首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jakobsson (Contrib Miner Petrol 164(3):397–407, 2012) investigated a double capsule assembly for use in piston-cylinder experiments that would allow hydrous, high-temperature, and high-pressure experiments to be conducted under controlled oxygen fugacity conditions. Using a platinum outer capsule containing a metal oxide oxygen buffer (Ni–NiO or Co–CoO) and H2O, with an inner gold–palladium capsule containing hydrous melt, this study was able to compare the oxygen fugacity imposed by the outer capsule oxygen buffer with an oxygen fugacity estimated by the AuPdFe ternary system calibrated by Barr and Grove (Contrib Miner Petrol 160(5):631–643, 2010). H2O loss or gain, as well as iron loss to the capsule walls and carbon contamination, is often observed in piston-cylinder experiments and often go unexplained. Only a few have attempted to actually quantify various aspects of these changes (Brooker et al. in Am Miner 83(9–10):985–994, 1998; Truckenbrodt and Johannes in Am Miner 84:1333–1335, 1999). It was one of the goals of Jakobsson (Contrib Miner Petrol 164(3):397–407, 2012) to address these issues by using and testing the AuPdFe solution model of Barr and Grove (Contrib Miner Petrol 160(5):631–643, 2010), as well as to constrain the oxygen fugacity of the inner capsule. The oxygen fugacities of the analyzed melts were assumed to be equal to those of the solid Ni–NiO and Co–CoO buffers, which is incorrect since the melts are all undersaturated in H2O and the oxygen fugacities should therefore be lower than that of the buffer by 2 log $a_{{{\text{H}}_{ 2} {\text{O}}}}$ .  相似文献   

2.
Experimental study of the effect of SiO2 on Ni solubility in silicate melts   总被引:1,自引:0,他引:1  
A. A. Borisov 《Petrology》2006,14(6):530-539
The solubility of Ni in silicate melts with variable SiO2 content was studied at a total pressure of 1 atm within a wide range of temperature and oxygen fugacity. The maximum solubility of Ni (minimum activity coefficient of NiO) was observed in melts with ~55–57 wt % SiO2, regardless of temperature and oxygen fugacity. Melts beyond this range showed significantly lower Ni solubility and, correspondingly, higher NiO activity coefficients. The analysis of our results and literature data led us to the conclusion that the NBO/T (number of nonbridging oxygen atoms per tetrahedrally coordinated atom) is inadequate to describe the effect of melt composition on Ni solubility.  相似文献   

3.
Depending upon oxygen fugacity, uranium exists in three different oxidation states in magmatic silicate liquids. The hexavalent state, present as the uranyl group, UO2+2, is stable under highly oxidizing conditions, but can still be detected in the presence of the NiNiO buffer. Under the same conditions the pentavalent state forms about 30–40% of total uranium and is also characteristic of relatively high oxygen fugacities. Optical absorption spectra obtained on granitic and basaltic glasses synthesized in the presence of the NiNiO buffer are very different: this is interpreted as being due to the presence of UO+2 complexes in the former and 6-coordinated U(V) in the latter. The tetravalent state is the most stable under reducing conditions: at the FeFeO buffer, it is the only one present. An 8-coordinated U(IV) species seems the most probable, by comparison of the spectra with those of crystallized U(IV) compounds. The trivalent state was not detected, even under the most reducing conditions. Interpretation of the spectra obtained in the glasses in terms of coordination and bonding is however difficult, due to the lack of knowledge of 5f-systems in iono-covalent systems such as oxide glasses. The presence of the pentavalent state must be taken into account in discussing partition coefficients of uranium and trans-uranium compounds in natural and synthetic systems (because of the effect of oxygen fugacity and oxide ion activity on the U(IV) U(V) system). During postmagmatic hydrothermal processes U(V) is destroyed, resulting in the early precipitation of U(IV) containing minerals and possible migration of uranyl ions.  相似文献   

