首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A box model based on salinity distributions and freshwater inflow measurements was developed and used to estimate net non-tidal physical circulation and hydraulic residence times for Patuxent River estuary, Maryland, a tributary estuary of Chesapeake Bay. The box model relaxes the usual assumption that salinity is at steady-state, an important improvement over previous box model studies, yet it remains simple enough to have broad appeal. Average monthly 2-dimensional net non-tidal circulation and residence times for 1986–1995 are estimated and related to river flow and salt water inflow as estimated by the box model. An important result is that advective exchange at the estuary mouth was not correlated with Patuxent River flow, most likely due to effects of offshore salinity changes in Chesapeake Bay. The median residence time for freshwater entering at the head of the estuary was 68 d and decreased hyperbolically with increasing river flow to 30 d during high flow. Estimates of residence times for down-estuary points of origin showed that, from the head of the estuary to its mouth, control of flushing changed from primarily river flow to other factors regulating the intensity of gravitational circulation.  相似文献   

2.
Long Island Sound (LIS), a large urban estuary in the northeastern USA, receives freshwater from many rivers along its northern shore. The size of these rivers varies widely in terms of basin area and discharge. The Regional Ocean Modeling System (ROMS) was applied with conservative passive tracers to identify the distribution, mixing, freshwater residence times, and storm response for all of LIS’s river systems during the summer of 2013. A watershed model was applied to overcome the lack of adequate river discharge observations for coastal watersheds. The Connecticut River was the largest contributor to riverine freshwater throughout the estuary despite its entry point near the mouth. The Connecticut River strengthened bulk stratification in the eastern LIS the most but acted to weaken stratification near the mouths of other rivers and in far western LIS by freshening waters at depth. The Housatonic and Hudson Rivers had the strongest influence on stratification in central and western LIS, respectively. Smaller coastal rivers were the most influential in strengthening stratification near the southwestern Connecticut shoreline. The influence of small coastal rivers was amplified after a major storm due to shorter storm response times relative to the larger rivers. Overall, river water was close to a well-mixed state throughout LIS, but more stratified near river mouths. Freshwater residence time estimates, meanwhile, indicated monthly to multi-seasonal time scales (43 to 180 days) and grew longer with greater distance from the LIS mouth.  相似文献   

3.
Freshwater fraction and tidal prism models are simple methods for estimating the turnover time of estuarine water. The freshwater fraction method prominently features flushing by freshwater inflow and has sometimes been criticized because it appears not to include flushing by seawater, but this is accounted for implicitly because the average estuary salinity used in the calculation reflects all the processes that bring seawater into the estuary, including gravitational circulation and tidal processes. The model relies on measurable salinity differences among water masses and so must be used for estuaries with substantial freshwater inflow. Tidal prism models are based on flushing by flood tide inflow and ignore seawater inflow due to gravitational circulation. These models should only be applied to estuaries with weak or nonexistent gravitational circulation, which are generally those with little freshwater inflow. Using a framework that is less ambioguous and more directly applicable to the estimation of turnover times than those used previously, this paper critically examines the application of tidal prism models in well-mixed estuaries with complete tidal exchange, partial ebb return, or incomplete flood mixing and in partially mixed estuaries. Problems with self-consistency in earlier versions of these models also apply to the budgeting procedure used by the LOICZ (Land-Ocean Interactions in the Coastal Zone) program. Although freshwater fraction and tidal prism models are different approaches to estimating turnover times in systems with very different characteristics, consistent derivation shows that these models have much in common with each other and that they yield equivalent values that can be used to make comparisons across systems.  相似文献   

