首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aim a better understanding of the effect of spring-time snow melt on the remotely sensed scene reflectance by using an extensive amount of optical spectral data obtained from an airborne hyperspectral campaign in Northern Finland. We investigate the behaviour of thin snow reflectance for different land cover types, such as open areas, boreal forests and treeless fells. Our results not only confirm the generally known fact that the reflectance of a melting thin snow layer is considerably lower than that of a thick snow layer, but we also present analyses of the reflectance variation over different land covers and in boreal forests as a function of canopy coverage. According to common knowledge, the highly variating reflectance spectra of partially transparent, most likely also contaminated thin snow pack weakens the performance of snow detection algorithms, in particular in the mapping of Fractional Snow Cover (FSC) during the end of the melting period. The obtained results directly support further development of the SCAmod algorithm for FSC retrieval, and can be likewise applied to develop other algorithms for optical satellite data (e.g. spectral unmixing methods), and to perform accuracy assessments for snow detection algorithms.A useful part of this work is the investigation of the competence of Normalized Difference Snow Index (NDSI) in snow detection in late spring, since it is widely used in snow mapping. We conclude, based on the spectral data analysis, that the NDSI -based snow mapping is more accurate in open areas than in forests. However, at the very end of the snow melting period the behavior of the NDSI becomes more unstable and unpredictable in non-forests with shallow snow, increasing the inaccuracy also in non-forested areas. For instance in peatbogs covered by melting snow layer (snow depth < 30 cm) the mean NDSI -0.6 was observed, having coefficient of variation as high as 70%, whereas for deeper snow packs the mean NDSI shows positive values.  相似文献   

2.
Snow cover monitoring in the Qinghai-Tibetan Plateau is very important to global climate change research. Because of the geographic distribution of ground meteorological stations in Qinghai-Tibetan Plateau is too sparse, satellite remote sensing became the only choice for snow cover monitoring in Qinghai-Tibetan Plateau. In this paper, multi-channel data from Visible and Infrared Radiometer (VIRR) on Chinese polar orbiting meteorological satellites Fengyun-3(FY-3) are utilized for snow cover monitoring, in this work, the distribution of snow cover is extracted from the normalized difference snow index(NDSI), and the multi-channel threshold from the brightness temperature difference in infrared channels. Then, the monitoring results of FY-3A and FY-3B are combined to generate the daily composited snow cover product. Finally, the snow cover products from MODIS and FY-3 are both verified by snow depth of meteorological station observations, result shows that the FY-3 products and MODIS products are basically consistent, the overall accuracy of FY-3 products is higher than MODIS products by nearly 1 %. And the cloud coverage rate of FY-3 products is less than MODIS by 2.64 %. This work indicates that FY-3/VIRR data can be reliable data sources for monitoring snow cover in the Qinghai-Tibetan Plateau.  相似文献   

3.
ABSTRACT

Snow geophysical parameters such as wetness, density and permittivity are a significant input in hydrological models and water resource management. In this paper, we utilize the triangle method based on a feature space developed with the near-infrared (NIR) reflectance and the Normalized Differenced Snow Index (NDSI) for the estimation of surface snow wetness, permittivity and density. The triangular feature space based on NIR reflectance and NDSI is parameterized to yield a linear relationship between the snow wetness and the NIR reflectance. Snow density and permittivity are derived based on the least squares solution of empirical relations based on the observations of surface snow wetness. The proposed methodology was evaluated using Sentinel-2 data, and the modeled snow geophysical parameters were validated with respect to field measurements. Based on the results, it was inferred that the NIR reflectance varies linearly with the liquid water content in the snow. A good agreement was determined between the modeled and measured parameters for wet snow conditions as observed by the coefficient of determination of 0.968, 0.521 and 0.969 for the snow wetness, density and permittivity (real part), respectively. The proposed approach can be significantly utilized with unmanned aerial sensors for monitoring of physical properties of fresh or wet snow and is thus expected to contribute considerably in hydrological applications and avalanche studies.  相似文献   

