首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze the results of numerical calculations performed according to the three-dimensional interdisciplinary model of an ecological system of the Black-Sea shelf zone near the estuary of the Danube. The complete system of equations of hydrothermodynamics is solved together with transport equations of the advection-diffusion-reaction type used to describe the transformation of a substance (nitrogen) between the components of the characteristic vectors of the ecosystem: plankton, detritus, and biogenic elements (nitrates). We describe the distinctive features of the circumcontinental distribution of components obtained as a result of numerical experiments and present arguments for the conclusion that the ecosystem of the Danube estuary water area plays the role of a buffer zone between the press of the Danubian biogenic pollutions and the neighbouring areas of the shelf zone and open sea. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

2.
The aim of this study was to identify potential environmental “key factors” causing spatial distributions of macrozoobenthic communities to improve our understanding concerning benthic biotic/abiotic interactions and ecosystem functioning. To this end benthic and environmental data, collected over a period of 4 years (2003–2006) at 191 sampling stations in the Pomeranian Bay (southwest Baltic Sea), were analysed. This represents the most comprehensive study performed in this respect in the Baltic Sea up to date and also the necessary first step towards a model able to predict macrofaunal distributions regarding autecological species-environment interactions. Based on species abundances, distinctive macrobenthic community patterns were identified and evaluated via univariate correlation methods, multivariate numerical classification and ordination techniques (e.g. PCA, CCA). These patterns were caused by clear responses of several benthic species to certain prevailing environmental conditions. The observed distribution of selected species followed a strong gradient of depth and was explained best by the sediment parameters total organic carbon (TOC), median grain size and sorting. By using different statistical methods these abiotic/biotic interactions were modelled allowing to extend our knowledge concerning ecosystem functioning, and provide a tool to assess natural and anthropogenic forced changes in species distribution.  相似文献   

3.
The North Sea regime shift: Evidence, causes, mechanisms and consequences   总被引:2,自引:0,他引:2  
This paper focuses on the ecosystem regime shift in the North Sea that occurred during the period 1982–1988. The evidence for the change is seen from individual species to key ecosystem parameters such as diversity and from phytoplankton to fish. Although many biological/ecosystem parameters and individual species exhibited a stepwise change during the period 1983–1988, some indicators show no evidence of change. The cause of the regime shift is likely to be related to pronounced changes in large-scale hydro-meteorological forcing. This involved activating of complex intermediate physical mechanisms which explains why the exact timing of the shift can vary from 1982 to 1988 (centred around two periods: 1982–1985 and 1987–1988) according to the species or taxonomic group. Increased sea surface temperature and possibly change in wind intensity and direction at the end of the 1970s in the west European basin triggered a change in the location of an oceanic biogeographical boundary along the European continental shelf. This affected both the stable and substrate biotope components of North Sea marine ecosystems (i.e. components related to the water masses and components which are geographically stable) circa 1984. Large-scale hydro-climatic forcing also modified local hydro-meteorological parameters around the North Sea after 1987 affecting the stable biotope components of North Sea ecosystems. Problems related to the detection and quantification of an ecosystem regime shift are discussed.  相似文献   

4.
The development of off-shore wind farms along the coastline of north-west Europe is rapidly increasing; it is therefore important to study how this will affect the marine environment. The present study modelled the growth and feed-backs of blue mussels in natural beds and on turbine foundations in an off-shore wind farm (OWF) located in a shallow coastal ecosystem by coupling a dynamic energy budget (DEB) model to a small-scale 3D hydrodynamic–biogeochemical model. The model results showed that blue mussels located higher up in the water column on turbine pillars achieved a 7–18 times higher biomass than those located on the scour protection because the former experience an enhanced advective food supply. Secondly, the high biomasses of blue mussels on foundations created local ‘hot spots’ of biological activity and changed ecosystem dynamics due to their feed-backs e.g. ingestion of microplankton and copepods, excretion of ammonium and egestion of faecal pellets. The model results were supported by field measurements around foundations of Chl a concentrations and biomasses of the fauna community. Our study emphasised that OWFs seem to be particularly favourable for blue mussels in the western Baltic Sea and that the functioning of the OWFs as artificial reef ecosystems depends upon how the blue mussels interact with their local pelagic and benthic environment.  相似文献   

