首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Delineation of Banikdih Agricultural watershed in Eastern India was carried out and various watershed parameters were extracted using Geographic Information System (GIS) and Remote Sensing. Digital Elevation Model (DEM) was developed with a contour interval of 10 m in the scale of 1:25000 using ARC/INFO modules. Sub watershed, drainage, slope, aspect, flow direction, soil series, soil texture, and soil class maps were independently generated and they were properly registered and integrated for analysis. The watershed was digitally delineated using AVSWAT model that couples hydrological model and GIS with appropriate threshold value of cell size. Subsequently, stream characteristics through the interface were generated. Indian Remote Sensing Satellite IRS-1D LISS-III data pertaining to the period of October 29, 1998 and October 23, 2000 was used to develop land use/land cover thematic map using ERDAS- 8.4 version image processing software. Eight major land use/land cover classes namely water body, lowland paddy, upland paddy, fallow land, upland crop (non-paddy crops), settlement, open mixed forest, and wasteland were segregated through digital image processing techniques using maximum likelihood algorithm. The information generated would be of immense help in hydrological modeling of watershed for prediction of runoff and sediment yield, thereby providing necessary inputs for developing suitable developmental management plans with sound scientific basis.  相似文献   

2.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

3.
A case study has been conducted to identify suitable sites for water harvesting structures in Soankhad watershed, Punjab using information technologies such as Remote Sensing and Geographical Information System (RS-GIS). The IRS-1C, P6 satellite imagery of the Soankhad watershed was used. The various Thematic maps such as land use map, hydrological soil group map, slope map and DEM map were prepared for selecting suitable site for construction of water harvesting structures. The suitable sites were not found for nala bunding and farm ponds due to steep slope, less soil thickness and high runoff velocity. Fourteen check dams and six percolation tanks were proposed for the construction as per Integrated Mission for Sustainable Development (IMSD) guidelines. The water balance study of the Soankhad watershed was also computed with monthly mean temperature and rainfall data using TM model. The average runoff for the wet season (July–September) 1996 was computed to be about 1543.82 mm and the total runoff volume from the Soankhad watershed was estimated to be about 143.52 Mm3.  相似文献   

4.
The planning of conservation measures to conserve water and soil resources taking hydrological planning unit as micro-watershed is considered to be effective. The automated watershed delineation technique using the spline interpolated filled digital elevation model (DEM) is effective in converging slopes of the area in which the stream patterns match with the manually digitized stream patterns of the topographical map. The various vector spatial layers like the slope/aspect, land-use/land-cover, runoff potential, soil erosion potential and the associated attribute information governing the criteria for different conservation structures can act as input layers in integrated spatial analysis module in GIS environment to evolve derived layers indicating the locations of conservation sites meeting the requisite criteria. The reliability of suitable conservation sites suggested out of integrated spatial GIS analysis could be ascertained using the multi criteria analysis incorporating the various factors controlling soil erosion process in the micro-watershed groups. The details of the above work are discussed in the paper.  相似文献   

5.
在基于LRIS-3D系统建立高分辨率DEM基础上,以黄土高原丘陵沟壑区桥沟小流域为对象,利用GIS工具,以三维激光扫描系统扫描数据为基础数据,研究基于DEM的数字地形特征和水文特征的提取与分析方法。研究结果表明:与普通DEM相比,高分辨率DEM提取研究区平均坡度变小、坡度标准差变大,总体地形向平坦转化,坡面曲率增大,沟壑密度增大,更详细地描述了地表特征。对流域水文过程分析、特别是对流域汇流的参数确定及汇流模型的建立有积极作用。  相似文献   

6.
DEM数据是流域水文分析和模拟的基础,不同DEM分辨率尺度深刻影响着水文分析和水文过程模拟的结果。本文基于机载LiDAR获取的DEM数据,分析了不同分辨率LiDAR DEM在坡度提取、水文指数分析和流域特征参数提取中的差异及产生原因;基于SWAT分布式水文模型模拟研究了不同分辨率DEM数据的水文效应。研究结果表明:随着DEM分辨率的降低,坡度平均值减小,TWI平均值增大,SPI平均值减小,LSF均值先增大后减小,当分辨率为10 m时,LSF取得最大值;SWAT模型模拟结果表明,随分辨率的降低、坡度值的变小,地形湿度指数变大,蒸散发量增加,地表径流深减小,而土壤渗漏量与地下径流量则是先减小后增加,出现极值时DEM分辨率为10 m,与LSF出现极值时一致。  相似文献   

