首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bay scallop (Argopecten irradians) populations existed in Chesapeake Bay until 1933, when they declined dramatically due to a loss of seagrass habitat. Since then, there have been no documented populations within the Bay. However, some anecdotal observations of live bay scallops within the lower Bay suggest that restoration of the bay scallop is feasible. We therefore tested whether translocated adults of the southern bay scallop, Argopecten irradians concentricus, could survive during the reproductive season in vegetated and unvegetated habitats of the Lynnhaven River sub-estuary of lower Chesapeake Bay in the absence of predation. Manipulative field experiments evaluated survival of translocated, caged adult scallops in eelgrass Zostera marina, macroalgae Gracilaria spp., oyster shell, and rubble plots at three locations. After a 3-week experimental period, scallop survival was high in vegetated habitats, ranging from 98% in their preferred habitat, Z. marina, to 90% in Gracilaria spp. Survival in Z. marina was significantly higher than that in rubble (76%) and oyster shell (78%). These findings indicate that reproductive individuals can survive in vegetated habitats of lower Chesapeake Bay when protected from predators and that establishment of bay scallop populations within Chesapeake Bay may be viable.  相似文献   

2.
The relative abundances of the seagrass,Zostera marina L., and associated macroalgae were examined for Yaquina Bay, Oregon, U.S.A., to investigate variability in autotroph abundance along the salinity-temperature gradient and the potential for nuisance algal blooms. Possible explanations for the patterns in autotroph abundances were explored through examination of their correlations with the physicochemical characteristics of the water column. Study sites were established in each of three zones in the estuary defined by temperature and salinity and were sampled monthly June through September 1998 and in July 1999.Z. marina and macroalgal cover andZ. marina shoot density were measured in 0.25-m2 plots at each site. After cover estimates and shoot counts were made, material was harvested for determination ofZ. marina and macroalgal biomass. Water column variables were measured from stations near each study site and composited on a depth-averaged, monthly basis for each zone. BothZ. marina and green macroalgal abundance differed between sites, over the summer in 1998, and between years. Seasonal patterns were most obvious forZ. marina at the site closest to the ocean while the pattern in macroalgal abundance suggested a bloom moving up river as summer progressed. The physicochemical characteristics of the zones differed with the season and could be related to the patterns inZ. marina and macroalgal abundance. In particular, salinity was positively correlated withZ. marina abundance, while abundance of both autotrophs was related to light availability.Z. marina biomass ranged 19–109 g dry weight m?2; green macroalgae biomass ranged 5–234 g dry weight m?2. The biomass of the green macroalgae at several sites and dates equaled or exceed that of theZ. marina suggesting the potential for nuisance algal blooms does exist in Yaquina Bay.  相似文献   

3.
Species richness and abundance of epibenthic fishes and decapod crustaceans were quantified with day-time beam trawl tows and throw traps to provide information on nekton assemblages inZostera marina and unvegetated sandy habitats in northern latitudes. Sampling at randomly selected stations with a 1.0-m beam trawl occurred in eelgrass (Zostera marina) and unvegetated sandy substrates of two mid-coastal Maine estuaries: Casco Bay and Weskeag River. Random 1.0-m throw trap samples were collected inZostera and adjacent unvegetated sandy substrates in Casco Bay and Weskeag River as well. Species richness and faunal abundances were positively associated with the occurrence ofZostera within Weskeag River and Casco Bay estuaries using both gear types. A total of 17 species of fishes and 6 species of decapods were collected in the two estuaries using both gears. Populations of most species were dominated by young-of-the-year and juvenile life history stages. Number and densities of fishes were higher inZostera, due primarily to the abundances of eelgrass residents such as threespine,Gasterosteus aculeatus, and fourspine sticklebacks,Apeltes quadracus, grubby,Myoxocephalus aenaeus, and cunner,Tautogolabrus adspersus. Crangon septemspinosa dominated decapod catch per unit effort and density in both estuaries and habitats.  相似文献   

4.
The distribution ofVibrio parahaemolyticus in Chesapeake Bay during the warmer weather of the summer months was examined. This species was found throughout the Chesapeake Bay and its tributaries, even in areas of very low salinity. Counts of this species ranged from 0.04 per 100 ml to 46 per 100 ml in the water column and 2.03 to ≥2.4×103 per 100 cc of sediment. A variety of physical, chemical and bacteriological properties associated with the incidence and distribution ofV. parahaemolyticus were examined and salinity was found to be the major influence among the factors examined. Correlation and regression analysis showed that the population size of this species increased with increasing salinity in the estuary.  相似文献   