4.
刘艳  汪宏  张璞  李杨 《国土资源遥感》2011,22(1):128-132
以古尔班通古特沙漠为研究区,以中分辨率成像光谱仪(MODIS)为遥感数据源,结合ASD FieldSpec准同步实测积雪反射光谱数据对FLAASH大气校正能力进行了评价。研究表明: ①校正后的MODIS各波段积雪反射率与准同步实测积雪反射率波形相似, 在第1~7波段整体相关系数达0.82,表明FLAASH大气校正能极大地提高MODIS地物识别能力; ②校正后的MODIS 第6波段反射率和归一化差值积雪指数(NDSI)与实测雪密度呈线性相关,可用回归拟合构建MODIS雪密度遥感计算模式。  相似文献   

5.
基于NDVI背景场的雪盖制图算法探索   总被引:5,自引:0,他引:5  
梁继  张新焕  王建 《遥感学报》2007,11(1):85-93
NDSI算法提取MSS雪盖面积时,受到MSS影像缺少短波红外波段的局限。为充分精确提取MSS影像的雪盖面积,本文探索一种以NDVI为背景场的雪盖制图新思路。该方法首先在辐射校正时利用6S模型反演地表反射率,然后根据各地物的光谱特性差异和NDVI特性差异,在ENVI软件SPECTRAL模块中创建冰雪光谱阈值查找表。通过ETM+和TM影像的三个例证,详细阐明该算法流程以及查找表的创建,并以NDSI对其雪盖制图进行精度验证。结果一致表明,与常规的分类方法(最大似然法)相比较,本文探索的NDVI背景场算法有更高的总体精度和Kappa系数。  相似文献   

6.
本文简要叙述了利用气象卫星资料进行积雪监测的可行性和复杂性;以改进的甚高分辨率扫描辐射仪(AVHRR)资料为例综述了遥感监测积雪的原理、方法和资料处理过程;分析了计算结果,并探讨了未来积雪监测的发展。  相似文献   

7.
Snow cover mapping is important for snow and glacier-related research. The spatial and temporal distribution of snow cover area is a fundamental input to the atmospheric models, snowmelt runoff models and climate models, as well as other applications. Daily snow cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite were retrieved for the period between 2004 and 2007, and pixels in these images were classified as cloud, snow or snow-free. These images have then been compared with ground snow depth (SD) measurements from the four observatories located at different parts of Himalayas. Comparison of snow maps with in situ data showed good agreement with overall accuracies in between 78.15 and 95.60%. When snow cover was less, MODIS data were found to be less accurate in mapping snow cover region. As the SD increases, the accuracy of MODIS snow cover maps also increases.  相似文献   

8.
Snow cover is an important variable for climatic and hydrologic models due to its effect on surface albedo, energy, and mass balance. Satellite observations successfully provide a global and comprehensive hemispheric-scale record of the short-term, as well as inter-seasonal variations in snow cover. Passive microwave sensors provide an excellent method to monitor temporal and spatial variations in large-scale snow cover parameters, overcoming problems of cloud cover. Using microwave remote sensing data, snow parameters (snow surface temperature, snow water equivalence, scattering index, emissivity, snow depth) have been retrieved to integrate with the snow cover simulation model developed by SASE for avalanche risk assessment on regional basis. Multispectral and multitemporal brightness temperature data obtained from the Special Sensor Microwave Imager (SSM/I), flown onboard the DMSP satellites, for the period November 2000 to April 2001 and from November 2001 to February 2002 have been analysed. A comparative data set on snow measurements and meteorological observations of a region covering large area of Pir-Panjal and the Greater Himalayan range, available on near real time basis from SASE field observatories were also used. Model calculations were carried out to study the effects of atmospheric transmission on the microwave radiation emitted from the snow covered and snow free ground and atmosphere. The sensitivity of combinations of the SSM/I channels at 19, 37 and 85 GHz, in both horizontal and vertical polarizations, in respect to snow depth, surface temperature of the snowpack have been carried out. Decision rule based algorithms are developed to identify snow cover and non-snow area.  相似文献   