4.
Tillamook Bay, Oregon, is a drowned river estuary that receives freshwater input from 5 rivers and exchanges ocean water through a single channel. Similar to other western United States estuaries, the bay exhibits a strong seasonal change in river discharge in which there is a pronounced winter maximum and summer minimum in precipitation and runoff. The behavior of major inorganic nutrients (phosphorus, nitrogen, and silica) within the watershed is examined over seasonal cycles and under a range of river discharge conditions for October 1997–December 1999. Monthly and seasonal sampling stations include transects extending from the mouth of each river to the mouth of the estuary as well as 6–10 sites upstream along each of the 5 major rivers. Few studies have examined nutrient cycling in Pacific Northwest estuaries. This study evaluates the distributions of inorganic nutrients to understand the net processes occurring within this estuary. Based upon this approach, we hypothesize that nutrient behavior in the Tillamook Bay estuary can be explained by two dominant factors: freshwater flushing time and biological uptake and regeneration. Superimposed on these two processes is seasonal variability in nutrient concentrations of coastal waters via upwelling. Freshwater flushing time determines the amount of time for the uptake of nutrients by phytoplankton, for exchange with suspended particles, and for interaction with the sediments. Seasonal coastal upwelling controls the timing and extent of oceanic delivery of nutrients to the estuary. We suggest that benthic regeneration of nutrients is also an important process within the estuary occurring seasonally according to the flushing characteristics of the estuary. Silicic acid, nitrate, and NH4 + supply to the bay appears to be dominated by riverine input. PO4 −3 supply is dominated by river input during periods of high river flow (winter months) with oceanic input via upwelling and tidal exchange important during other times (spring, summer, and fall months). Departures from conservative mixing indicate that internal estuarine sources of dissolved inorganic phosphorus and nitrogen are also significant over an annual cycle.  相似文献   

5.
Mixing plots, in which a dissolved constituent is plotted against salinity or chlorinity, are commonly used to interpret conservative and non-conservative processes in estuarine systems. A bend in the resulting curve is generally interpreted as indicative of the reactive or non-conservative nature of the constituent or the presence of multiple sources or sinks within the estuary. This paper demonstrates analytically that bends in mixing curves may also result from temporal variations in end-member (river or ocean) constituent concentrations even for conservative constituents. A one-dimensional dispersion equation is used to calculate the distribution of salinity and a conservative constituent in a model estuary. Both straight and bent mixing curves are shown resulting simply from changing the variability of the river constituent concentration. For no variability the curve is straight. For variability with a period much less than the flushing time, the average curve for a general data set straight, whereas the curve for a synoptic data set is bent. For variability with a period greater than the flushing time a bent curve results. Since bent mixing curves can occur for conservative properties, the use of these curves for interpretation of estuarine processes must be undertaken with an understanding of the temporal variability of the river and ocean constituents and their relationship to the estuary mixing properties and flushing time.  相似文献   

6.
The longitudinal distribution of total suspended matter and total, dissolved, and particulate manganese in a small coastal plain estuary is described. The distribution of manganese is a consequence of estuarine circulation; a within-estuary maximum is inversely correlated with river flow, and is a function of residence time in the estuary, resuspension in the upper estuary, and desorption from particles introduced from within the estuary or from the river. The turbidity maximum is similarly most pronounced during low river flows. The upper estuary (salinity <15‰), comprising a small percentage of the total estuary volume during low flow, receives material from the river and along the bottom from the lower estuary; this material is returned to the water column by resuspension and desorption from estuarine and riverine particles. The lower estuary tends to damp out these processes because of the greater volume and (residence) time available for mixing.  相似文献   

7.
Freshwater inputs often play a more direct role in estuarine phytoplankton biomass (chlorophyll a) accumulation than nitrogen (N) inputs, since discharge simultaneously controls both phytoplankton residence time and N loading. Understanding this link is critical, given potential changes in climate and human activities that may affect discharge and watershed N supply. Chlorophyll a (chla) relationships with hydrologic variability were examined in 3-year time series from two neighboring, shallow (<5?m), microtidal estuaries (New and Neuse River estuaries, NC, USA) influenced by the same climatic conditions and events. Under conditions ranging from drought to floods, N concentration and salinity showed direct positive and negative responses, respectively, to discharge for both estuaries. The response of chla to discharge was more complex, but was elucidated through conversion of discharge to freshwater flushing time, an estimate of transport time scale. Non-linear fits of chla to flushing time revealed non-monotonic, unimodal relationships that reflected the changing balance between intrinsic growth and losses through time and along the axis of each estuary. Maximum biomass occurred at approximately 10-day flushing times for both systems. Residual analysis of the fitted data revealed positive relationships between chla and temperature, suggesting enhanced growth rates at higher temperatures. N loading and system-wide, volume-weighted chla were positively correlated, and biomass yields per N load were greater than other marine systems. When combined with information on loss processes, these results on the hydrologic control of phytoplankton biomass will help formulate mechanistic models necessary to predict ecosystem responses to future climate and anthropogenic changes.  相似文献   