5.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

6.
The energy flow through the epibenthic community on a shallow soft bottom in Gullmar Fjord, Sweden, is evaluated. The interaction between the dominant epibenthic predators: brown shrimp Crangon crangon L., juvenile plaice Pleuronectes platessa L. and sand goby Pomatoschistus minutus (Pallas), and their food supply is examined, and the fate of the biomass produced within the shallow water ecosystem is described. A steady state model is presented which describes the amounts, pathways and annual rates of energy flowing through the shallow water community. Field and laboratory studies are performed in order to validate the consumption rates of the fish and shrimp species. The brown shrimp occupies a key position in this ecosystem. It represents food, consisting of newly settled juveniles, both to its conspecifics and to other epibenthic species in shallow water. Sixty to eighty per cent of the annual production of shrimps in shallow water is consumed by the epibenthic predators. The brown shrimp constitutes a main predator on other epibenthic species and, by providing such feedback loops, the shrimp constitutes a highly significant regulator of epibenthic carnivores in shallow water. A loss from the benthic community will occur due to predation, maximally amounting to 24–34% of the annual production, which is a high value compared to similar areas. A dynamic simulation is also performed in order to calculate the seasonal change of energy in the epibenthic community in shallow water. Based on mortality calculations, the total output from the shallow nursery should amount to 0·6 g m−2 year−1 (dry wt).  相似文献   

7.
This work investigates the alkaline phosphatase activity in a littoral marine ecosystem (Toulon Bay and Le Niel Bay, France) in order to study its biochemical characteristics with respect to pH, sea water composition and phosphate sensitivity. We also characterise the active forms in sea water and determine the extent to which zooplankton generate phosphatase activity with respect to other plankton classes. In Toulon Bay, phosphatase was produced mostly by the microplankton fraction (>90 μm), accounting for more than 90% of total activity. In contrast, most of the phosphatase activity in Le Niel Bay was generated by the nanoplankton fraction (5–90 μm) and the picoplankton fraction (0.25–5 μm). The microplankton enzymes had non Michaelis-Menten kinetics suggesting the involvement of multiple enzyme processes with distinct kinetic constants. This activity is in major part secreted into the sea water and is stimulated by the ionic strength and the pH of the sea water. Cypris larvae of the genus Balanus played a special role in this release. For the nanoplankton and picoplankton, part of this activity was due to non-secreted enzymes, probably bound to membranes or occurring intracellularly. Moreover, nano and picoplankton phosphatase required higher pH than microplankton enzyme. For all plankton size classes, there was no activity at low pH, suggesting that acid phosphatases were not involved in reactions with substrates dissolved in water.  相似文献   

8.
The flow characteristics of tidal jets induced by a Tidal-Jet Generator (TJG) are investigated using a finite-difference numerical scheme, named Navier–Stokes (NS)–Marker and Cell (MAC)-TIDE, based on the fully 3D NS equations. The TJG is an enclosed rectangular breakwater, which has vertical opening and a large enclosed volume inside. During both phases of tide, strong and uni-directional jets can be obtained locally from the inlet of the TJG, due to the water level difference between the inner and outer sides of TJG.The computed results are extensively compared with three other independently developed numerical models; 3D-ADI, DVM, and CIP-CSF. These models are based on quasi-3D, 2D depth-averaged, and fully 3D NS equations, respectively. It is seen that the present fully 3D numerical model NS–MAC-TIDE can predict the maximum intensity of inlet velocity with higher accuracy than the other numerical models when compared with the empirical function proposed from the experiments. The numerical simulations based on NS–MAC-TIDE can reproduce successfully the processes of generation, development, and dissipation of tidal jets. The effects of gap opening on the main characteristics of the tidal jet flow are assessed. Through numerical assessment, it is also clearly demonstrated that the residual time of a pollutant distributed around the front of the TJG can be decreased by significant amount due to the locally induced tidal jet. The TJG can thus utilize tidal energy for water purification in local marine environment by providing a flushing mechanism.  相似文献   