5.
The fringing environments of lower Chesapeake Bay include sandy shoals, seagrass meadows, intertidal mud flats, and marshes. A characterization of a fringing ecosystem was conducted to provide initialization and calibration data for the development of a simulation model. The model simulates primary production and material exchange in the littoral zone of lower Chesapeake Bay. Carbon (C) and nitrogen (N) properties of water and sediments from sand, seagrass, intertidal silt-mud, and intertidal marsh habitats of the Goodwin Islands (located within the Chesapeake Bay National Estuarine Research Reserve in Virginia, CBNERR-VA) were determined seasonally. Spatial and temporal differences in sediment microalgal biomass among the habitats were assessed along with annual variations in the distribution and abundance ofZostera marina L. andSpartina alterniflora Loisel. Phytoplankton biomass displayed some seasonality related to riverine discharge, but sediment microalgal biomass did not vary spatially or seasonally. Macrophytes in both subtidal and intertidal habitats exhibited seasonal biomass patterns that were consistent with other Atlantic estuarine ecosystems. Marsh sediment organic carbon and inorganic nitrogen differed significantly from that of the sand, seagrass, and silt habitats. The only biogeochemical variable that exhibited seasonality was low marsh NH4 +. The subtidal sediments were consistent temporally in their carbon and nitrogen content despite seasonal changes in seagrass abundance. Eelgrass has a comparatively low C:N ratio and is a potential N sink for the ecosystem. Changes in the composition or size of the vegetated habitats could have a dramatic influence over resource partitioning within the ecosystem. A spatial database (or geographic information system, GIS) of the Goodwin Islands site has been initiated to track long-term spatial habitat features and integrate model output and field data. This ecosystem characterization was conducted as part of efforts to link field data, geographic information, and the dynamic simulation of multiple habitats. The goal of these efforts is to examine ecological structure, function, and change in fringing environments of lower Chesapeake Bay.  相似文献   

6.
An historical summary of the distribution and abundance of submerged aquatic vegetation (SAV) in the Chesapeake Bay is presented. Evidence suggests that SAV has generally been common throughout the bay over the last several hundred years with several fluctuations in abundance. The decline ofZostera marina (eelgrass) in the 1930’s and the rapid expansion ofMyriophyllum spicatum (watermilfoil) in the late 1950’s and early 1960’s were two significant events involving a single species. Since 1965, however, there has been a significant reduction of all species in most sections of the bay. Declines were first observed in the Patuxent, Potomac and sections of other rivers in the Maryland portion of the Bay between 1965 and 1970. Dramatic reductions were observed over the entire length of the bay from 1970 to 1975. Particularly severe losses were observed at the head of the bay around Susquehanna Flats as well as in numerous rivers along Maryland’s eastern and western shores. Changes in the lower, Virginia portion of the bay occurred primarily in the western tributaries. Greatest losses of vegetation occurred in the years following Tropical Storm Agnes in 1972. Since 1975 little regrowth has been observed in the Chesapeake Bay. Other areas along the Atlantic Coast of the U.S. during the same period have experienced no similar widespread decline. It thus appears that the factors affecting the recent changes in distribution and abundance of submerged vegetation in the bay are regional in nature. Causes for this decline may be related to changes in water quality, primarily increased eutrophication and turbidity.  相似文献   

7.
Some confusion exists concerning the early life history of ladyfish,Elops saurus, as a result of the use of confusing terms in describing the three morphologically and ecologically distinct growth phases of this species. This has resulted in conflicting data on the occurrence of stage I (leptocephali) and stage II (early metamorphic) larvae in oligohaline and mesohaline estuarine zones. The early life history ofE. saurus is reviewed relative to the collection of 17 stage II larvae at the freshwater transition zone of the James River, Virginia. There are no known spawning populations ofE. saurus north of Cape Hatteras, North Carolina. These collections represent the first recurrent record north of Cape Hatteras and for Chesapeake Bay.  相似文献   