8.
Increased frequency and severity of droughts, as well as growing human freshwater demands, in the Apalachicola-Chattahoochee-Flint River Basin are expected to lead to a long-term decrease in freshwater discharge to Apalachicola Bay (Florida). To date, no long-term studies have assessed how river discharge variability affects the Bay’s phytoplankton community. Here a 14-year time series was used to assess the influence of hydrologic variability on the biogeochemistry and phytoplankton biomass in Apalachicola Bay. Data were collected at 10 sites in the bay along the salinity gradient and include drought and storm periods. Riverine dissolved inorganic nitrogen and phosphate inputs were correlated to river discharge, but chlorophyll a (Chl a) was similar between periods of drought and average/above-average river discharge in most of the Bay. Results suggest that the potentially negative impact of decreased riverine nutrient input on Bay phytoplankton biomass is mitigated by the nutrient buffering capacity of the estuary. Additionally, increased light availability, longer residence time, and decreased grazing pressures may allow more Chl a biomass to accumulate during drought. In contrast to droughts, tropical cyclones and subsequent increases in river discharge increased flushing and reduced light penetration, leading to reduced Chl a in the Bay. Analysis of the time series revealed that Chl a concentrations in the Bay do not directly mirror the effect of riverine nutrient input, which is masked by multiple interacting mechanisms (i.e., nutrient loading and retention, grazing, flushing, light penetration) that need to be considered when projecting the response of Bay Chl a to changes in freshwater input.  相似文献   

9.
Lagrangian retention and flushing are examined by advecting neutrally buoyant point particles within a circulation field generated by a numerical ocean model of Tampa Bay. Large temporal variations in Lagrangian residence time are found under realistic changes in boundary conditions. Two 90-day time periods are examined. The first (P1) is characterized by low freshwater inflow and weak baroclinic circulation. The second (P2) has high freshwater inflow and strong baroclinic circulation. At the beginning of both time periods, 686,400 particles are released uniformly throughout the bay. Issues relating to particle distribution and flushing are examined at three different spatial scales: (1) at the scale of the entire bay, (2) the four major regions within the bay, and (3) at the scale of individual model grid cells. Two simple theoretical models for the particle number over time, N(t), are fit to the particle counts from the ocean model. The theoretical models are shown to represent N(t) reasonably well when considering the entire bay, allowing for straightforward calculation of baywide residence times: 156 days for P1 and 36 days for P2. However, the accuracy of these simple models decreases with decreasing spatial scale. This is likely due to the fact that particles may exit, reenter, or redistribute from one region to another in any sequence. The smaller the domain under consideration, the more this exchange process dominates. Therefore, definitions of residence time need to be modified for “non-local” situations. After choosing a reasonable definition, and removal of the tidal and synoptic signals, the residence times at each grid cell in P1 is found to vary spatially from a few days to 90 days, the limit of the calculation, with an average residence time of 53 days. For P2, the overall spatial pattern is more homogeneous, and the residence times have an average value of 26 days.  相似文献   

10.
大辽河口存留时间和暴露时间数值模拟   总被引:1,自引:0,他引:1  
为了研究河口的物质输运机制,采用一个基于有限体积海岸海洋模式(FVCOM)的三维对流-扩散模式对大辽河口5个分区典型径流条件下的存留时间和暴露时间进行计算,得到了示踪物从河道第1次输送至入海河口的时间,以及随后返回河道里往复运动的时间,并据此统计得到回复系数以及表征各个分区之间相互影响的分区暴露时间矩阵。结果显示:潮汐、径流之间的相互作用控制着大辽河口的存留时间;暴露时间与存留时间的变化趋势一致,但大小差别很大,在枯、平、丰水期,暴露时间比存留时间分别多8 d、3 d、1 d;枯水期入海口河段回复系数可以达到0.94,示踪物会在这个区域多次回荡;除了涨急时刻的入海口河段,其他情况下大辽河下游分区对上游分区影响较小。  相似文献   