9.
An eddy-resolving numerical simulation for the Peru–Chile system between 1993 and 2000 is analyzed, mainly for the 1997–1998 El Niño. Atmospheric and lateral oceanic forcings are realistic and contain a wide range of scales from days to interannual. The solution is validated against altimetric observations and the few in situ observations available. The simulated 1997–1998 El Niño closely resembles the real 1997–1998 El Niño in its time sequence of events. The two well-marked, sea-level peaks in May–June and November–December 1997 are reproduced with amplitudes close to those observed. Other sub-periods of the El Niño seem to be captured adequately. Simple dynamical analyses are performed to explain the 1997–1998 evolution of the upwelling in the model. The intensity of the upwelling appears to be determined by an interplay between alongshore, poleward advection (related to coastal trapped waves) and wind intensity, but also by the cross-shore geostrophic flow and distribution of the water masses on a scale of 1000 km or more (involving Rossby waves westward propagation and advection from equatorial currents). In particular, the delay of upwelling recovery until fall 1998 (i.e., well after the second El Niño peak) is partly due to the persistent advection of offshore stratified water toward the coast of Peru. Altimetry data suggest that these interpretations of the numerical solution also apply to the real ocean.  相似文献   

10.
Coastal disposal of waste water can be idealized as the problem of a jet under random waves. Understanding of this phenomenon is important for engineering design and environmental impact assessment. The present study aims to simulate such phenomenon by using a 3D numerical model based on the solution of the spatially filtered and σ-transformed Navier–Stokes equations with dynamic sub-grid scale model of turbulence. The numerical solution procedures are split into three steps: advection, diffusion and pressure propagation, and a Lagrange–Euler method is used to track the free surface. Cases of vertical jet in stagnant water, pure random waves and vertical jet in random waves are simulated with the same grid system for comparative study. Different methods of generating jet inflow turbulence have been tested and the method of jet azimuthal modes is found to be the optimum. The numerical results reproduce the distinct characteristics of jet in waves, including faster decay of centerline velocity, wider lateral spreading and the occurrence of wave tractive mechanism.  相似文献   

11.
The net uptake of inorganic carbon and nitrogen, phosphate and silicate and the net production of dissolved oxygen and organic carbon, nitrogen and phosphorus have been examined in the Ría de Arousa, a large coastal embayment in the NW Iberian upwelling system. Fluxes and net budgets were estimated with a non-stationary 2-D box model [Rosón, G., Álvarez-Salgado, X.A., Pérez, F.F., 1997. A non-stationary box-model to determine residual flows in a partially mixed estuary, based on both thermoline properties. Application to the Ría de Arousa (NW Spain). Estuarine, Coastal Shelf Sci., 44, 249–262] and the distributions of the different species acquired twice a week between May and October 1989 [Rosón, G., Pérez, F.F., Álvarez-Salgado, X.A., Figueiras, F.G., 1995. Variation of both thermohaline and chemical properties in an estuarine upwelling ecosystem: Ría de Arousa: 1. Time Evolution. Estuarine, Coastal Shelf Sci., 41, 195–213]. High N/P and N/Si net uptake ratios of 21 and 3.2 were observed during the upwelling season. The rapid recycling of phosphorus compared to nitrogen and the recurrent succession from pioneer diatoms (Si/N1) to red-tide forming species (Si/N=0) following the periodic upwelling pulses are the reasons behind the observed ratios. The molar ratios of dissolved oxygen production to inorganic carbon (−1.48) and nitrogen uptake (−10.2) during the upwelling season agree with the Redfield stoichiometry. On the contrary, net nutrient regeneration occurred with N/P, N/Si and O2/C ratios of 7.4, 1.0 and −1.02 during an intense autumn downwelling event. These low ratios are due to the release of an excess of phosphate, silicate and CO2 from the sediments. Conversely, the production of inorganic nitrogen is associated to the consumption of dissolved oxygen following a Redfield ratio of −10.0. Whereas the C/N ratio of the suspended organic matter produced during the upwelling season and consumed during the autumn downwelling event is 6.3–6.7, the N/P ratio changes from 11 during the upwelling season to 15 during the autumn downwelling. About 1/5 of the dissolved oxygen produced during the upwelling season and consumed during the autumn downwelling is delivered to and came from the atmosphere, respectively. Despite the C/N/P/O2 ratios differ from the Redfield values, the high correlation between nutrient salts consumption and dissolved oxygen production (r2=0.74–0.86) allow to estimate an average net ecosystem production (NEP) from the individual elements. The 3–4 d time-scale variability of the average NEP depends on the 2-week periodicity of upwelling pulses, the heat exchange across the sea surface and the stability of the water column. As much as 70% of the total variability can be explained with a linear combination of these parameters.  相似文献   