7.
Hydrological modelling of large river catchments is a challenging task for water resources engineers due to its complexity in collecting and handling of both spatial and non-spatial data such as rainfall, gauge discharges, and topographic parameters. In this paper an attempt has been made to use satellite-based rainfall products such as Climatic Prediction Centre (CPC)-National Oceanic and Atmospheric Administration (NOAA) data for hydrological modelling of larger catchment where the limited field rainfall data is available. Digital Elevation Models (DEM) such as Global DEM (1 km resolution) and Shuttle Radar Topography Mission (SRTM) 3-arc second (90 m resolution) DEM have been used to extract topographic parameters of the basin for hydrological modelling of the study area. Various popular distributed models have been used in this study for computing excess rainfall, direct runoff from each sub-basin, and flow routing to the main outlet. The Brahmaputra basin, which is very complex both hydraulically and hydrologically due to its shape, size, and geographical location, has been examined as study area in this study. A landuse map derived from the satellite remote sensing data in conjunction with DEM and soil textural maps have been used to derive various basin and channel characteristics such as each sub-basin and channel slope, roughness coefficients, lag-time. Percentage of residual flows computed between observed flows and simulated flows using Global and SRTM DEMs are discussed. It is found that the topographic parameters computed using SRTM DEM could improve the model accuracy in computing flood hydrograph. Need of using better resolution satellite data products and the use of high-density field discharge observations is discussed.  相似文献   

8.
小流域已经成为水土流失治理、生态系统修复等研究工作的重要地理单元。本文以贵州省赤水河流域为研究对象,探索我国西南典型喀斯特与非喀斯特地貌混合分布区小流域划分方法及小流域分布特征,基于DEM提取小流域边界,利用1∶5万地形图进行修正,并结合野外调查和地质、水文数据验证,最终将贵州省赤水河流域划定了753个小流域。其中,喀斯特地貌区小流域个数358个,喀斯特+非喀斯特地貌区小流域个数182个,非喀斯特地貌区213个;就不同流域类型小流域划分结果看,完整型小流域530个,区间型小流域180个,坡面型小流域43个;这些小流域中面积小于3km2的有9个,面积在3~10km2的有310个,面积在10~30km2的有348个,面积在30~50km2的有86个。贵州省赤水河流域小流域划分研究可为小流域治理工作提供依据,为区域制定水土保持方案和生态建设措施提供辅助决策,促进喀斯特地区水土保持与生态环境建设。  相似文献   

9.
This paper describes the use of the Arc/Info and ArcView GIS tools to estimate soil erosion with Universal Soil Loss Equation (USLE). Calculations are be done by using capabilities available. This study start with a digital elevation model (DEM) of Shaanxi, which was created by digitizing contour and spot heights from the topographic map on 1∶250 000 scale and grid themes for the USLEK andC factors. It is note worthy that USLEK can be obtained by adding the K factor as an attribute to a soil theme's table. TheC can be obtained from tables or using the information about land use and management given by USLE program. A land use theme can be used to add theC factors as an attribute field. The purpose of this study is to establish spatial information of soil erosion using USLE and GIS and discuss the analysis of the soil erosion and slope failures in GIS and formulate the possible framework.  相似文献   

10.
The effects of climate change on hydrological regimes have become a priority area for water and catchment management strategies. The terrestrial hydrology driven by monsoon rainfall plays a crucial role in shaping the agriculture, surface and ground water scenario in India. Thus, it is imperative to assess the impact of the changing climatic scenario projected under various climate change scenario towards the hydrological aspects for India. Runoff is one of the key parameters used as an indicator of hydrological process. A study was taken up to analyse the climate change impact on the runoff of river basins of India. The global circulation model output of Hadley centre (HADCM3) projected climate change data was used. Scenario for 2080 (A2 scenario indicating more industrial growth) was selected. The runoff was modeled using the curve number method in spatial domain using satellite derived current landuse/cover map. The derived runoff was compared with the runoff using normal climatic data (1951–1980). The results showed that there is a decline in the future climatic runoff in most of the river basins of India compared to normal climatic runoff. However, significant reduction was observed for the river basins in the eastern region viz: lower part of Ganga, Bahamani-Baitrani, Subarnrekha and upper parts of the Mahanadi. The mean projected runoff reduction during monsoon season (June–September) were 18 Billion Cubic Meter (BCM), 3.2 BCM, 3.5 BCM and 5.9 BCM for Brahmaputra-Barak Subarnrekha, Subarnarekha and Brahmini-Baitrani basin, respectively in comparison to normal climatic runoff. Overall reduction in seasonal runoff was high for Subarnrekha basin (54.1%). Rainfall to runoff conversion was high for Brahmaputra-Barak basin (72%), whereas coefficient of variation for runoff was more for Mahanadi basin (1.88) considering the monsoon season. Study indicates that eastern India agriculture may be affected due to shortage of surface water availability.  相似文献   