8.
Restoration of the Chesapeake Bay ecosystem has been a priority for residents and governments of the bay watershed for the past decade. One obstacle in the efforts to “save the bay” has been continuing nutrient enrichment from agricultural and sewer runoff. The attainability of a mandated 40% nutrient reduction goal has yet to be seen. Furthermore, disappearance of certain organisms may have had an adverse effect on the resilience of the ecosystem. The Eastern oyster (Crassostrea virginica), once abundant in Chesapeake Bay, was a vital part of the food web, processing excess phytoplankton and depositing materials on the bottom. Over harvesting and disease have decimated the native oyster population. The introduction of an exotic species, the Japanese oyster (Crassostrea gigas), may be a way to reestablish a robust oyster community in the bay. The literature on the role of bivalve molluscs in estuarine ecosystems shows that they are an essential part of healthy estuaries around the world. A comparison ofC. virginica andC. gigas in terms of temperature and salinity tolerance and resistance to disease shows thatC. virginica is ideally adapted to conditions in Chesapeake Bay, but it is unable to stave off the endemic diseases, whereasC. gigas is adapted to conditions in the lower bay only but is much less susceptible to the same diseases. We conclude that the potential introduction ofC. gigas to Chesapeake Bay would be limited by the Japanese species’ physiological requirements but that the revitalization of a bivalve population is imperative to the restoration of ecosystem function.  相似文献   

9.
Seagrass populations have been declining globally, with changes attributed to anthropogenic stresses and, more recently, negative effects of global climate change. We examined the distribution of Zostera marina (eelgrass) dominated beds in the York River, Chesapeake Bay, VA over an 8-year time period. Using a temperature-dependent light model, declines in upriver areas were associated with higher light attenuation, resulting in lower light availability relative to compensating light requirements of Z. marina compared with downriver areas. An inverse relationship was observed between SAV growth and temperature with a change between net bed cover increases and decreases for the period of 2004–2011 observed at approximately 23 °C. Z. marina-dominated beds in the lower river have been recovering from a die-off event in 2005 and experienced another near complete decline in 2010, losing an average of 97 % of coverage of Z. marina from June to October. These 2010 declines were attributed to an early summer heat event in which daily mean water temperatures increased from 25 to 30 °C over a 2-week time period, considerably higher than previous years when complete die-offs were not observed. Z. marina recovery from this event was minimal, while Ruppia maritima (widgeongrass) expanded its abundance. Water temperatures are projected to continue to increase in the Chesapeake Bay and elsewhere. These results suggest that short-term exposures to rapidly increasing temperatures by 4–5 °C above normal during summer months can result in widespread diebacks that may lead to Z. marina extirpation from historically vegetated areas, with the potential replacement by other species.  相似文献   

10.
Harmful algal blooms in the Chesapeake Bay and coastal bays of Maryland, USA, are not a new phenomenon, but may be increasing in frequency and diversity. Outbreaks ofPfiesteria piscicida (Dinophyceae) were observed during 1997 in several Chesapeake Bay tributaries, while in 1998,Pfiesteria-related events were not found but massive blooms ofProrocentrum minimum (Dinophyceae) occurred. In 1999,Aureococcus anophagefferens (Pelagophyceae) developed in the coastal bays in early summer in sufficient densities to cause a brown tide. In 1997, toxicPfiesteria was responsible for fish kills at relatively low cell densities. In 1998 and 1999, the blooms ofP. minimum andA. anophagefferens were not toxic, but reached sufficiently high densities to have ecological consequences. These years differed in the amount and timing of rainfall events and resulting nutrient loading from the largely agricultural watershed. Nutrient loading to the eastern tributaries of Chesapeake Bay has been increasing over the past decade. Much of this nutrient delivery is in organic form. The sites of thePfiesteria outbreaks ranked among those with the highest organic loading of all sites monitored bay-wide. The availability of dissolved organic carbon and phosphorus were also higher at sites experiencingA. anophagefferens blooms than at those without blooms. The ability to supplement photosynthesis with grazing or organic substrates and to use a diversity of organic nutrients may play a role in the development and maintenance of these species. ForP. minimum andA. anophagefferens, urea is used preferentially over nitrate.Pfiesteria is a grazer, but also has the ability to take up nutrients directly. The timing of nutrient delivery may also be of critical importance in determining the success of certain species.  相似文献   