4.
The Sisson Brook W–Mo–Cu deposit was formed by hydrothermal fluids likely related to the Nashwaak Granites (muscovite–biotite granite, Group I; and biotite granite, Group II) and related dykes (biotite granitic dykes, Group III; and a feldspar–biotite–quartz porphyry dyke, Group IV). Chemical data obtained using EPMA and LA-ICP-MS data of primary magmatic biotites were used to investigate magmatic processes and associated hydrothermal fluids.Trace element features of biotite in the Group I two-mica granite suggest other magmatic processes along with a simple fractional crystallization. The K/Rb ratios and compatible elements (Cr, Ti, Co, V, and Ba) in biotite from Groups II, III, and IV decrease, whereas incompatible elements including Ta, Tl, Ga, Cs, Li, and Sn increase with magma fractionation. No correlation of Cu, W and Mo with K/Rb ratios is evident, suggesting that partitioning of Cu, W, and Mo into biotite may not be entirely controlled by magma fractionation.Halogen fugacity of the parental magma of the Nashwaak Granites and related dykes, calculated from zircon saturation temperature shows that Group I has high fHF/fCl ratios (broadly higher than 0), similar to the plutons at the Henderson porphyry Mo deposit. The fHF/fCl ratios of the other groups are generally lower than 0, comparable to the Santa Rita porphyry Cu deposit. The fH2O/fHCl and fH2O/fHF ratios inferred from biotite in the Nashwaak Granites and related dykes range from 3 to 5 and from 4 to 5, respectively. The inferred oxygen fugacity shows that the dyke phases (Groups III and IV) have the oxygen fugacity around the nickel–nickel oxide buffer. The plutonic phases (Groups I and II) have the oxygen fugacity around the quartz–fayalite–magnetite (QFM) buffer at high temperatures and oxidized to nickel–nickel oxide buffer at lower temperatures. This oxidation process in the plutonic phases (Groups I and II) could be caused by H2 release at or near H2O vapor saturation at high H2O/Fe2 +. The magma associated with the biotite dykes (Group III) is more likely the source of the hydrothermal fluids at the Sisson Brook deposit since it has the highest differentiation degree and seems to have formed in an oxidized setting, necessary for Mo to concentrate in the late stage fluids.  相似文献   

5.
The incorporation of H into olivine is influenced by a significant number of thermodynamic variables (pressure, temperature, oxygen fugacity, etc.). Given the strong influence that H has on the solidus temperature and rheological behavior of mantle peridotite, it is necessary to determine its solubility in olivine over the range of conditions found in the upper mantle. This study presents results from hydration experiments carried out to determine the effects of pressure, temperature, and the fugacities of H2O and O2 on H solubility in San Carlos olivine at upper mantle conditions. Experiments were carried out at 1–2 GPa and 1,200 °C using a piston-cylinder device. The fugacity of O2 was controlled at the Fe0–FeO, FeO–Fe3O4, or Ni0–NiO buffer. Variable duration experiments indicate that equilibration is achieved within 6 h. Hydrogen contents of the experimental products were measured by secondary ion mass spectrometry, and relative changes to the point defect populations were investigated using Fourier transform infrared spectroscopy. Results from our experiments demonstrate that H solubility in San Carlos olivine is sensitive to pressure, the activity of SiO2, and the fugacities of H2O and O2. Of these variables, the fugacity of H2O has the strongest influence. The solubility of H in olivine increases with increasing SiO2 activity, indicating incorporation into vacancies on octahedral lattice sites. The forsterite content of the olivine has no discernible effect on H solubility between 88.17 and 91.41, and there is no correlation between the concentrations of Ti and H. Further, in all but one of our experimentally hydrated olivines, the concentration of Ti is too low for H to be incorporated dominantly as a Ti-clinohumite-like defect. Our experimentally hydrated olivines are characterized by strong infrared absorption peaks at wavenumbers of 3,330, 3,356, 3,525, and 3,572 cm?1. The heights of peaks at 3,330 and 3,356 cm?1 correlate positively with O2 fugacity, while those at 3,525 and 3,572 cm?1 correlate with H2O fugacity.  相似文献   