9.
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02.  相似文献   

10.
This paper proposes an applicable approach for snow information abstraction in northern Xinjiang Basin using MODIS data. Linear spectral mixture analysis (LSMA) was used to calculate snow cover fractions (SF) within a pixel, which was used to establish a regression function with NDSI. In addition, 80 snow depths samples were collected in the study region. The correlation between image spectra reflectance and snow depth as well as the comparison between measured snow spectra and image spectra was analyzed. An algorithm was developed for snow depth inversion on the basis of the correlation between snow depth and snow spectra in the region. The results indicated that the model of SF had a high accuracy with the mean absolute error 0.06 tested by 26 true measured values and the validation for snow depth model using another dataset with 50 sampling sites showed an RMSE of 1.63. Our study showed that MODIS data provide an alternative method for snow information abstraction through development of algorithms suitable for local application. Supported by the National Natural Science Foundation of China (No.70361001).  相似文献   

11.
In-situ spectral reflectance characteristics of soils were studied under field conditions with Multiband Ground Truth Radiometer covering 0.45?C0.52, 0.52?C0.59, 0.62?C0.68, and 0.77?C0.86 ??m spectral bands. Twenty-two surface soil samples were studied in laboratory for their spectral reflectance characteristics using ISCO Model S.R. Spectroradiometer in visible wavelength (450?C725 nm), with 25 nm bandwidth, and in infrared wavelength (750?C1550 nm), with 50 nm bandwidth. The Bidirectional reflectance factor representative of spectral reflectance varied from 3.78 to 11.3???m in band 1, 6.09 to 15.41???m in band 2, 8.05 to 19.41???m in band 3, and 12.18 to 31.2???m in band 4. In-situ spectral reflectance in general increases with the wavelength from visible to infrared bands for all the soils. Black soils have relatively lower reflectance as compared to red soils, which is attributed to the variation in the physicochemical properties of soils. Spectral reflectance, under laboratory conditions, for all the soils increases with wavelength from visible to infrared region except at 950 nm and 1200 nm, where reflectance decreased in all soils, due to weaker water absorption bands and also at 1350 nm, due to strong water absorption at this band. The spectral reflectance of red soils were higher, in-situ as well as under laboratory conditions, as compared to black soils, which is attributed to variation in soil colour, organic matter and clay content of soils. It is observed that the spectral reflectance decrease due to moisture content in soils in all the spectral bands because of darker appearance of soils at moist conditions. Laboratory reflectance measurements serve to define the extent to which intrinsic spectral information is available from soils as a consequence of their composition.  相似文献   

12.
The present work evaluates the applicability of operational land imager (OLI) and thermal infrared sensor (TIRS) on-board Landsat 8 satellite. We demonstrate an algorithm for automated mapping of glacier facies and supraglacial debris using data collected in blue, near infrared (NIR), short wave infrared (SWIR) and thermal infrared (TIR) bands. The reflectance properties in visible and NIR regions of OLI for various glacier facies are in contrast with those in SWIR region. Based on the premise that different surface types (snow, ice and debris) of a glacier should show distinct thermal regimes, the ‘at-satellite brightness temperature’ obtained using TIRS was used as a base layer for developing the algorithm. This base layer was enhanced and modified using contrasting reflectance properties of OLI bands. In addition to facies and debris cover characterization, another interesting outcome of this algorithm was extraction of crevasses on the glacier surface which were distinctly visible in output and classified images. The validity of this algorithm was checked using field data along a transect of the glacier acquired during the satellite pass over the study area. With slight scene-dependent threshold adjustments, this work can be replicated for mapping glacier facies and supraglacial debris in any alpine valley glacier.  相似文献   

13.
MODIS数据在积雪检测中的应用   总被引:6,自引:0,他引:6  
积雪作为影响环境的一个因素,是非常重要的。自1999年Terra卫星升空以来,MODIS数据在环境监测的各个方面得到了广泛的应用。由于MODIS数据的高光谱、高空间分辨率、高时间分辨率等特征,越来越多地应用到积雪监测方面。本文就MODIS数据的积雪检测算法进行了探讨,对森林中雪的检测以及云和雪的区分进行了大量的研究。结果显示:MODIS数据对积雪检测非常有效。  相似文献   