11.
Decreases in seagrass abundance reported from numerous locations around the world suggest that seagrass are facing a global crisis. Declining water quality has been identified as the leading cause for most losses. Increased public awareness is leading to expanded efforts for conservation and restoration. Here, we report on abundance patterns and environmental issues facing eelgrass (Zostera marina), the dominant seagrass species in the Chesapeake Bay region in the mid-Atlantic coast of the USA, and describe efforts to promote its protection and restoration. Eelgrass beds in Chesapeake Bay and Chincoteague Bay, which had started to recover from earlier diebacks, have shown a downward trend in the last 5–10 years, while eelgrass beds in the Virginia coastal bays have substantially increased in abundance during this same time period. Declining water quality appears to be the primary reason for the decreased abundance, but a recent baywide dieback in 2005 was associated with higher than usual summer water temperatures along with poor water clarity. The success of eelgrass in the Virginia coastal bays has been attributed, in part, to slightly cooler water due to their proximity to the Atlantic Ocean. A number of policies and regulations have been adopted in this region since 1983 aimed at protecting and restoring both habitat and water quality. Eelgrass abundance is now one of the criteria for assessing attainment of water clarity goals in this region. Numerous transplant projects have been aimed at restoring eelgrass but most have not succeeded beyond 1 to 2 years. A notable exception is the large-scale restoration effort in the Virginia coastal bays, where seeds distributed beginning in 2001 has initiated an expanding recovery process. Our research on eelgrass abundance patterns in the Chesapeake Bay region and the processes contributing to these patterns have provided a scientific background for management strategies for the protection and restoration of eelgrass and insights into the causes of success and failure of restoration efforts that may have applications to other seagrass systems.  相似文献   

12.
Estuarine seagrass ecosystems provide important habitat for fish and invertebrates and changes in these systems may alter their ability to support fish. The response of fish assemblages to alteration of eelgrass (Zostera marina) ecosystems in two ecoregions of the Mid-Atlantic Bight (Buzzards Bay and Chesapeake Bay) was evaluated by sampling historical eelgrass sites that currently span a broad range of stress and habitat quality. In two widely separated ecoregions with very different fish faunas, degradation and loss of submerged aquatic vegetation (SAV) habitat has lead to declines in fish standing stock and species richness. The abundance, biomass, and species richness of the fish assemblage were significantly higher at sites that have high levels of eelgrass habitat complexity (biomass >100 wet g m?2; density <100 shotts m?2) compared to sites that have reduced eelgrass (biomass <100 wet g m?2; density <100 shoots m?2) or that have completely lost eelgrass. Abundance, biomass, and species richness at reduced eelgrass complexity sites also were more variable than at high eelgrass complexity habitats. Low SAV complexity sites had higher proportions of pelagic species that are not dependent on benthic habitat structure for feeding or refuge. Most species had greater abundance and were found more frequently at sites that have eelgrass. The replacement of SAV habitats by benthic macroalgae, which occurred in Buzzards Bay but not Chesapeake Bay, did not provide an equivalent habitat to seagrass. Nutrient enrichment-related degradation of eelgrass habitat has diminished the overall capacity of estuaries to support fish populations.  相似文献   

13.
Geochemical (total nitrogen, total organic carbon, total phosphorus, total sulfur, and carbon and nitrogen stable isotopes) and selected biotic (diatom, foraminifera, polychaete) indicators preserved in two estuarine sediment cores from the mesohaline Chesapeake Bay provide a history of alterations in the food web associated with land-use change. One core from the mouth of the Chester River (CR) (collected in 2000) represents a 1,000-year record. The second core (collected in 1999), from the Chesapeake Bay’s main stem opposite the Choptank River (MD), represents a 500-year record. As European settlers converted a primarily forested landscape to agriculture, sedimentation rates increased, water clarity decreased, salinity decreased in some areas, and the estuarine food web changed into a predominantly planktonic system. Representatives of the benthic macrofaunal community (foraminifera and the polychaetes Nereis spp.) were affected by local changes before there were widespread landscape alterations. Nitrogen stable isotope records indicated that land-use changes affected nitrogen cycling beginning in the early 1700s. Extreme changes were evident in the mid-nineteenth century following widespread deforestation and since the mid-twentieth century reflecting heightened eutrophication as development increased in the Chesapeake Bay watershed. Results also demonstrate how paleoecological records vary due to the degree of terrestrial inputs of freshwater runoff and nutrients at core locations within the Chesapeake Bay.  相似文献   

