首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
We compared distribution and abundance by habitat for age-0, young-of-the-year (YOY) winter flounder,Pseudopleuronectes americanus, in three estuaries (Hammonasset River, Navesink River, and Great Bay-Little Egg Harbor) in the northeastern United States to better define essential fish habitat (EFH). Two replicates of five representative habitats were sampled in most estuaries: eelgrass (Zostera marina), unvegetated areas adjacent to eelgrass, macroalgae, (primarilyUlva lactuca), unvegetated areas adjacent to macroalgae, and tidal marsh creeks. Fish were sampled every two weeks, May through October 1995 and 1996, with a beam-trawl (1-m width, 3-mm mesh net). Abundance of YOY winter flounder was highest in the Navesink River estuary and similar between years, but was significantly lower and differed between years in the Great Bay-Little Egg Harbor and Hammonasset River estuaries. Annual temperature differences appear to influence estuary use by YOY. In the years and estuaries studied, where habitat-related differences in abundance were significant, YOY were found in higher densities in unvegetated areas adjacent to eelgrass. The exception was in the Hammonasset River in 1995 when densities were higher in eelgrass. We conclude that the type of habitat most important to YOY winter flounder varies among estuaries and as a result, care should be taken in defining EFH, based only on limited spatial and temporal sampling.  相似文献   

2.
Otter trawl collections of eelgrass habitats in the lower Chesapeake Bay during 1976–1977 produced 14 species of decapod crustaceans. These collections were dominated by palaemonid shrimp (Palaemonetes spp.), blue crabs (Callinectes sapidus), and sand shrimp (Crangon septemspinosa), each of which exhibited unimodal seasonal abundance curves with large summer peaks. Decapod abundance was positively correlated with plant biomass throughout the year. Decapod densities on vegetated bottoms were greater than on unvegetated bottoms, and nighttime abundance on each bottom type was greater than corresponding daytime abundance. Total decapod abundances in Chesapeake Bay eelgrass meadows appear to be much greater than those reported in North Carolina eelgrass or Gulf of Mexico turtlegrass habitats.  相似文献   

3.
Bimonthly trawl samples from eelgrass and nearby unvegetated areas on Cape Cod, Massachusetts, showed greater species richness in eelgrass meadows relative to unvegetated areas, and greater summer abundance in vegetation for decapod crustaceans and fishes. The composition of eelgrass-associated decapods and fishes was dominated by cold-water taxa and was strikingly different from that of the better studied eelgrass meadows of the mid-Atlantic coast. Four of the eight decapod species collected, including the second and third most abundant taxa, do not even appear in collections reported from Chesapeake Bay eelgrass meadows. Similarly, 10 of the 22 fish species taken, including the first and sixth most abundant species, are not reported from Chesapeake Bay eelgrass samples. Cape Cod eelgrass beds seem to play a nursery role for several commercially important fish species, although the nursery function is less obvious than in previously studied mid-Atlantic eelgrass meadows.  相似文献   

4.
Bay scallop (Argopecten irradians) populations existed in Chesapeake Bay until 1933, when they declined dramatically due to a loss of seagrass habitat. Since then, there have been no documented populations within the Bay. However, some anecdotal observations of live bay scallops within the lower Bay suggest that restoration of the bay scallop is feasible. We therefore tested whether translocated adults of the southern bay scallop, Argopecten irradians concentricus, could survive during the reproductive season in vegetated and unvegetated habitats of the Lynnhaven River sub-estuary of lower Chesapeake Bay in the absence of predation. Manipulative field experiments evaluated survival of translocated, caged adult scallops in eelgrass Zostera marina, macroalgae Gracilaria spp., oyster shell, and rubble plots at three locations. After a 3-week experimental period, scallop survival was high in vegetated habitats, ranging from 98% in their preferred habitat, Z. marina, to 90% in Gracilaria spp. Survival in Z. marina was significantly higher than that in rubble (76%) and oyster shell (78%). These findings indicate that reproductive individuals can survive in vegetated habitats of lower Chesapeake Bay when protected from predators and that establishment of bay scallop populations within Chesapeake Bay may be viable.  相似文献   