6.
The reaction chloritoid (ctd)=almandine (alm)+diaspore+H2O (CAD) has been reversed using Fe3+-free synthetic chloritoid and almandine, under fO2 conditions of the solid oxygen buffer Fe/FeO (CADWI), and using partially oxidized synthetic minerals under fO2 conditions of the solid oxygen buffer Ni/NiO (CADNNO). Experiments have been conducted between 550 and 700°C, 25 and 45 kbar. The equilibrium pressure and temperature conditions are strongly dependent on the fO2 conditions (CADNNO lies some-what 50°C higher than CADWI). This can be explained by a decrease in aH2O for experiments conducted on the Fe/FeO buffer, and a decrease in actd and aalm (through incorporation of ferric iron preferentially in chloritoid) for experiments conducted on the Ni/NiO buffer. The H2O activity has been calculated using the MRK equation of state, and the values obtained checked against the shift of the equilibrium diaspore=corundum+H2O bracketed on the Fe/FeO buffer and under unbuffered fO2 conditions. For fO2 buffered by the assemblage Fe/FeO, aH2O increases with pressure from about 0.85 at 600°C, 12 kbar to about 0.9 at 605°C, 25 kbar and 1 above 28 kbar. For fO2 buffered by the assemblage Ni/NiO, aH2O=1. The aH2O decrease from Ni/NiO to Fe/FeO is, however, too small to be entirely responsible for the temperature shift between CADNNO and CADWI. In consequence, the amount of ferric iron in almandine and chloritoid growing in the CADNNO experiments must be significant and change along the CADNNO, precluding calculation of the thermodynamic properties of chloritoid from this reaction. Our experimental data obtained on the Fe/FeO buffer are combined, using a thermodynamic analysis, with Ganguly's (1969) reversal of the reaction chloritoid=almandine+corundum +H2O (CAC) on the same oxygen buffer. Experimental brackets are mutually consistent and allow extraction of the thermodynamic parameters H o f,ctd and S octd. Our thermodynamic data are compared with others, generally calculated using Ganguly's bracketing of CACNNO. The agreement between the different data sets is relatively good at low pressure, but becomes rapidly very poor toward high pressure conditions. Using our thermodynamic data for chloritoid and KD=(Fe3+/Al)ctd/(Fe3+/Al)alm estimated from natural assemblages, we have calculated the composition of chloritoid and almandine growing from CADNNO and CACNNO. The Fe3+ content in chloritoid and almandine increases with pressure, from less than 0.038 per FeAl2SiO5(OH)2 formula unit at 10 kbar to at least 0.2 per formula unit above 30 kbar. This implies that chloritoid and almandine do contain Fe3+ in most natural assemblages. The reliability of our results compared to natural systems and thermodynamic data for Mg-chloritoid is tested by comparing the equilibrium conditions for the reaction chloritoid+quartz=garnet (gt)+kyanite+H2O (CQGK), calculated for intermediate Fe–Mg chloritoid and garnet compositions, from the system FASH and from the system MASH. For 0.65<(XFe)gt<0.8, CQKG calculated from FASH and MASH overlap for KD=(Mg/Fe)ctd/(Mg/Fe)gt=2. This is in good agreement with the KD values reported from chloritoid+garnet+quartz+kyanite natural assemblages.  相似文献   

7.
The solubility of platinum and palladium in a silicate melt of the composition Di 55 An 35 Ab 10 was determined at 1200°C and 2 kbar pressure in the presence of H2O-H2 fluid at an oxygen fugacity ranging from the HM to WI buffer equilibria. The influence of sulfur on the solubility of platinum in fluid-bearing silicate melt was investigated at a sulfur fugacity controlled by the Pt-PtS equilibrium at 1200°C and a pressure defined in such a way that the \(f_{H_2 O} \) and \(f_{O_2 } \) values were identical to those of the experiments without sulfur. The experiments were conducted in a high pressure gas vessel with controlled hydrogen content in the fluid. Oxygen fugacity values above the NNO buffer were controlled by solid-phase buffer mixtures using the two-capsule technique. Under more reducing conditions, the contents of H2O and H2 were directly controlled by the argon to hydrogen ratio in a special chamber. The hydrogen fugacity varied from 5.2 × 10?2 bar (HM buffer) to 1230 bar (\(X_{H_2 } \) = 0.5). Pt and Pd contents were measured in quenched glass samples by neutron activation analysis. The results of these investigations showed that the solubility of Pt and Pd increases significantly in the presence of water compared with experiments in dry systems. The content of Pd within the whole range of redox conditions and that of Pt at an oxygen fugacity between the HM to MW buffer reactions are weakly dependent on \(f_{O_2 } \) and controlled mainly by water fugacity. This suggests that, in addition to oxide Pt and Pd species soluble at the ppb level in haplobasaltic melts, much more soluble (ppm level) hydroxide complexes of these metals are formed under fluid-excess conditions. Despite a decrease in water fugacity under reducing conditions, Pt solubility increases sharply near the MW buffer. It was shown by electron paramagnetic resonance spectrometry that, in contrast to dry melts, fluid-saturated silicate melts do not contain a pure metal phase (micronuggets). Therefore, the increase in Pt solubility under reducing conditions can be explained by the formation of Pt hydride complexes or Pt-fluid-silicate clusters. At a sulfur fugacity controlled by the Pt-PtS equilibrium, the solubility of Pt in iron-free silicate melts as a function of redox conditions is almost identical to that obtained in the experiments without sulfur at the same water and oxygen fugacity values. These observations also support Pt dissolution in iron-free silicate melts as hydroxide species.  相似文献   