11.
The National Water Act (Act 36 of 1998) in South Africa recognizes basic human water requirements as well as the need to sustain the country's freshwater and estuarine ecosystems in a healthy condition for present as well as future generations. In this Act, provision is made for a water reserve to be estimated prior to the authorization of water use (e.g., for agriculture, large volume residential and industrial uses) through licensing. This reserve is the water required to satisfy basic human needs (i.e., 25 1 person?1 d?1) and to protect aquatic ecosystems to ensure present and future sustainable use of the resource. This led the Departments of Water Affairs and Forestry and estuarine scientists throughout South Africa to develop a method to determine the freshwater inflow requirements of estuaries. The method includes documenting the geographical boundaries of the estuary and determining estuarine health by comparing the present state of the estuary with a predicted reference condition with the use of an Estuarine Health Index. The importance of the estuary as an ecosystem is taken from a national rating system and together with the present health is used to set an Ecological Reserve Category for the estuary. This category represents the level of protections afforded to an estuary. Freshwater is then reserved to maintain the estuary in that Ecological Reserve Category. The Reserve, the quantity and quality of freshwater required for the estuary, is determined using an approach where realistic future river runoff scenarios are assessed, together with data for present state and reference conditions, to evaluate the extent to which abiotic and biotic conditions within an estuary are likely to vary with changes in river inflow. Results from these evaluations are used to select an acceptable river flow scenario that represents the highest reduction in freshwater inflow that will still protect the aquatic ecosystem of the estuary and keep it in the desired Ecological Reserve Category. The application of the Reserve methodology to the Mtata estuary is described.  相似文献   

12.
The Swan River estuary, Western Australia, has undergone substantial hydrological modifications since pre-European settlement. Land clearing has increased discharge from some major tributaries roughly 5-fold, while weirs and reservoirs for water supply have mitigated this increase and reduced the duration of discharge to the estuary. Nutrient loads have increased disproportionately with flow and are now approximately 20-times higher than pre-European levels. We explore the individual and collective impacts of these hydrological changes on the Swan River estuary using a coupled hydrodynamic-ecological numerical model. The simulation results indicate that despite increased hydraulic flushing and reduced residence times, increases in nutrient loads are the dominant perturbation producing increases in the incidence and peak biomass of blooms of both estuarine and freshwater phytoplankton. Changes in salinity associated with altered seasonal freshwater discharge have a limited impact on phytoplankton dynamics.  相似文献   

13.
Freshwater pulses to subtropical estuaries often occur on time scales less than 1 week. In particular, introduction of low-level pulses are potentially important during the dry season (November–April) when freshwater is scarce. Determining potential ecological benefits of pulses requires an innovative method of data acquisition at the appropriate spatial and temporal scales. The South Florida Water Management District conducted a pilot study to assess changes in water column attributes with pulse releases to the Caloosahatchee River Estuary (CRE) from January to April 2012. An average inflow of 450 cfs was targeted for a series of freshwater pulses. This study utilized an onboard, flow-through system to record surface water temperature, salinity (S), pH, dissolved oxygen, turbidity, and in situ chlorophyll a (in situ CHL) at 5 s intervals along the 42-km length of the estuary. On each of seven research cruises, the vessel stopped at multiple stations to conduct vertical water column profiles. Salinity increased throughout the CRE as inflow decreased during the study period. Simple correlation and partial least squares regression were used to determine that the downstream locations of the S?=?10 isohaline and the maximum CHL concentration (in situ CHLmax) were positively related to inflow. While the in situ CHLmax was located 12–20 km downstream on five of the cruises, it was only a few kilometer from the estuary head on the first (1/12) and last (4/11) dates. It is possible that two circumstances related to freshwater inflow accounted for this pattern. First, water column stratification before January could have stimulated remineralization and primary production. Second, inflow ceased as water temperature increased to 26.0 °C by April to promote algal growth. Further study of the relationships among inflow, water level, flushing time, and CHL is warranted. Future efforts will examine the range of wet season discharge by incorporating a sensor for colored dissolved organic matter to fully connect inflow, salinity, submarine light, and phytoplankton attributes in the CRE.  相似文献   

14.
The effects of fortnightly, semidiurnal, and quaterdiurnal lunar tidal cycles on suspended particle concentrations in the tidal freshwater zone of the Seine macrotidal estuary were studied during periods of medium to low freshwater flow. Long-term records of turbidity show semidiurnal and spring-neap erosion-sedimentation cycles. During spring tide, the rise in low tide levels in the upper estuary leads to storage of water in the upper estuary. This increases residence time of water and suspended particulate matter (SPM). During spring tide periods, significant tidal pumping, measured by flux calculations, prevents SPM transit to the middle estuary which is characterized by the turbidity maximum zone. On a long-term basis, this tidal pumping allows marine particles to move upstream for several tens of kilometers into the upper estuary. At the end of the spring tide period, when the concentrations of suspended particulate matter are at their peak values and the low-tide level drops, the transport of suspended particulate matter to the middle estuary reaches its highest point. This period of maximum turbidity is of short duration because a significant amount of the SPM settles during neap tide. The particles, which settle under these conditions, are trapped in the upper estuary and cannot be moved to the zone of maximum turbidity until the next spring tide. From the upper estuary to the zone of maximum turbidity, particulate transport is generated by pulses at the start of the spring-neap tide transition period.  相似文献   