14.
This study maps the geographic extent of intermittent and seasonal snow cover in the western United States using thresholds of 2000–2010 average snow persistence derived from moderate resolution imaging spectroradiometer snow cover area data from 1 January to 3 July. Results show seasonal snow covers 13% of the region, and intermittent snow covers 25%. The lower elevation boundaries of intermittent and seasonal snow zones increase from north-west to south-east. Intermittent snow is primarily found where average winter land surface temperatures are above freezing, whereas seasonal snow is primarily where winter temperatures are below freezing. However, temperatures at the boundary between intermittent and seasonal snow exhibit high regional variability, with average winter seasonal snow zone temperatures above freezing in west coast mountain ranges. Snow cover extent at peak accumulation is most variable at the upper elevations of the intermittent snow zone, highlighting the sensitivity of this snow zone boundary to climate conditions.  相似文献   

15.
Snow-covered area (SCA) is a key variable in the Snowmelt-Runoff Model (SRM) and in other models for simulating discharge from snowmelt. Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM + ) or Operational Land Imager (OLI) provide remotely sensed data at an appropriate spatial resolution for mapping SCA in small headwater basins, but the temporal resolution of the data is low and may not always provide sufficient cloud-free dates. The coarser spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) offers better temporal resolution and in cloudy years, MODIS data offer the best alternative for mapping snow cover when finer spatial resolution data are unavailable. However, MODIS’ coarse spatial resolution (500 m) can obscure fine spatial patterning in snow cover and some MODIS products are not sensitive to end-of-season snow cover. In this study, we aimed to test MODIS snow products for use in simulating snowmelt runoff from smaller headwater basins by a) comparing maps of TM and MODIS-based SCA and b) determining how SRM streamflow simulations are changed by the different estimates of seasonal snow depletion. We compared gridded MODIS snow products (Collection 5 MOD10A1 fractional and binary SCA; SCA derived from Collection 6 MOD10A1 Normalised Difference Snow Index (NDSI) Snow Cover), and the MODIS Snow Covered-Area and Grain size retrieval (MODSCAG) canopy-corrected fractional SCA (SCAMG), with reference SCA maps (SCAREF) generated from binary classification of TM imagery. SCAMG showed strong agreement with SCAREF; excluding true negatives (where both methods agreed no snow was present) the median percent difference between SCAREF and SCAMG ranged between −2.4% and 4.7%. We simulated runoff for each of the four study years using SRM populated with and calibrated for snow depletion curves derived from SCAREF. We then substituted in each of the MODIS-derived depletion curves. With efficiency coefficients ranging between 0.73 and 0.93, SRM simulation results from the SCAMG runs yielded the best results of all the MODIS products and only slightly underestimated discharge volume (between 7 and 11% of measured annual discharge). SRM simulations that used SCA derived from Collection 6 NDSI Snow Cover also yielded promising results, with efficiency coefficients ranging between 0.73 and 0.91.In conclusion, we recommend that when simulating snowmelt runoff from small basins (<4000 km2) with SRM, we recommend that users select either canopy-corrected MODSCAG or create their own site-specific products from the Collection 6 MOD10A1 NDSI.  相似文献   

16.
针对提高积雪信息提取精度的要求,为了消除积雪覆盖的结冰水体、薄雪覆盖区以及山体阴影等对于积雪提取的影响,以Landsat-7ETM+为数据源,对近红外波段在积雪信息提取中的优越性进行了探索,提出了一种基于近红外波段和归一化差分积雪指数的积雪提取方法。对典型实验区进行了对比实验分析,结果表明,本文算法能有效减少在结冰水体、薄雪覆盖区以及山体阴影等区域的漏分、误分像元数,获得比SNOMAP算法更佳的积雪识别效果,提高积雪提取的准确性。  相似文献   