8.
A. A. Borisov 《Petrology》2007,15(6):523-529
The solubility of cobalt and iron in silicate melts with variable SiO2 content was experimentally determined under controlled oxygen fugacity. It was shown that, independent of temperature and oxygen fugacity, the solubility of the two metals reaches a maximum (minimum of CoO and FeO activity coefficients) in melts of intermediate compositions. The analysis of available published data demonstrated that the γMeO values of at least four metals (Ni, Co, Fe, and Cr) dissolving in melts as divalent oxides show a minimum in melts with \(X_{SiO_2 } \) ≈ 57 ± 2 mol %. The position of the minimum is essentially independent of the element, melt temperature, and oxide concentration (from a few ppm to 13 wt%). The extremes of iron solubility (γFeO) in Fe-rich MgO-free melts may shift toward significantly lower \(X_{SiO_2 } \) values, although this inference requires additional experimental verification. Using a numerical example, some problems were discussed in the use of experimental data obtained in different laboratories for the development of a general model for the γMeO dependence on melt composition.  相似文献   

9.
Copper–gold mineralization at the world‐class Batu Hijau porphyry deposit, Sumbawa Island, Indonesia, is closely related to the emplacement of multiple stages of tonalite porphyries. Petrographic examination indicates that at least two texturally distinct types of tonalite porphyries are currently recognized in the deposit, which are designated as “intermediate tonalite” and “young tonalite”. They are mineralogically identical, consisting of phenocrysts of plagioclase, hornblende, quartz, biotite and magnetite ± ilmenite, which are set in a medium‐coarse grained groundmass of plagioclase and quartz. The chemical composition of the rock‐forming minerals, including plagioclase, hornblende, biotite, magnetite and ilmenite in the tonalite porphyries was systematically analyzed by electron microprobe. The chemical data of these minerals were used to constrain the crystallization conditions and fluorine–chlorine fugacity of the corresponding tonalitic magma during its emplacement and crystallization. The crystallization conditions, including temperature (T), pressure (P) and oxygen fugacity (fO2), were calculated by applying the hornblende–plagioclase and magnetite–ilmenite thermometers and the Al‐in‐hornblende barometer. The thermobarometric data indicate that the tonalite porphyries were emplaced at 764 ± 22°C and 1.5 ± 0.3 × 105 kPa. If the pressure is assumed to be lithostatic, it is interpreted that the rim of hornblende and plagioclase phenocrysts crystallized at depths of approximately 5.5 km. As estimated from magnetite–ilmenite thermometry, the subsolidus conditions of the tonalite intrusion occurred at temperatures of 540–590°C and log fO2 ranging from ?20 to ?15 (between Ni‐NiO and hematite–magnetite buffers). This occurred at relatively high fO2 (oxidizing) condition. The fluorine–chlorine fugacity in the magma during crystallization was determined on the basis of the chemical composition of magmatic biotite. The calculation indicates that the fluorine–chlorine fugacity, represented by log (fH2O)/(fHF) and (fH2O)/(fHCl) in the corresponding tonalitic magma range from 4.31 to 4.63 and 3.62 to 3.79, respectively. The chlorine fugacity (HCl) to water (H2O) is relatively higher than the fluorine fugacity (HF to water), reflecting a high activity of chlorine in the tonalitic magma during crystallization. The relatively higher activity of chlorine (rather than fluorine) may indicate the significant role of chloride complexes (CuCl2? and AuCl2?) in transporting and precipitating copper and gold at the Batu Hijau deposit.  相似文献   