15.
The flushing time of the Providence River was estimated using three different data sets and three different methodologies. Dye concentrations were measured following instantaneous dye releases during wet weather experiments performed by the Narragansett Bay Project between October 1988 and June 1989. These data were analyzed to obtain flushing time estimates. Salinity measurements collected during the Sinbadd (Sampling In Narragansett Bay All During the Day) cruises, Spray (Sampling the Providence River All Year) cruises and wet weather experiments were used with the fraction of fresh water method and box model to calculate flushing time. The Sinbadd cruises performed 4 seasonal surveys at 22 stations in Narragansett Bay during 1986 to obtain a view of the whole Narragansett Bay with respect to the concentrations of nutrients and trace metals. The Spray cruises collected data in the Providence River at 10 stations to determine the relationship of nutrients and trace metals concentrations in the Seekonk and Providence rivers as a function of point source inputs. Based on the flushing time estimates, an exponential relationship between freshwater inflow and flushing time was developed (correlation coefficient of 0.826). The flushing time ranged from 0.8 d at high (90 m3 m?1) freshwater inflows to 4.4 d at low (20 m3 s?1) freshwater inflows. The average flushing time of the Providence River was estimated as 2.5 d for the mean freshwater inflow of 42.3 m3 s?1.  相似文献   

16.
A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and net export to perform a steady-state analysis over a yearly cycle. The model calculates the fraction of total nitrogen input from land and the atmosphere that is exported and the fraction that is denitrified or lost to other processes within the estuary. The model was tested against data from the literature for 11 North American and European estuaries having a wide range of physical characteristics, nitrogen loading rates, and geographical and climatic settings. The model shows that the fraction of nitrogen entering an estuary that is exported or denitrified can be predicted from the freshwater residence time. The first-order rate constant for nitrogen loss within an estuary, as a fraction of total nitrogen in the water column, is 0.30 mo−1. Denitrification typically accounts for 69–75% of the total annual net nitrogen removal from the water column by processes within the estuary. The model makes explicit the dependence of nitrogen concentration in the water column on the loading rate of nitrogen, water residence time, estuary volume, and the rate constant for loss within the estuary.  相似文献   

17.
Hydrology and nutrients have been indicated as the main driving factors acting on phytoplankton biomass and composition in estuarine systems, although grazing may occasionally have some influence. In order to identify these factors over temporal and spatial scales, we analyzed physical, chemical, and biological properties of a tropical river-dominated estuary during the dry and rainy seasons. As far as we know, this is the first time that the functional groups approach has been used to analyze the changes in phytoplankton composition in an estuary. This recent framework is based on the tolerances and sensitivities in relation to environmental conditions of groups of species, which are labeled by alpha-numeric codes (Reynolds et al., J. Pl. Res. 24:417–428, 2002). In the estuary of Paraíba do Sul River, all phytoplankton groups were represented by freshwater organisms, indicating the strong influence of the river. However, remarkable shifts in composition and biomass occurred from the low to high flushing seasons, due much more to the river discharge than to nutrient availability. The overall results showed no nitrogen, phosphorus, or silica limitation to phytoplankton growth (mean values: dissolved inorganic nitrogen?=?30.5 µM, soluble reactive phosphorus?=?1.45 µM, and silica?=?208.05 µM). The higher river flow supports a lower phytoplankton biomass composed mainly of nanoplankton (<20 µm) fast-growing functional groups, which are able to maintain biomass even in high flushing conditions (X1), or large heavy organisms, such as some heavy diatoms of group P, which are able to be in suspension in shallow and turbulent systems. The lower river flow led to the coexistence of large organisms (>20 µm) of the groups P and F, which include slow-growing populations typically found in mesotrophic lakes. Although the functional group approach was originally developed for temperate lakes, our data support this approach for a tropical estuarine environment.  相似文献   