5.
We examined the community structure of fish and selected decapod crustaceans and tested for within estuary differences among habitats at depths of 0.6 m to 7.9 m, in Great Bay and Little Egg Harbor in southern New Jersey. Several habitat types were identified a priori (e.g., eelgrass, sea lettuce, and marsh creeks) and sampled by trawl (4.9 m headrope, 19-mm mesh wings, 6.3-mm mesh liner), monthly, from June 1988 through October 1989. Repetitive (n=4) 2-min trawl tows were taken at each habitat type from 13 locations. The fishes and decapod crustaceans collected were typical of other Mid-Atlantic Bight estuaries but varied greatly inseasonal abundance and species. In the years sampled, bay anchovy (Anchoa mitchilli) was the dominant species (50.5% of the total number), followed by spot (Leiostomus xanthurus) (10.7%), Atlantic silverside (Menidia menidia) (9.7%), fourspine stickleback (Apeltes quadracus) (5.9%), blue crab (Callinectes sapidus) (4.6%), and northern pipefish (Syngnathus fuscus) (4.2%). The biota were examined by multi-dimensional scaling (MDS) for habitat associations and “best abiotic predictor” of community structure. Percent silt combined with salinity was the most important abiotic determinant of the faunal distributions among habitats. Temperature was a major factor influencing seasonal occurrence of the biota but had less effect on habitat comparisons. The analysis confirmed the distinct nature of the assemblages associated with the habitats, that is, eelgrass, upper estuary subtidal creeks, channels, and open bay areas. Several species were associated with specific habitats: for example,A. quadracus andS. fuscus with eelgrass, clupeids with subtidal creek stations,L. xanthurus with marsh channels, and black sea bass (Centropristis striata) and spotted hake (Urophycis regia) with sponge-peat habitat. Species richness appeared to be positively related to habitat structural heterogeneity. Thus, the best predictors for these estuarine fish and decapod crustacean assemblages were seasonal temperature, percent silt and salinity combined, and the physical heterogeneity of the habitat.  相似文献   

6.
The structure of the fish community associated with eelgrass beds in the lower Chesapeake Bay was studied over a 14 month period. A total of 24,182 individuals in 48 species was collected by otter trawl with Leiostomus xanthurus (spot) comprising 63% of the collection, Syngnathus fuscus (northern pipefish) 14%, Anchoa mitchilli (bay anchovy) 9%, and Bairdiella chrysoura (silver perch) 5%. The density and diversity of fishes were higher in vegetated areas compared to unvegetated areas; fishes were more abundant in night collections Fish abundance and species number increased in the spring and early summer as both water temperature and eelgrass biomass increased and decreased in the fall and winter as temperature and eelgrass biomass decreased. Gill netting revealed some of the top predators in the system, especially the sandbar shark, Carcharhinus milberti. The fish community in the Chesapeake Bay was quite different from North Carolina eelgrass fish communities. Most notable was the rarity of the pinfish, Lagodon rhomboides, which may be a very important predator in the structuring of the epifaunal communities.  相似文献   

7.
Changes in environmental conditions can be accompanied by shifts in the distribution and abundances of organisms. When physical factors become unsuitable for growth ofZostera marina (eelgrass), which is a dominant seagrass species in North America, other more ruderal seagrass species, includingRuppia maritima (widgeongrass), often increase in abundance or replace the dominant species. We report the proliferation of widgeongrass into eelgrass beds in Mission Bay and San Diego Bay in San Diego, California, during the 1997 to 1998 El Niño Southern Oscillation (ENSO). Widgeongrass persisted in these eelgrass beds at least one year after a return to non-ENSO conditions and an increase in eelgrass density. We suggest that a warming of the water in two bays in San Diego by 1.5–2.5°C could result, in a permanent shift in the local seagrass vegetation from eelgrass to widgeongrass. This shift, could, have substantial ecosystem-level ramifications.  相似文献   