10.
Activities of CoO in (Co,Mn)O solid solutions in contact with metallic Co have been determined on ten compositions ranging from 0.12 to 0.84 XCoO in order to calibrate the divariant equilibrium between (Co,Mn)O oxide solutions and Co metal as an oxygen fugacity sensor for application in experimental petrology. Experiments were conducted over the temperature range 900–1300 K at 1 bar, using an electrochemical technique with oxygen-specific calcia-stabilized zirconia (CSZ) electrolytes. Co + CoO or Fe + FeO was used as the reference electrode. Compositions of the (Co,Mn)O solid solutions were measured after each run by electron microprobe, and these were checked for internal consistency by measuring the lattice parameter by X-ray diffraction. Activity–composition relations were fitted to the Redlich–Kister formalism. (Co,Mn)O solid solutions exhibit slight positive deviations from ideality, which are symmetrical (corresponding to a regular solution mixing model) across the entire composition range with A0 G = 3690(±47) Jmol−1. Excess entropies and enthalpies were also derived from the emf data and gave Sex=0.77(±0.08) JK−1 mol−1 and Hex=4558(±90) Jmol−1 respectively. The experimental data from this study have been used to formulate the (Co,Mn)O/Co oxygen fugacity sensor to give an expression: where μO2 CoCoO=−492,186 + 509.322 T − 53.284 T lnT + 0.02518 T2, taken from O'Neill and Pownceby (1993). Received: 10 September 1999 / Accepted: 4 April 2000  相似文献   

11.
Ni, Co, and Zn are widely distributed in the Earth’s mantle as significant minor elements that may offer insights into the chemistry of melting in the mantle. To better understand the distribution of Ni2+, Co2+, and Zn2+ in the most abundant silicate phases in the transition zone and the upper mantle, we have analyzed the crystal chemistry of wadsleyite (Mg2SiO4), ringwoodite (Mg2SiO4), forsterite (Mg2SiO4), and clinoenstatite (Mg2Si2O6) synthesized at 12–20 GPa and 1200–1400 °C with 1.5–3 wt% of either NiO, CoO, or ZnO in starting materials. Single-crystal X-ray diffraction analyses demonstrate that significant amounts of Ni, Co, and Zn are incorporated in octahedral sites in wadsleyite (up to 7.1 at%), ringwoodite (up to 11.3 at%), olivine (up to 2.0 at%), and clinoenstatite (up to 3.2 at%). Crystal structure refinements indicate that crystal field stabilization energy (CFSE) controls both cation ordering and transition metal partitioning in coexisting minerals. According to electron microprobe analyses, Ni and Co partition preferentially into forsterite and wadsleyite relative to coexisting clinoenstatite. Ni strongly prefers ringwoodite over coexisting wadsleyite with \({D}_{\text{Ni}}^{\text{Rw}/\text{Wd}}\)?=?4.13. Due to decreasing metal–oxygen distances with rising pressure, crystal field effect on distribution of divalent metal ions in magnesium silicates is more critical in the transition zone relative to the upper mantle. Analyses of Ni partitioning between the major upper-mantle phases implies that Ni-rich olivine in ultramafic rocks can be indicative of near-primary magmas.  相似文献   

12.
Sulfur partitioning between melt and fluid phase largely controls the environmental impact of volcanic eruptions. Fluid/melt partitioning data also provide the physical basis for interpreting changes in volcanic gas compositions that are used in eruption forecasts. To better constrain some variables that control the behavior of sulfur in felsic systems, in particular the interaction between different volatiles, we studied the partitioning of sulfur between aqueous fluids and haplogranitic melts at 200 MPa and 750–850 °C as a function of oxygen fugacity (Ni–NiO or Re–ReO2 buffer), melt composition (Al/(Na?+?K) ratio), and fluid composition (NaCl and CO2 content). The data confirm a first-order influence of oxygen fugacity on the partitioning of sulfur. Under “reducing conditions” (Ni–NiO buffer), Dfluid/melt is nearly one order of magnitude larger (323?±?14 for a metaluminous melt) than under “oxidizing conditions” (Re–ReO2 buffer; 74?±?5 for a metaluminous melt). This effect is likely related to a major change in sulfur speciation in both melt and fluid. Raman spectra of the quenched fluids show the presence of H2S and HS? under reducing conditions and of SO42? and HSO4? under oxidizing conditions, while SO2 is undetectable. The latter observation suggests that already at the Re–ReO2 buffer, sulfur in the fluid is almost completely in the S6+ state and, therefore, more oxidized than expected according to current models. CO2 in the fluid (up to xCO2?=?0.3) has no effect on the fluid/melt partitioning of sulfur, neither under oxidizing nor under reducing conditions. However, the effect of NaCl depends on redox state. While at oxidizing conditions, Dfluid/melt is independent of xNaCl, the fluid/melt partition coefficient strongly decreases with NaCl content under reducing conditions, probably due to a change from H2S to NaSH as dominant sulfur species in the fluid. A decrease of Dfluid/melt with alkali content in the melt is observed over the entire compositional range under reducing conditions, while it is prominent only between the peraluminous and metaluminous composition in oxidizing experiments. Overall, the experimental results suggest that for typical oxidized, silicic to intermediate subduction zone magmas, the degassing of sulfur is not influenced by the presence of other volatiles, while under reducing conditions, strong interactions with chlorine are observed. If the sulfur oxidation state is preserved during an explosive eruption, a large fraction of the sulfur released from oxidized magmas may be in the S6+ state and may remain undetected by conventional methods that only measure SO2. Accordingly, the sulfur yield and the possible climatic impact of some eruptions may be severely underestimated.  相似文献   