12.
Wet atmospheric deposition of dissolved N, P and Si species is studied in well-mixed coastal ecosystem to evaluate its potential to stimulate photosynthetic activities in nutrient-depleted conditions. Our results show that, during spring, seawater is greatly depleted in major nutrients: Dissolved Inorganic Nitrogen (DIN), Dissolved Inorganic Phosphorus (DIP) and Silicic acid (Si), in parallel with an increase of phytoplanktonic biomass. In spring (March–May) and summer (June–September), wet atmospheric deposition is the predominant source (>60%, relative to riverine contribution) for nitrates and ammonium inputs to this N-limited coastal ecosystem. During winter (October–February), riverine inputs of DIN predominate (>80%) and are annually the most important source of DIP (>90%). This situation allows us to calculate the possibility for a significant contribution to primary production in May 2003, from atmospheric deposition (total input for DIN ≈300 kg km−2 month−1). Based on usual Redfield ratios and assuming that all of the atmospheric-derived N (AD-N) in rainwater is bioavailable for phytoplankton growth, we can estimate new production due to AD-N of 950 mg C m−2 month−1, during this period of depletion in the water column. During the same episode (May 2003), photosynthetic activity rate, considered as gross primary production, was estimated to approximately 30 300 mg C m−2 month−1. Calculation indicates that new photosynthetic activity due to wet atmospheric inputs of nitrogen could be up to 3%.  相似文献   

13.
14.
The El Niño of 1997–98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995–96 with the El Niño (EN) years in 1997–98. The model area extends from 4°S–16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid (Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a stronger ecological impact of the fishery and stresses the need for precautionary management of fisheries during and after EN. During EN energetic indicators such as the lower primary production/total biomass ratio suggest a more energetically efficient ecosystem, while reduced network indicators such as the cycling index and relative ascendency indicate of a less organized state of the ecosystem. Compared to previous trophic models of the NHCE we observed: (i) a shrinking of ecosystem size in term of energy flows, (ii) slight changes in overall functioning (proportion of energy flows used for respiration, consumption by predators and detritus), and (iii) the use of alternate pathways leading to a higher ecological impact of the fishery for planktivorous fish.  相似文献   

15.
Evidence supports the hypothesis that two climatic regime shifts in the North Pacific and the Japan/East Sea, have affected the dynamics of the marine ecosystem and fisheries resources from 1960 to 2000. Changes in both mixed layer depth (MLD) and primary production were detected in the Japan/East Sea after 1976. The 1976 regime shift appears to have caused the biomass replacement with changes in catch production of major exploited fisheries resources, including Pacific saury, Pacific sardine and filefish. Both fisheries yield and fish distribution are reflected in these decadal fluctuations. In the 1960s and 1990s, common squid dominated the catches whereas in the 1970s and 1980s, it was replaced by walleye pollock. In the post-1988 regime shift, the distribution of horse mackerel shifted westward and southward and its distributional overlap with common mackerel decreased. The habitat of Pacific sardine also shifted away from mackerel habitats during this period. To evaluate changes in the organization and structure of the ecosystem in the Japan/East Sea, a mass-balanced model, Ecopath, was employed. Based on two mass-balanced models, representing before (1970–75) and after (1978–84) the 1976 regime shift, the weighted mean trophic level of catch increased from 3.09 before to 3.28 after. Total biomass of species groups in the Japan/East Sea ecosystem increased by 15% and total catch production increased by 48% due to the 1976 regime shift. The largest changes occurred at mid-trophic levels, occupied by fishes and cephalopods. The dominant predatory species shifted from cephalopods to walleye pollock due to the 1976 regime shift. It is concluded that the climatic regime shifts caused changes in the structure of the ecosystem and the roles of major species, as well as, large variations in biomass and production of fisheries resources.  相似文献   