8.
Three factors affecting the structure of nekton communities 9fishes and decapod crustaceans) in eelgrass beds were identified and evaluated: contiguous shoreline type, distance from shore, and macrophyte biomass. Throw traps (1 m2) were used to sample eelgrass nekton at seven locations in Great South Bay (New York, U.S.) along Fire Island National Seashore from May through October 1995. Abundances ofGobiosoma ginsburgi, Apeltes quadracus, andOpsanus tau were significantly higher in eelgrass beds adjacent to salt marshes.Menidia menidia, Syngnathus fuscus, Pseudopleuronectes americanus, andPalaemonetes pugio were significantly more abundant in eelgrass adjacent to beaches. Regression analyses indicated thatSyngnathus fuscus, Pseudopleuronectes americanus, andAnguilla rostrata abundances were positively related to eelgrass biomass, andApeltes quadracus andGobiosoma ginsburgi abundances were highest at moderate levels of macroalgae biomass. The distance of an eelgrass bed from shore was also important. Species generally associated with salt marshes (Fundulus heteroclitus, Cyprinodon variegatus, Lucania parva, andPalaemonetes pugio) were more abundant in eelgrass near the marsh shore. Abundances ofApeltes quadracus, Syngnathus fuscus, Menidia menidia, Hippolyte pleuracanthus, andCrangon septemspinosa increased with distance from the shoreline. Shoreline type, distance from shore, and macrophyte biomass appear to affect the abundance and distribution of some nekton species. The effect of shoreline type may be related to the distribution of macrophyte biomass; the biomasses of eelgrass and macroalgae were significantly higher along beach and marsh shorelines, respectively. Explaining within-habitat variability and identifying microhabitat preferences for nekton will aid in the proper design of future studies and habitat restoration efforts.  相似文献   

9.
Environmental factors that influence annual variability and spatial differences (within and between estuaries) in eelgrass meadows (Zostera marine L.) were examined within Willapa Bay, Washington, and Coos Bay, Oregon, over a period of 4 years (1998–2001). A suite of eelgrass metrics were recorded annually at field sites that spanned the estuarine gradient from the marine-dominated to mesohaline region of each estuary. Plant density (shoots m?2) of eelgrass was positively correlated with summer estuarine salinity and inversely correlated with water temperature gradients in the estuaries. Eelgrass density, biomass, and the incidence of flowering plants all increased substantially in Willapa Bay, and less so in Coos Bay, over the duration of the study. Warmer winters and cooler summers associated with the transition from El Niño to La Niña ocean conditions during the study period corresponded with this increase in eelgrass abundance and flowering. Large-scale changes in climate and nearshore ocean conditions may exert a strong regional influence on eelgrass abundance that can vary annually by as much as 700% in Willapa Bay. Lower levels of annual variability observed in Coos Bay may be due to the stronger and more direct influence of the nearshore Pacific Ocean on the Coos Bay study sites. The results suggest profound effects of climate variation on the abundance and flowering of eelgrass in Pacific Northwest coastal estuaries.  相似文献   

10.
We sampled nekton (fishes and decapod crustaceans) in submerged aquatic vegetation (SAV) (Potanogeton nodosus, Najas guadalupensis), in emergent marsh vegetation (Sagittaria spp. andScirpus americanus), and over unvegetated bottom associated with three islands in the Atchafalaya River Delta, Louisiana. The purpose of our study was to quantify nekton densities in these major aquatic habitat types and to document the relative importance of these areas to numerically dominant aquatic organisms. We collected a total of 33 species of fishes and 7 species of crustaceans in 298 1-m2 throw trap samples taken over three seasons: summer (July and August 1994), fall (September and October 1994), and spring (May and June 1995). Fishes numerically accounted for >65% of the total organisms collected. Vegetated areas generally supported much higher nekton densities than unvegetated sites, although bay anchoviesAnchoa mitchilli were more abundant over unvegetated bottom than in most vegetated habitat types. Among vegetation types, most species showed no apparent preference between SAV and marsh. However, inland silversidesMenidia beryllina and freshwater gobiesGobionellus shufeldti were most abundant inScirpus marsh in summer, and blue crabsCallinectes sapidus were most abundant in SAV (Potamogeton) in spring. Several species (sheepshead minnowCyprinodon variegatus, rainwater killifishLucania parva, and blue crab) apparently selected the vegetated backmarsh of islands (opposite of riverside) over stream-sideScirpus marsh. Freshwater gobies, in contrast, were most abundant in streamsideScirpus marsh. Densities of juvenile blue crabs were high (up to 17 m−2) in vegetated delta habitat types and comparable to values reported from more saline regions of Gulf Coast estuaries. Shallow vegetated habitat types of the Atchafalaya River Delta and other tidal freshwater systems of the Gulf Coast may be important nursery areas for blue crabs and other estuarine species.  相似文献   