11.
徐晗  徐建刚 《地理空间信息》2022,20(2):33-38,92
基于多层次GIS空间分析模型技术,系统地建立了从流域雨洪过程相关影响因子栅格化处理到产汇流过程模型的集成化模拟方法,首次实现了对流域内任意栅格单元内河道断面的径流过程线的可视化测算。同时还对于模型中单元水流长度与河道单元流速率定方法进行了优化改进。实例分析结果表明:模型结构更为严谨、参数设置更为科学,改进的技术方法对于福建汀江十年一遇洪水场次的模拟结果精度有明显提高,能够满足相关海绵城市规划应用需求。  相似文献   

12.
Assessment of groundwater potential zones using GIS technique   总被引:1,自引:0,他引:1  
A case study was conducted to find out the groundwater potential zones in Kattakulathur block, Tamil Nadu, India with an aerial extent of 360.60 km2. The thematic maps such as geology, geomorphology, soil hydrological group, land use / land cover and drainage map were prepared for the study area. The Digital Elevation Model (DEM) has been generated from the 10 m interval contour lines (which is derived from SOI, Toposheet 1:25000 scale) and obtained the slope (%) of the study area. The groundwater potential zones were obtained by overlaying all the thematic maps in terms of weighted overlay methods using the spatial analysis tool in ArcGIS 9.2. During weighted overlay analysis, the ranking has been given for each individual parameter of each thematic map and weights were assigned according to the influence such as soil −25%, geomorphology − 25%, land use/land cover −25%, slope − 15%, lineament − 5% and drainage / streams − 5% and find out the potential zones in terms of good, moderate and poor zones with the area of 49.70 km2, 261.61 km2 and 46.04 km2 respectively. The potential zone wise study area was overlaid with village boundary map and the village wise groundwater potential zones with three categories such as good, moderate and poor zones were obtained. This GIS based output result was validated by conducting field survey by randomly selecting wells in different villages using GPS instruments. The coordinates of each well location were obtained by GPS and plotted in the GIS platform and it was clearly shown that the well coordinates were exactly seated with the classified zones.  相似文献   

13.
数字高程模型在坡耕地调查中的应用   总被引:6,自引:0,他引:6  
以1:1万比例尺地形图(H-48-72-24)为例,采用地理信息系统软件Arc/Info数字化地形图生成数字高程模型,并通过DEM计算派生出坡度图,再结合土地利用现状图和相关资料,应用地理信息系统空间分析功能,自动提取坡耕地数据。整个过程主要由计算机进行处理,人工干预少,效率高。  相似文献   

14.
The present study demonstrates the use of NRCS-CN technique for rainfall-induced run-off estimation using high-resolution satellite data for small watershed of Palamu district, Jharkhand. The CN model was applied to the daily rainfall data of 15 years (1986–2000) along with use of large-scale thematic maps (1:10,000) pertaining to land use/land cover using IRS-P6 LISS-IV satellite data. The LU/LC map was spatially intersected with the hydrological soil group map to calculate the watershed area under different hydrological similar units for assigning CN values to compute discharge. The study showed that Daltonganj watershed exhibits an average run-off volume of 7,881,019 m3 from an average cumulative monsoon rainfall of 821 mm and the average actual direct run-off generated during the southwest monsoon season was 203 mm. The strong correlation between rainfall and run-off as well as between observed run-off and estimated run-off indicated high accuracy of run-off estimation by NRCS-CN technique.  相似文献   

15.
The paper deals with the application of Remote Sensing and Geographical Information System (GIS) technique for a watershed development program. For this study, the WRJ-2 watershed falling under Narkhed and Katol Tahsils of Nagpur district, Maharashtra, India is investigated. Various thematic maps (i.e. drainage, geology, soil, geomorphology and land use/ land cover) have been prepared using the remote sensing and GIS techniques. Initially, differential weightage values are assigned to all the thematic maps as per their runoff characteristics. Subsequently, the maps are integrated in GIS environment to identify potential sites for water conservation measures like gully plugs, earthen check dams, continuous contour trenches, percolation tanks, cement bandhara, afforestration and farm ponds, etc. The study depicts that the GIS technique facilitates integration of thematic maps and thereby helps in an identification of micro-zones each with unique characters in-terms of hydrogeology, thus amenable to specific water conservation techniques. It is therefore concluded that, the GIS technique is suitable for an identification of water conservation structures.  相似文献   