16.
A column concentration-high resolution inductively coupled plasma mass spectrometry (ICP-MS) determination was applied to measure the total dissolved concentrations of Fe, Co, Ni, Cu and Zn in seawater collected from the subarctic North Pacific (~45°N) and the Bering Sea in July–September 1997. Total adsorbable Mn was determined on board by column electrolysis preconcentration and chemiluminescence detection. The vertical profiles for Fe, Ni and Zn were nutrient-like. The deep water concentration of Fe was ~0.5 nM in the northeast Pacific (18°-140°W) and increased to ~1 nM in the northwest Pacific (161°E) and ~2 nM in the Bering Sea (57°N, 180°E). The deep water concentrations for Ni and Zn in the Bering Sea were also 1.3–2 times higher than in the North Pacific. The profiles for Co and Cu were examined in the subarctic North Pacific, and results obtained were consistent with previous reports. There was a significant correlation between the concentrations of Co and Mn except for surface mixed layer. The profiles for total adsorbable Mn were similar to the reported profiles for total dissolvable Mn. The deep water concentration of Mn in the Bering Sea was also 4 times higher than in the North Pacific. Iron and zinc were depleted in surface water of the subarctic North Pacific. The relationship between these trace elements and nutrients suggests that these elements could be a limiting factor of phytoplankton productivity. In the Bering Sea, surface water contained ~0.3 nM of Fe. The Zn concentration, which was less than the detection limit in surface water, increased at shallower depths (~30 m) compared with the subarctic North Pacific. These results imply a higher flux of Fe and Zn to surface water in the Bering Sea. This in turn may cause the ecosystem in the Bering Sea characterized by a dominance of diatoms and high regenerated production.  相似文献   

17.
This study focuses on body size–abundance distributions of nano- and micro-phytoplankton guilds in coastal marine areas of the Southern Adriatic–Ionian region. The aim of the study was to evaluate the occurrence of common patterns of body size–abundance distributions in relation to physical, chemical and biological environmental forcing factors and to taxonomic composition of phytoplankton guilds. This paper is based on data collected during four oceanographic cruises carried out seasonally along the Southern Apulian coast (Adriatic and Ionian Seas, SE Italy) as a part of the INTERREG II Italy–Greece Program. The study was performed at 21 stations located on 7 transects perpendicular to the coastline, with 3 stations per transect at a distance of 3, 9 and 15 NM from the coastline. At each station, profiles of the major physical features of the water were determined and water samples were collected for phytoplankton and nutrient analysis. Overall, 320 nano- and micro-phytoplankton taxa were identified, 76% of which at species level, with phytoplankton cells ranging in size from 0.008 to 4697.54 ng. Body size–abundance distributions showed some common features: they were relatively invariant (average similarity 65%) with respect to taxonomic composition (average similarity 32%), right skewed (90%), leptokurtic (77%) and log normal (76%). Moreover, abiotic, biotic and spatial ecosystem components accounted for up to 75% of body size–abundance distribution variation. The results of this study suggest that body size–abundance distributions are an intrinsic property of marine phytoplankton communities, emphasising functional dependence on ecological constraints related to trophic factors and intra-guild coexistence relationships.  相似文献   

18.
Numerical simulations using a physiologically-based model of marine ecosystem size spectrum are conducted to study the influence of primary production and temperature on energy flux through marine ecosystems. In stable environmental conditions, the model converges toward a stationary linear log–log size-spectrum. In very productive ecosystems, the model predicts that small size classes are depleted by predation, leading to a curved size-spectrum.It is shown that the absolute level of primary production does not affect the slope of the stationary size-spectrum but has a nonlinear effect on its intercept and hence on the total biomass of consumer organisms (the carrying capacity). Three domains are distinguished: at low primary production, total biomass is independent from production changes because loss processes dominate dissipative processes (biological work); at high production, ecosystem biomass is proportional to primary production because dissipation dominates losses; an intermediate transition domain characterizes mid-production ecosystems. Our results enlighten the paradox of the very high ecosystem biomass/primary production ratios which are observed in poor oceanic regions. Thus, maximal dissipation (least action and low ecosystem biomass/primary production ratios) is reached at high primary production levels when the ecosystem is efficient in transferring energy from small sizes to large sizes. Conversely, least dissipation (most action and high ecosystem biomass/primary production ratios) characterizes the simulated ecosystem at low primary production levels when it is not efficient in dissipating energy.Increasing temperature causes enhanced predation mortality and decreases the intercept of the stationary size spectrum, i.e., the total ecosystem biomass. Total biomass varies as the inverse of the Arrhenius coefficient in the loss domain. This approximation is no longer true in the dissipation domain where nonlinear dissipation processes dominate over linear loss processes. Our results suggest that in a global warming context, at constant primary production, a 2–4 °C warming would lead to a 20–43% decrease of ecosystem biomass in oligotrophic regions and to a 15–32% decrease of biomass in eutrophic regions.Oscillations of primary production or temperature induce waves which propagate along the size-spectrum and which amplify until a “resonant range” which depends on the period of the environmental oscillations. Small organisms oscillate in phase with producers and are bottom-up controlled by primary production oscillations. In the “resonant range”, prey and predators oscillate out of phase with alternating periods of top-down and bottom-up controls. Large organisms are not influenced by bottom-up effects of high frequency phytoplankton variability or by oscillations of temperature.  相似文献   