11.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

12.
The decline of eelgrass (Zostera marina) in Chesapeake Bay in the 1960s and 1970s has been studied in the context of changes in water quality and habitat suitability; little effort has focused on the importance of reproductive ecology in understanding current and potential recovery of these populations. The spatial variability of seed-bank characteristics ofZ. marina in Chesapeake Bay was explored by a reproductive shoot and seed-bank sampling effort. Seed banks were sampled from 105 beds of submerged aquatic vegetation among 12 zones throughout the lower and middle Chesapeake Bay. Number of viable seeds was highly variable among and within zones, with seeds found in all but one zone and also found in cores not containing anyZ. marina shoots. Number of reproductive shoots was also highly variable among and within zones, with differences probably driven by different local environmental conditions. Bay-wide, viable seeds were found in more monospecificZ. marina cores than in mixed species or monospecificRuppia maritima cores suggesting local biological and environmental control on sexual reproduction. Lower densities of viable seeds in the middle Chesapeake Bay region reflect the lower abundance ofZ. marina in these regions and provide context for discussion of historical changes inZ. marina in Chesapeake Bay. While this study focused on a snap shot of the seed bank immediately after establishment, we highlight critical questions for future study that may be important for their conservation and restoration.  相似文献   

13.
We studied the late June–August fish community in extant and former eelgrass (Zostera marina L.) habitats in 15 estuaries of Buzzards Bay, and in Waquoit Bay, Massachusetts, U.S. Our objective was to quantify the effects of eelgrass habitat loss on fish abundance, biomass, species composition and richness, life-history characteristics, and habitat use by examining the response of the fish community to eelgrass loss in Waquoit and Buttermilk Bays over an 11-yr period (1988–1999) and in 14 other embayments of Buzzards Bay during 1993, 1996, and 1998. Sampling sites were located in present-day or historical eelgrass beds and were classified according to eelgrass habitat complexity (zero complexity: no eelgrass; low complexity: <100 eelgrass shoots or <100 g wet weight m−2; high complexity: ≥100 shoots and ≥100 g wet weight m−2). Habitats that had lost eelgrass included a variety of substratum types, from bare mud bottom to dense accumulations of red, brown, and green macroalgae (up to 7,065 g wet weight m−2). Contemporaneous sampling of fish (by otter trawl) and vegetated habitat (by divers) was conducted at each site. Overall, fish abundance, biomass, species richness, dominance, and life history diversity decreased significantly along the gradient of decreasing eelgrass habitat complexity. Loss of eelgrass was accompanied by significant declines in these measures of fish community integrity. Ten of the 13 most common species collected from 1988–1996 in Waquoit and Buttermilk Bays showed maximum abundance and biomass in sites with high eelgrass habitat complexity. All but two common species declined in abundance and biomass with the complete loss of eelgrass.  相似文献   

14.
The urchin,Lytechinus variegatus, when feeding on eelgrass,Zostera marina, produces small, 1–2 mm, particles of the plant material which may accelerate the rate of decomposition. No significant difference was noted in the Mn, Fe, Cu, and Zn content of green eelgrass blades compared to recently voided urchin fecal material derived from eelgrass.  相似文献   

15.
The relative abundances of the seagrass,Zostera marina L., and associated macroalgae were examined for Yaquina Bay, Oregon, U.S.A., to investigate variability in autotroph abundance along the salinity-temperature gradient and the potential for nuisance algal blooms. Possible explanations for the patterns in autotroph abundances were explored through examination of their correlations with the physicochemical characteristics of the water column. Study sites were established in each of three zones in the estuary defined by temperature and salinity and were sampled monthly June through September 1998 and in July 1999.Z. marina and macroalgal cover andZ. marina shoot density were measured in 0.25-m2 plots at each site. After cover estimates and shoot counts were made, material was harvested for determination ofZ. marina and macroalgal biomass. Water column variables were measured from stations near each study site and composited on a depth-averaged, monthly basis for each zone. BothZ. marina and green macroalgal abundance differed between sites, over the summer in 1998, and between years. Seasonal patterns were most obvious forZ. marina at the site closest to the ocean while the pattern in macroalgal abundance suggested a bloom moving up river as summer progressed. The physicochemical characteristics of the zones differed with the season and could be related to the patterns inZ. marina and macroalgal abundance. In particular, salinity was positively correlated withZ. marina abundance, while abundance of both autotrophs was related to light availability.Z. marina biomass ranged 19–109 g dry weight m?2; green macroalgae biomass ranged 5–234 g dry weight m?2. The biomass of the green macroalgae at several sites and dates equaled or exceed that of theZ. marina suggesting the potential for nuisance algal blooms does exist in Yaquina Bay.  相似文献   

