the fluids produced during the drillstem test; this results in less acidic formation waters. Vanadium may also be enhanced in formation waters from producing wells. This note reports these differences and cautions too much reliance on values for Fe in waters from producing wells.  相似文献   

14.
To test the usefulness of groundwater for U prospecting, 130 domestic wells were sampled from a 22,000 km2 rectangular area extending south and west from Ottawa, Ontario. The waters were analyzed for twenty variables including ten gases and five trace elements.The dissolved gases give information on subsurface chemical and geological environments. Carbon dioxide highs occur at the contact of granites and limestones; He highs are along major faults; CH4 and H2S reveal strongly reducing environments, and O2 in wells indicates shallow wells or active water turnover. Rn reveals U mineralization and granitic rocks.The South March U-Cu surface occurrence gives coincident U, Cu, Zn, Pb and Rn highs. A weak U-Rn-Cu high in the Richmond-North Gower area suggests more radioactive subcropping March formation there.A strong regional He anomaly coincident with the outcropping Rockcliffe Formation and controlled by the Hazeldean Fault is believed to be due to deep-seated He, but its coincidence with a weak regional Cu anomaly, a Rn anomaly in the Bells Corners area, its linear northeast trend, the presence of Helikian U-rich source rocks to the southwest, and northeast-dipping Paleozoic sandstones provide both indications of, and the right environment for epigenetic type U-Cu occurrences.  相似文献   

15.
Water samples collected from dug wells and tube wells from the Kurunegala District of Sri Lanka have been studied for their major hydrogeochemical parameters to understand the chemical quality of water in the terrain. The region is composed of Precambrian metamorphic rocks where groundwater is only available in the regolith and along weak structural discontinuities. The study of the major chemical constituents of groundwater revealed several relationships with the aquifer lithology. Groundwater from mafic rocks have high dissolved solids, while quartzose metaclastic rocks yield water with low dissolved solids. The study area displays very low SO4 2− contents of the groundwater. The chloride content is higher in the dry regions and in terrains underlain by pink granite and marble/calc gneiss while areas with marble, as expected, show high concentrations of Ca and Mg ions. The waters in the region can be classified into non-dominant cations to Na + K dominant and Cl and HCO3 dominant types. Water from charnockite-bearing areas tends to have non-dominant cations and more CO3 2− + HCO3 types. Effects such as soluble salts in the regolith, fracture intensity and climatic variations play a significant role in the behavior of the hydrogeochemistry in the area.  相似文献   

16.
The reservoir temperature and conceptual model of the Pasinler geothermal area, which is one of the most important geothermal areas in Eastern Anatolia, are determined by considering its hydrogeochemical and isotope properties. The geothermal waters have a temperature of 51 °C in the geothermal wells and are of Na–Cl–HCO3 type. The isotope contents of geothermal waters indicate that they are of meteoric origin and that they recharge on higher elevations than cold waters. The geothermal waters are of immature water class and their reservoir temperatures are calculated as 122–155 °C, and their cold water mixture rate is calculated as 32%. According to the δ13CVPDB values, the carbon in the geothermal waters originated from the dissolved carbon in the groundwaters and mantle-based CO2 gases. According to the δ34SCDT values, the sources of sulfur in the geothermal waters are volcanic sulfur, oil and coal, and limestones. The sources of the major ions (Na+, Ca2+, Mg2+, Cl?, and HCO3 ?) in the geothermal waters are ion exchange and plagioclase and silicate weathering. It is determined that the volcanic rocks in the area have effects on the water chemistry and elements like Zn, Rb, Sr, and Ba originated from the rhyolite, rhyolitic tuff, and basalts. The rare earth element (REE) content of the geothermal waters is low, and according to the normalized REE diagrams, the light REE are getting depleted and heavy REE are getting enriched. The positive Eu and negative Ce anomalies of waters indicate oxygen-rich environments.  相似文献   

17.
The systematic sampling of the chemical composition of the groundwater from five karst springs (including an overflow spring) and one outflowing borehole have permitted to determine distinctive chemical changes in the waters that reflect the geochemical processes occurring in a carbonate aquifer system from southern Spain. The analysis of the dissolution parameters revealed that geochemical evolution of the karst waters basically depends on the availability of the minerals forming aquifer rocks and the residence time within the aquifers. In the three proposed scenarios in the aquifers, which include the preferential flow routines, the more important geochemical processes taking place during the groundwater flow from the recharge to the discharge zones are: CO2 dissolution and exsolution (outgassing), calcite net dissolution, calcite and dolomite sequential dissolution, gypsum/anhydrite and halite dissolution, de-dolomitization and calcite precipitation. A detailed analysis of the hydrochemical data set, saturation indices of the minerals and partial pressure of CO2 in the waters joined to the application of geochemical modelling methods allowed the elaboration of a hydrogeochemical model of the studied aquifers. The developed approach contributes to a better understanding of the karstification processes and the hydrogeological functioning of carbonate aquifers, the latter being a crucial aspect for the suitable management of the water resources.  相似文献   

18.
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5–5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE–WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50–120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.  相似文献   

19.
Salinization is a process impacting groundwater quality and availability across much of southern Louisiana, USA. However, a broad divergence of opinion exists regarding the causes of this elevated salinity: updip-migrating marine waters from the Gulf of Mexico, saline fluids migrating up fault planes, movement of water from salt domes, and/or remnant seawater from the last major marine transgression. The Mississippi River Alluvial Aquifer (MRAA) in south-central Louisiana is recharged by the Mississippi River, and there are discharge zones to the west and east. Recharge waters from the Mississippi River are fresh, but Cl levels in the western portions of the aquifer are as high as 1000 mg/L. The aquifer is an important source of water for several municipalities and industries, but prior to this study the source(s) of the elevated salinity or whether the salinization can be remediated had not been determined.The low Br/Cl ratios in the groundwaters are consistent with a saline endmember produced by subsurface dissolution of salt domes, not a marine source. The H and O isotopic systematics of the aquifer waters indicate meteoric sources for the H2O, not marine waters or diagenetically-altered deep brines. The westward salinization of aquifer water represents a broad regional process, instead of contamination by point sources. Mapping of spatial variations in salinity has permitted the identification of specific salt domes whose subsurface dissolution is producing waters of elevated salinity in the aquifer. These include the Bayou Choctaw and St. Gabriel domes, and possibly the Bayou Blue dome. Salinization is a natural, on-going process, and the potential for remediation or control is slight, if not non-existent.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号