14.
The seasonal abundance and spatial distribution of eggs and early larvae of the bay anchovy,Anchoa mitchilli, and the weakfish,Cynoscion regalis, were determined from plankton collections taken during 1971–1976 in the lower Chesapeake Bay. Eggs and larvae of the bay anchovy,Anchoa mitchilli, dominated the ichthyoplankton, making up 96% of the total eggs and 88% of all larvae taken. A comparison of egg and larval densities from the lower Chesapeake Bay to existing data from other East Coast estuaries suggested that Chesapeake Bay is a major center of spawning activity for this species.Anchoa mitchilli spawning commenced in May when mean water column temperatures approached 17°C and abruptly ceased after August. Eggs and early larvae presented a continuous distribution throughout the study area during these months. Eggs and larvae of several sciaenid species, especiallyC. regalis, ranked second in numerical abundance. Larval weakfish were consistently taken in late summer of each sampling year but peak abundance and distribution was observed in August 1971. Sciaenid eggs exhibited a distinct polyhaline distribution with greatest concentrations observed at the Chesapeake Bay entrance or along the Bay eastern margin. Analysis of sciaenid egg morphometry and larval occurrence suggested spawning activity of at least four species. Additional important species represented by eggs and/or larvae in the lower Chesapeake Bay wereHypsoblennius hentzi, Gobiosoma ginsburgi, Trinectes maculatus, Symphurus plagiusa andParalichthys dentatus with the remaining species occurring infrequently.  相似文献   

15.
Environmentally sensitive benthic foraminifera (protists) from Chesapeake Bay were used as bioindicators to estimate the timing and degree of changes in dissolved oxygen (DO) over the past five centuries. Living foraminifers from 19 surface samples and fossil assemblages from 11 sediment cores dated by210Pb,137Cs,14C, and pollen stratigraphy were analyzed from the tidal portions of the Patuxent, Potomac, and Choptank Rivers and the main channel of the Chesapeake Bay.Ammonia parkinsoniana, a facultative anaerobe tolerant of periodic anoxic conditions, comprises an average of 74% of modern Chesapeake foraminiferal assemblages (DO-0.47 and 1.72 ml l−1) compared to 0% to 15% of assemblages collected in the 1960s. Paleoecological analyses show thatA. parkinsoniana was absent prior to the late 17th century, increased to 10–25% relative frequency between approximately 1670–1720 and 1810–1900, and became the dominant (60–90%) benthic formaniferal species in channel environments beginning in the early 1970s. Since the 1970s, deformed tests ofA. parkinsoniana occur in all cores (10–20% ofAmmonia), suggesting unprecedented stressful benthic conditions. These cores indicate that prior to the late 17th century, there was limited oxygen depletion. During the past 200 years, decadal scale variability in oxygen depletion has occurred, as dysoxic (DO=0.1–1.0 ml l−1), perhaps short-term anoxic (DO<0.1 ml l−1) conditions developed. The most extensive (spatially and temporally) anoxic conditions were reached during the 1970s. Over decadal timescales, DO variability seems to be linked closely to climatological factors influencing river discharge; the unprecedented anoxia since the early 1970s is attributed mainly to high freshwater flow and to an increase in nutrient concentrations from the watershed.  相似文献   

16.
The objective of this study was to gain baseline population data on the genetic diversity and differentiation of eelgrass (Zostera marïna L.) populations in the Chesapeake and Chincoteague bays. Natural and transplanted eelgrass beds were compared using starch gel electrophoresis of allozymes. Transplanted eelgrass beds were not reduced in genetic diversity compared with natural beds. Inbreeding coefficients (FIS) indicated that transplanted eelgrass beds had theoretically higher levels of outcrossing than natural beds, suggesting the significance of use of seeds as donor material and of seedling recruitment following transplantation diebacks. Natural populations exhibited very great genetic structure (FST=0.335), but transplanted beds were genetically similar to the donor bed and each other. Genetic diversity was lowest in Chincoteague Bay, reflecting recent restoration history since the 1930s wasting disease and geographical isolation from other east coast populations. These data provide a basis for developing a management plan for conserving eelgrass genetic diversity in the Chesapeake Bay and for guiding estuary-wide restoration efforts. It will be important to recognize that the natural genetic diversity of eelgrass in the estuary is distributed among various populations and is not well represented by single populations.  相似文献   