13.
The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+–Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785–850 °C and 80–185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni–NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that \( ^{{{\text{Fe}}^{2 + } {-}{\text{Mg}}}} K_{\text{D}} \) between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+–Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.  相似文献   

14.
1 Introduction recognized and accepted by more and more experts engaged in experimental research at high temperature and In-situ laboratory measurement of the electricity of high pressure. This method has been regardedgeological materials at high temperature and high pressure internationally as the most advanced one for the in-situis an important approach to revealing the composition, laboratory measurement of the electric properties ofstructure and properties of materials in the deep interior…  相似文献   

15.
Amphibole is the hydrous metasomatic phase in spinel-bearing mantle xenoliths from Baker Rocks, Northern Victoria Land, Antarctica. It occurs in veins or in disseminated form in spinel lherzolites. Both types derive from reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath Northern Victoria Land. To determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphibole samples were fully characterized. Accurate determination of the site population and the state of dehydrogenation in each of these amphiboles was carried out using single-crystal X-ray diffraction, electron microprobe and secondary ion mass spectroscopy on the same single crystal. The Fe3+/ΣFe ratio was determined by X-ray absorption near edge spectroscopy on amphibole powder. The degree of dehydrogenation determined by SIMS is 0.870–0.994 O3(O2?) a.p.f.u., primary and ascribed to the Ti-oxy component of the amphibole, as indicated by atom site populations; post-crystallization H loss is negligible. Estimates of aH2O (0.014–0.054) were determined from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. A difference up to 58 % in determination of aH2O can be introduced if the chemical formula of the amphiboles is calculated based on 23 O a.p.f.u. without knowing the effective amount of dehydrogenation. The oxygen fugacity of the Baker Rocks amphibole-bearing mantle xenoliths calculated based upon the dissociation constant of water (by oxy-amphibole equilibrium) is between ?2.52 and ?1.32 log units below the fayalite–magnetite–quartz (FMQ) buffer. These results are systematically lower and in a narrow range of values relative to those obtained from anhydrous olivine–orthopyroxene–spinel equilibria (fO2 between ?1.98 and ?0.30 log units). A comparative evaluation of the two methods suggests that when amphibole is present in mantle peridotites, the application of oxy-amphibole equilibrium is preferred, because ol–opx–sp oxy-calibrations are not “sensitive” enough in recording the effects (if any) of amphibole in the peridotite matrix. Amphibole acts as the main H acceptor among the peridotite minerals and may prevent fluid circulation and buffer oxygen fugacity. The important conclusion of this study is that amphibole within the lithospheric mantle does not always means high water activity and oxidizing conditions.  相似文献   