18.
A one-dimensional, hydrodynamical model of the Tamar Estuary shows good agreement with measured tidal elevations and currents. Computed currents are used to drive a one-dimensional moving-element model of the salt balance. The moving-element model overcomes the numerical difficulties associated with strong tidal advection. Axial distributions of salinity at high water, computed using the moving-element model, compare well with measurements. The modelled and observed high water salinity distributions in this macrotidal estuary show little dependence on tidal range. The major variability in salinity is due to runoff. This strong and rapid dependence on runoff is a consequence of short residence (or flushing) times. Typically, residence times are less than one day throughout the year in the upper 10 km of estuary. The residence times maximize in summer, reaching 14 d for the whole estuary. During high runoff winter periods residence times are less than 5 d. Mixing coefficients for the moving-element salinity model are deduced from salinity measurements. Dispersion coefficients at fixed locations along the estuary are deduced from solutions of the salinity model. The spatially-averaged coefficients at mean spring and neap tides are 180 and 240 m2 s?1, respectively, for average runoff. Therefore, spring-neap variations in dispersion are fairly small and show a negative correlation with tidal range. The spatially-averaged dispersion coefficients at mean tides vary from 150 to 300 m2 s?1 for typical summer and winter runoff, respectively. The increase in dispersion with runoff and the decrease with tidal range implies that buoyancy-driven currents generate an important component of the shear dispersion in this estuary.  相似文献   

19.
Freshwater delivery is an important factor determining estuarine character and health and may be influenced by large-scale climate oscillations. Variability in freshwater delivery (precipitation and discharge) to the Altamaha River estuary (GA, USA) was examined in relation to indices for several climate signals: the Bermuda High Index (BHI), the Southern Oscillation Index (SOI), the Improved El Niño Modoki Index (IEMI), the North Atlantic Oscillation (NAO), the Atlantic Multidecadal Oscillation (AMO), the Pacific Decadal Oscillation (PDO), and the Pacific/North American Pattern (PNA). Discharge to this estuary has been linked to key ecosystem properties (e.g., salinity regime, water residence time, nutrient inputs, and marsh processes), so understanding how climate patterns affect precipitation and river discharge will help elucidate how the estuarine ecosystem may respond to climate changes. Precipitation patterns in the Altamaha River watershed were described using empirical orthogonal functions (EOFs) of the combined multidecadal time series of precipitation at 14 stations. The first EOF (67 % of the variance) was spatially uniform, the second EOF (11 %) showed a spatial gradient along the long axis of the watershed (NW–SE), and the third EOF (6 %) showed a NE–SW pattern. We compared the principal components (PCs) associated with these EOFs, monthly standardized anomalies of Altamaha River discharge at the gauge closest to the estuary, and the climate indices. Complex, seasonally alternating patterns emerged. The BHI was correlated with June–January discharge and precipitation PC 1. The SOI was correlated with January–April discharge and precipitation PC 2, and also weakly correlated with PC 1 in November–December. The AMO was correlated with river discharge and precipitation PC 3 mainly in December–February and June. The correlation patterns of precipitation PCs with PDO and PNA were similar to those with SOI, but weaker. There were no consistent relationships with two NAO indices or IEMI. Connections between climate signals and estimates of nutrient loading were consistent with the connections to discharge. The occurrence of tropical storms in the region was strongly related to the BHI but not to the other climate indices, possibly representing the influence of storm tracking more than the rate of storm formation. Comparison with the literature suggests that the patterns found may be typical of southeastern USA estuaries but are likely to be different from those outside the region.  相似文献   

20.
The paleoenvironmental history of the Beilun River estuary on the coast of Beibu Gulf in the northwest South China Sea is reconstructed based on fossil diatoms, isotopic dating, sedimentary grain size data, mineralogy and geochemistry in three sediment core samples. Results show that the estuary has experienced significant environmental changes since deposition began about 20,000 yr ago. Freshwater runoff of the Beilun River initially was strong. However, the freshwater runoff reduced significantly after a transgressive event. Subsequently the estuary’s position began to migrate to the northeast. At the end of the Late Pleistocene the estuary shifted gradually towards the southwest. In the Early-Mid Holocene, the estuary’s geomorphology was shaped by seawater transgressing into the ancient river channel. The basin was filled continuously but slowly to form the present Beilun River estuary. Holocene transgression in this area could be divided roughly into three stages, including oscillation period 1, the maximum transgression period, and oscillation period 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号