19.
We report a ten-year study of the abundance and activity of megabenthos on the Porcupine Abyssal Plain, northeast Atlantic, together with observations on the occurrence of phytodetritus at the deep-sea floor (4850 m). Using the Southampton Oceanography Centre time-lapse camera system, ‘Bathysnap’, we have recorded a radical change in the abundance and activity of megabenthos between the two periods of study (1991–1994 and 1997–2000). In 1991–1994, the larger megabenthos occurred at an abundance of c. 71.6/ha and were dominated by large holothurians. In addition, there were very substantial populations of smaller megabenthic ophiuroids (c. 4979/ha). Together, the total megabenthos are estimated to track over some 17 cm2/m2/d (exploiting 100% of the surface of the seabed in c. 2.5 years). In 1997–2000, the larger megabenthos increased to an abundance of c. 204/ha and were joined by exceptional numbers of a small holothurian species (Amperima rosea, 6457/ha) and ophiuroids (principally Ophiocten hastatum, 53,539/ha). The total megabenthos population was tracking at an estimnated rate of c. 247 cm2/m2/d (exploiting 100% of seabed in just 6 weeks). Coincident with these increases in the abundance and activity of the megabenthos, there were apparently no mass depositions of aggregated phytodetritus to the seabed in the summers of 1997–1999. Mass occurrences of phytodetritus had been noted during the summer months of the three years previously studied (1991, 1993 and 1994), with covering between 50 and 96% of the sediment surface. There is a statistically significant (p<0.02) negative correlation between maximum extent of this seabed cover of phytodetritus and seabed tracking by megabenthos. Additional studies [Lampitt et al., Progr. Ocean. 50 (2001)], indicate that there were no substantial changes in surface ocean primary productivity, in export flux, or in the composition of the flux that might otherwise account for the apparent absence of observable concentrations of phytodetritus during the summers of 1997–1999. We postulate that the marked increase in megabenthic tracking activity resulted in the removal (via consumption, disaggregation, burial etc.) of the bulk of the incoming phytodetrital flux during these years. A simple conceptual model, based on the apparent phytodetrital fluxes observed in 1991 and 1993, suggests that the megabenthos tracking rates estimated for 1997–1999 are sufficient to account for near-total removal of this flux. However, we are not able to estimate other processes removing phytodetritus (i.e. other elements of the benthos) that may also have increased between 1991–1994 and 1997–1999. Other independent studies [e.g. Ginger et al., Progr. Ocean. 50 (2001)] of flux constituents support the possibility that just a few species of megabenthos (e.g. A. rosea, and O. hastatum) could well have consumed a major proportion of the incoming flux and so substantially modified the composition of the organic matter available to other components of the benthos.  相似文献   

20.
A study was conducted to understand the mechanisms driving observed subtidal variability in the stratification of Saldanha Bay, located in the southern Benguela system. It was found that the 6–8 day period variability in bay stratification was caused by the inflow and outflow of cold upwelled water driven by changing baroclinic pressure gradients between the coastal and bay domains. The direction and magnitude of the pressure gradients were governed by coastal upwelling activity and a lag in the response of the bay to changes in density structure in the coastal ocean. When the pressure gradients were bayward and cold water was being driven into the bay the cycle was termed to be in an ‘ active phase ’ and the reverse was termed the ‘ relaxation phase ’. The upwelling-favourable equatorward wind stress impacted the bay stratification in two ways: on the regional scale, wind drives upwelling and governs the inflow–outflow of cold upwelled bottom water, which strengthens stratification; conversely, on the local bay scale, wind drives vertical mixing, which weakens stratification. A four-phase model is used to describe the observed variability in stratification in the bay. The associated density-driven exchange flows are capable of flushing the bay in 6–8 days, about one-third of the time for tidal exchange alone (c. 25 days). These inflows of cold bottom water are ecologically critical as they supply nutrients to the bay and thus impose a control on new production within the bay environment. Further ecological implications of this bay–ocean exchange include export of phytoplankton new production to the coast, limitation of the risk of harmful algal blooms (HABs) and the division of the system into two distinct ecosystems (bay and lagoon).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号