16.
Re-equilibration processes of natural H2O–CO2–NaCl-rich fluid inclusions quartz are experimentally studied by exposing the samples to a pure H2O external fluid at 600 °C. Experimental conditions are selected at nearly constant pressure conditions (309 MPa) between fluid inclusions and pore fluid, with only fugacity gradients in H2O and CO2, and at differential pressure conditions (394–398 MPa, corresponding to an internal under-pressure) in addition to similar CO2 fugacity gradients and larger H2O fugacity gradients. Modifications of fluid inclusion composition and density are monitored with changes in ice dissolution temperature, clathrate dissolution temperature and volume fraction of the vapour phase at room temperature. Specific modification of these parameters can be assigned to specific processes, such as preferential loss/gain of H2O and CO2, or changes in total volume. A combination of these parameters can clearly distinguish between modifications according to bulk diffusion or deformation processes. Bulk diffusion of CO2 according to fugacity gradients is demonstrated at constant pressure conditions. The estimated preferential loss of H2O is not in accordance with those gradients in both constant pressure and differential pressure experiments. The development of deformation halos in quartz around fluid inclusions that are either under-pressurized or over-pressurized promotes absorption of H2O from the inclusions and inhibits bulk diffusion according to the applied fugacity gradients.  相似文献   

17.
Hydrous species and the amount of water (OH? ions and crystal hydrate H2O) in structures of nominally anhydrous rock-forming minerals (olivine, ortho- and clinopyroxenes) were studied with Fourier spectroscopy in peridotite nodules (19 samples) from Cenozoic alkali basalts of the Baikal-Mongolia region (Dariganga Plateau, Taryat Depression, and Vitim Plateau). Single-crystal samples oriented relative to the crystallographic axes of minerals were examined with an FTIR spectrometer equipped with an IR microscope at the points of platelets free from fluid inclusions. FTIR spectra were measured in regions of stretching vibrations of OH? and H2O (3800–3000 cm?1) and deformation vibrations of H2O (1850–1450 cm?1). The water content in mineral structures was determined from integral intensities. To estimate the conditions of entrapment and loss of structural water in minerals, their chemical composition, including Fe2+ and Fe3+ contents, was determined with an electron microprobe analysis and Mössbauer spectroscopy. The bulk chemical composition of some nodules was determined with XRF and ICP MS. The total water content (OH? + H2O) varies from 150 to 1140 ppm in olivines, from 45 to 870 ppm in clinopyroxenes, and from 40 to 1100 ppm in orthopyroxenes. Both water species in the mineral structures are retained down to a depth of 150–160 km in wide temperature and pressure ranges (1100–1500 °C, 32–47 kbar) at the oxygen fugacity of ?1.4 to ?0.1 log units relative to that of the quartz-fayalite-magnetite buffer.  相似文献   

18.
Galvanic cells with oxygen-specific solid electrolytes made of calcia-stabilized zirconia have been used to make equilibrium measurements of the standard Gibbs free energy of formation, ΔfG0m,(T), for copper (I) oxide (Cu2O), nickel (II) oxide (NiO), cobalt (II) oxide (CoO), and wüstite (FexO) over the temperature range from 900–1400 K. The measured values of ΔfG0m at 1300 K are −73950, −123555, −142150, and −179459 J · mol−1 for Cu2O, NiO, CoO, and Fe0.947O, respectively. The precision of these measurements is ± 30–60 J · mol−1, and their absolute accuracy is estimated to be ± 100–200 J·mol−1. Using values of –76.557, −94.895, −79.551, and −71.291 J · K−1 · mol−1 for the entropies of formation, ΔfSm0, (298.15 K), the calculated enthalpies of formation, ΔfHm0, (298.15 K), are −170508, −240110, −237390, and −266458 J · mol−1 for Cu2O, NiO, CoO, and Fe0.947O, respectively. These values of ΔfSm0 (298.15 K) and ΔfHm0 (298.15 K) are in good agreement with the best available calorimetric measurements.  相似文献   

19.
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen (fO2) and water (fH2O) fugacities are estimated to be 10?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar.  相似文献   

20.
Major and trace element geochemistry of coexisting hornblendes and biotites from the Ambalavayal granite, northern Kerala, are presented. The hornblendes correspond to edenitic composition, whereas the biotites correspond to annite. The hornblendes typically show high Al2O3 contents (9·69–11·89%) comparable with those from anorogenic granites. The biotites are characteristically low Mg-type, similar to those reported from alkaline rocks. The distribution coefficients calculated for all the major and trace elements are presented and an evaluation of the nature of variation indicate near-chemical equilibrium conditions during the crystallization of the two minerals. The hornblende-biotite tie lines in the Fe3+?Fe2+?Mg compositional triangle, lie parallel to those of buffered biotites, indicating crystallization in an environment closed to oxygen and well above the Ni?NiO buffer. It is inferred that thefH2O increased towards the residual stage andfO2 values were high, in the range of 10?15 bars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号