16.
基于DEM坡度坡向算法精度的分析研究   总被引:65,自引:4,他引:61  
坡度坡向是两个最基本的地形因子,目前对DEM坡度坡向计算模型和精度存在一些不同的甚至矛盾的观点,其原因在于没有区分误差来源和分析评价方法的不同.本文对DEM坡度坡向误差进行了理论分析,并通过实验数据对相关结论进行了验证.旨在澄清目前关于坡度坡向计算模型上的矛盾结论.  相似文献   

17.
DEM流域特征提取及其在非点源污染模拟中的应用   总被引:2,自引:0,他引:2  
概述了数字高程模型(DEM)的特点及对其进行流域特征信息的提取原理和方法,结合流域非点源污染模拟研究的需要,在GIS软件和非点源污染模型SWAT的技术支持下,对密云县密云水库北部流域DEM进行了流域的刻划及模型运行单元HRUs的生成,最后从三个方面:对DEM在非点源污染研究中的应用进行了有益的探讨。  相似文献   

18.
In the present study, the rainfall-runoff relationship is determined using USDA Soil Conservation Service (SCS) method. The coefficient of determination (R2) is 0.99, which indicates a high correlation between rainfall and runoff. The runoff potential map was prepared by assigning individual class weight and scores input map. Annual spatial soil loss estimation was computed using Morgan, Morgan and Finney mathematical model in conjunction with remote sensing and GIS techniques. Higher soil erosion was found to occur in the northern part of the Tons watershed. The soil texture in the affected area is coarse loamy to loamy skeletal and soil detachment is higher. Moreover the land use has open forests, which does not reduce the impact of rainfall. The average soil loss for all the four sub-watersheds was calculated, and it was found that the maximum average soil loss of 24.1 t/ha occurred in the sub-watershed 1.  相似文献   

19.
Nowadays watershed management plays a vital role in water resources engineering. Watershed based on water resources management is necessary to plan and conserve the available resources. Remote Sensing (RS) and Geographic Information System (GIS) techniques can be effectively used to manage spatial and non spatial database that represent the hydrologic characteristics of the watershed use as realistically as possible. The present study area is Malattar subwatershed (4C2B2) lies in the region Gudiyattam Block, Vellore District, Tamil Nadu. The daily rainfall data of Gudiyattam rain gauge station (1971–2007) was collected and used to predict the daily runoff from the watershed using Soil Conservation Service — Curve Number (SCS — CN) method (USDA, 1972) and GIS. Monthly and annual runoff have been calculated from the monthly rainfall data for the years of 1971 to 2007 in the watershed area. The average minimum and maximum rainfall for the years of 1971 to 2007 is 35.30 mm and 111.61 mm respectively and average runoff for the year of 1971 to 2007 is 31.87 mm3 and 47.04 mm3 respectively. The developed rainfall-runoff model is used to understand the watershed and its runoff flow characteristics.  相似文献   

20.
舒方国  龙毅  周侗  曹阳 《测绘学报》2013,42(5):774-781
在地图水系自动综合中河流选取需要建立对不同河流重要性程度的有效判别。由于河流汇水区域直接反映河流的作用空间,因而其面积大小成为关键性的量化指标。目前基于河流的汇水区域自动提取方法主要从河流单一要素出发,按“空间均衡竞争”思想平分河流之间的区域,由于未考虑地形因素使得提取的汇水区域往往存在偏差,而传统基于DEM的汇水区域提取虽然考虑了地形,但没有与河流目标建立显性的对应关系。河流是一种天然的沟谷地性线,与山脊线具有对生互补的空间耦合关系,本文提出了一种等高线簇与河网双要素协同的河流汇水区域提取方法,该方法对河流与等高线的目标集合构建约束Delaunay三角网(CD-TIN)并将三角形分类,对不同类型的三角形分别采用骨架线提取规则与梯度向量引导的分水线搜索规则提取分水线段,连接形成网络结构并依此计算各河段的汇水区域。实验结果表明,本算法能更准确地提取河流汇水区域,从而为河流综合选取提供有效支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号