17.
Aerial surveys were conducted in the lower Chesapeake Bay during 1986–1989 to estimate abundance and examine the distribution of the cownose ray,Rhinoptera bonasus, during its seasonal residence, May–October. Most of the survey effort was concentrated in the lower and mid-bay regions. Cownose rays appeared uniformly distributed across the bay during mid-summer, but were more abundant in the eastern portion of the bay during migration. North-south distribution varied and reflected the general seasonal migration pattern. Mean abundance increased stepwise monthly from June through September and declined dramatically in October with their emigration from the bay. Abundance estimates from individual surveys varied. The greatest range of individual survey abundance estimates occurred in September (0–3.7×107 cownose rays0 due to high variation in school size and abundance between surveys. Monthly mean cownose ray abundance ranged from 0 in May and November to an estimated maximum of 9.3×106 individuals in September. The magnitude of the population suggests that the cownose ray plays an important role in the trophic dynamics of the Chesapeake Bay ecosystem. The historical data were insufficient to determine whether the population has increased, but these surveys provided the baseline data which would allow future investigation of cownose ray population dynamics in lower Chesapeake Bay.  相似文献   

18.
Atypical fungal vesicles and arbuscules were found within the roots of the submersed macrophyteVallisneria americana collected at the tidal fresh headwaters of the Chesapeake Bay (Susquehanna flats) in July 1991 and 1992, suggesting the presence of a myocrrhizal association. In order to determine whether the presence of the fungus facilitates phosphorus uptake and plant growth,V. americana cores were placed in separate pots in an aquatic greenhouse and were given one of the following treatments: control, fungicide (Captan) application, or fungicide plus phosphate enrichment. Fungicide addition resulted in significantly decreased shoot elongation rates and chlorophylla production; phosphate enrichment plus fungicide restored plant growth to control levels. Low nitrogen in plant tissues of fungicide treatment groups suggests nitrogen uptake may also be promoted by the fungal association. A second laboratory experiment withV. americana grown from turions demonstrated the negative effects of the fungicide are only evident on plant growth when fungal infection is present, indicating the fungicide was not directly toxic to the macrophyte, but acted by disrupting a mycorrhizal relationship. This study supports the hypothesis that mycorrhizae are important in nutrient acquisition and growth ofVallisneria in an estuarine environment.  相似文献   

19.
Three quarters of the global human population will live in coastal areas in the coming decades and will continue to develop these areas as population density increases. Anthropogenic stressors from this coastal development may lead to fragmented habitats, altered food webs, changes in sediment characteristics, and loss of near-shore vegetated habitats. Seagrass systems are important vegetated estuarine habitats that are vulnerable to anthropogenic stressors, but provide valuable ecosystem functions. Key to maintaining these habitats that filter water, stabilize sediments, and provide refuge to juvenile animals is an understanding of the impacts of local coastal development. To assess development impacts in seagrass communities, we surveyed 20 seagrass beds in lower Chesapeake Bay, VA. We sampled primary producers, consumers, water quality, and sediment characteristics in seagrass beds, and characterized development along the adjacent shoreline using land cover data. Overall, we could not detect effects of local coastal development on these seagrass communities. Seagrass biomass varied only between sites, and was positively correlated with sediment organic matter. Epiphytic algal biomass and epibiont (epifauna and epiphyte) community composition varied between western and eastern regions of the bay. But, neither eelgrass (Zostera marina) leaf nitrogen (a proxy for integrated nitrogen loading), crustacean grazer biomass, epifaunal predator abundance, nor fish and crab abundance differed significantly among sites or regions. Overall, factors operating on different scales appear to drive primary producers, seagrass-associated faunal communities, and sediment properties in these important submerged vegetated habitats in lower Chesapeake Bay.  相似文献   

20.
Changes in seagrass food-web structure can shift the competitive balance between seagrass and algae, and may alter the flow of energy from lower trophic levels to commercially important fish and crustaceans. Yet, trophic relationships in many seagrass systems remain poorly resolved. We estimated the food web linkages among small predators, invertebrate mesograzers, and primary producers in a Chesapeake Bay eelgrass (Zostera marina) bed by analyzing gut contents and stable C and N isotope ratios. Though trophic levels were relatively distinct, predators varied in the proportion of mesograzers consumed relative to alternative prey, and some mesograzers consumed macrophytes or exhibited intra-guild predation in addition to feeding on periphyton and detritus. These findings corroborate conclusions from lab and mesocosm studies that the ecological impacts of mesograzers vary widely among species, and they emphasize the need for taxonomic resolution and ecological information within seagrass epifaunal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号