17.
王亚利  都伟冰  王双亭 《遥感学报》2021,25(7):1434-1444
利用阈值法进行遥感地物提取效率高、准确率高,但是在阈值的选取方面,传统的手动选取阈值,自动化低,需反复试操作,且易受主观因素影响。文中通过期望最大算法对局部冰川区域归一化雪覆盖指数建立高斯混合模型,去除区域内的混合像元类,再利用高斯混合模型模拟纯净化后的冰川类、非冰川类的NDSI分布情况,根据改进后的高斯混合模型分布情况,自动计算出区域内的冰川提取阈值。本文对不同海拔的3个区域进行算法实验,然后将新疆哈密的哈尔里克山冰川提取边界与冰川编目数据进行对比验证。研究结果表明,该方法自动计算的冰川提取阈值结果可靠、精度高,在差异较大区域仍较稳定,有一定的应用价值。  相似文献   

18.
A method for determining areas of most intensive melting within a mountain snowpack is described, based on an inverse relationship between reflectance and age of snow at wavelengths greater than 0.8 μm. Comparisons between the area of snow cover detected on visible and near infrared satellite imagery at different times during the spring thaw, and more specifically differences in position of the snowline, permit identification of the upper boundary of a zone of intensive snow-melt and water discharge from the snow cover. Translated from: Distantsionnyye Issledovaniya rel'yefa Sibiri, A. L. Yanshin and V. N. Sharapov, eds. Novosibirsk: Nauka, 1985, pp. 88-91.  相似文献   

19.
卫星探测信号包含大气中分子和粒子的散射贡献以及地表反射的贡献,在陆地上空二者的贡献相当,并且陆地地表反射率在时间和空间上极度不均一,因此,很难区分二者的各自贡献从而定量提取大气气溶胶和地表反射率,陆地上空气溶胶的反演也一直是一个极具挑战性的课题.而高分辨率卫星资料如TM5的可见光通道能够很好地区分云和云下阴影,如果云是不透光的,在阴影上空,卫星信号仅包含大气散射贡献和地表漫反射贡献,而在邻近的非阴影区上空,卫星探测信号还包含地表直接反射的贡献,根据这个原理,利用辐射传输模式分析了阴影区和非阴影区上空卫星探测的辐射量差别与地表反射率和大气气溶胶的关系,提出一种利用云下阴影来同时提取阴影上空大气气溶胶和地表反射率的单波长反演方案,并对气溶胶单次散射反照率,散射相函数,测量精度以及地表反射率的不均一性进行了敏感性分析.  相似文献   

20.
Snow cover and its monitoring are important because of the impact on important environmental variables, hydrological circulation and ecosystem services. For regional snow cover mapping and monitoring, the MODIS satellite sensors are particularly appealing. However cloud presence is an important limiting factor. This study addressed the problem of cloud cover for time-series in a boreal-Atlantic region where melting and re-covering of snow often do not follow the usual alpine-like patterns. A key requirement in this context was to apply improved methods to deal with the high cloud cover and the irregular spatio-temporal snow occurrence, through exploitation of space-time correlation of pixel values. The information contained in snow presence sequences was then used to derive summary indices to describe the time series patterns. Finally it was tested whether the derived indices can be considered an accurate summary of the snow presence data by establishing and evaluating their statistical relations with morphology and the landscape. The proposed cloud filling method had a good agreement (between 80 and 99%) with validation data even with a large number of pixels missing. The sequence analysis algorithm proposed takes into account the position of the states to fully consider the temporal dimension, i.e. the order in which a certain state appears in an image sequence compared to its neighbourhoods. The indices that were derived from the sequence of snow presence proved useful for describing the general spatio-temporal patterns of snow in Scotland as they were well related (more than 60% of explained deviance) with environmental information such as morphology supporting their use as a summary of snow patterns over time. The use of the derived indices is an advantage because of data reduction, easier interpretability and capture of sequence position-wise information (e.g. importance of short term fall/melt cycles). The derived seven clusters took into account the temporal patterns of the snow presence and they were well separated both spatially and according to the snow patterns and the environmental information. In conclusion, the use of sequences proved useful for analysing different spatio-temporal patterns of snow that could be related to other environmental information to characterize snow regimes regions in Scotland and to be integrated with ground measures for further hydrological and climatological analysis as baseline data for climate change models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号