16.
17.
A two-year trawling and gill-netting study of vegetated and unvegetated bottoms near Parson’s Island, Maryland and near the mouth of the York River, Virginia was carried out to assess the nursery function of submerged vegetation for populations of fishes and decapod crustaceans in the Chesapeake Bay. Results revealed that vegetated bottoms supported substantially larger numbers of decapods, but not fishes, than unvegetated substrates. The lower Bay grassbed was an important nursery area for juvenile blue crabs, although neither of the grassbeds functioned as a nursery for commercially or recreationally valuable fishes. Our results suggest that: (1) further decreases in lower Bay Seagrass biomass would result in reduced numbers of adult blue crabs, but should not substantially affect populations of valuable fish species; (2) additional decreases in Upper Bay submerged vegetation should not produce dramatic change in the population sizes of either adult blue crabs or fishes.  相似文献   

18.
Seagrass populations are in decline worldwide. Eelgrass (Zostera marina L.), one of California’s native seagrasses, is no exception to this trend. In the last 8 years, the estuary in Morro Bay, California, has lost 95% of its eelgrass. Population bottlenecks like this one often result in severe reductions in genetic diversity; however, this is not always the case. The decline of eelgrass in Morro Bay provides an opportunity to better understand the effects of population decline on population genetics. Furthermore, the failure of recent restoration efforts necessitates a better understanding of the genetic underpinnings of the population. Previous research on eelgrass in California has demonstrated a link between population genetic diversity and eelgrass bed health, ecosystem functioning, and resilience to disturbance and extreme climatic events. The genetic diversity and population structure of Morro Bay eelgrass have not been assessed until this study. We also compare Morro Bay eelgrass to Bodega Bay eelgrass in Northern California. We conducted fragment length analysis of nine microsatellite loci on 133 Morro Bay samples, and 20 Bodega Bay samples. We found no population differentiation between the remaining beds in Morro Bay and no difference among samples growing at different tidal depths. Comparisons with Bodega Bay revealed that Morro Bay eelgrass contains three first-generation migrants from the north, but Morro Bay remains considerably genetically differentiated from Bodega Bay. Despite the precipitous loss of eelgrass in Morro Bay between 2008 and 2017, genetic diversity remains relatively high and comparable to other populations on the west coast.  相似文献   

19.
Ten species, including crustaceans, molluscs and fish, were examined for predacious activity onZostera marina L. seeds and seedlings. Predation was examined initially by offering seeds or seedlings as a sole food source for a maximum period of one week. Species exhibiting predation of 10% or more of the seeds or seedlings were tested further with bits of clam or scallop as an alternative food source. In these experiments, animals were tested in each of three conditions: 1) alternative food plus seeds or seedlings; 2) alternative food alone; 3) seeds or seedlings alone. In the initial experimentsOvalipes ocellatus, Pagurus longicarpus, andPanopeus herbstii preyed on seeds, andIlyanassa obsoleta, Littorina littorea, andP. longicarpus preyed on seedlings. Limited predation occurred, however, when these animals were presented with seeds or seedlings plus an alternative food. These data suggest that several common crab and snail inhabitants of eelgrass meadows are capable of preying on eelgrass seeds and seedlings, but that this activity may be influenced by the availability of an alternative food source.  相似文献   

20.
Land-based eutrophication is often associated with blooms of green macroalgae, resulting in negative impacts on seagrasses. The generality of this interaction has not been studied in upwelling-influenced estuaries where oceanic nutrients dominate seasonally. We conducted an observational and experimental study with Zostera marina L. and ulvoid macroalgae across an estuarine gradient in Coos Bay, Oregon. We found a gradient in mean summer macroalgal biomass from 56.1 g dw 0.25 m−2 at the marine site to 0.3 g dw 0.25 m−2 at the riverine site. Despite large macroalgal blooms at the marine site, eelgrass biomass exhibited no seasonal or interannual declines. Through experimental manipulations, we found that pulsed additions of macroalgae biomass (+4,000 mL) did not affect eelgrass in marine areas, but it had negative effects in riverine areas. In upwelling-influenced estuaries, the negative effects of macroalgal blooms are context dependent, affecting the management of seagrass habitats subject to nutrient inputs from both land and sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号