首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
We make a detailed analysis of cross-correlation and time-lag between monthly data of galactic cosmic rays (GCRs) intensity and different solar activity indices (e.g., sunspot number, sunspot area, green coronal Fe line and 10.7 cm solar radio flux) during 19–23 solar cycles. GCRs time-series data from Kiel neutron monitor station and solar data from the last 50 years period, covering five solar cycles (19–23), and alternating solar polarity states (i.e., five A < 0 and four A > 0) have been investigated. We find a clear asymmetry in the cross-correlation between GCRs and solar activity indicators for both odd and even-numbered solar cycles. The time-lags between GCRs and solar parameters are found different in different solar cycles as well as in the opposite polarity states (A < 0 and A > 0) within the same solar cycle. Possible explanations of the observed results are discussed in light of modulation models, including drift effects.  相似文献   

2.
We study the temporal evolution of cosmic ray intensity during ~27-day Carrington rotation periods applying the method of superposed epoch analysis. We discuss about the average oscillations in the galactic cosmic ray intensity, as observed by ground based neutron monitors, during the course of Carrington rotation in low solar activity conditions and in different polarity states of the heliosphere (A<0 and A>0). During minimum and decreasing phases in low solar activity conditions, we compare the oscillation in one polarity state with that observed in other polarity state in similar phases of solar activity. We find difference in the evolution and amplitude of ~27-day variation during A<0 and A>0 epoch. We also compare the average variations in cosmic ray intensity with the simultaneous variations of solar wind parameters such as solar wind speed and interplanetary magnetic field strength. From the correlation analysis between the cosmic ray intensity and the solar wind speed during the course of Carrington rotation, we find that the correlation is stronger for A>0 than A<0.  相似文献   

3.
We applied fast Fourier transform techniques and Morlet wavelet transform on the time series data of coronal index, solar flare index, and galactic cosmic ray, for the period 1986–2008, in order to investigate the long- and mid-term periodicities including the Rieger (\({\sim }130\) to \({\sim }190\) days), quasi-period (\({\sim }200\) to \({\sim }374\) days), and quasi-biennial periodicities (\({\sim }1.20\) to \({\sim }3.27\) years) during the combined solar cycles 22–23. We emphasize the fact that a lesser number of periodicities are found in the range of low frequencies, while the higher frequencies show a greater number of periodicities. The rotation rates at the base of convection zone have periods for coronal index of \({\sim }1.43\) years and for solar flare index of \({\sim }1.41\) year, and galactic cosmic ray, \({\sim }1.35\) year, during combined solar cycles 22–23. In relation to these two solar parameters (coronal index and solar flare index), for the solar cycles 22–23, we found that galactic cosmic ray modulation at mid cut-off rigidity (\(\hbox {Rc} = 2.43\hbox {GV}\)) is anti-correlated with time-lag of few months.  相似文献   

4.
The radial component of the solar magnetic field, Br, was calculated in the potential approximation in the height range from 1 to 2.5 solar radii, Ro. According to these data, synoptic maps of the magnetic field for solar cycles 21–23 were constructed. For each 10-degree latitudinal zone, the proportion of its area, S +field, that was occupied by the “+” field in each rotation was found. In the entire latitudinal zone, the radial component of the field is assumed to be positive if S+field ≥ 80% and negative if S +field ≤ 20%. The field proved to be virtually unipolar at the level of the photosphere (R = Ro) during most of the cycle, from the poles to the north and south latitude ≈60°. In the vicinity of minimums between cycles 21 and 22, as well as cycles 22 and 23, for a few rotations of the Sun, the field was almost unipolar within the range of latitudes (?40°)-90°. At R = 2.5 Ro, for most of each cycle, the field was unipolar in the range of latitudes (?20°-(-90°)) and (20°–90°). According to our interpretation, the shift of the polar-field boundary to the equator with height reflects superradial expansion of open magnetic flux tubes from the polar coronal holes. It was found that the reversal of the polar fields began with 1–2 rotations and ended from 2 to 14 solar rotations earlier at great heights than at the surface of the Sun. This indicates that the reversal of the large-scale field occurs first and then that of the small-scale one. In the study of the sectoral structure of the magnetic field at different heights it was found that the boundaries that rotate with a period of less than the Carrington revolution extend to greater heights than the boundaries with a Carrington or longer period. We assume that the boundaries of the first type are formed by the large-scale structures of the magnetic field and the boundaries of the second type are determined by the active regions.  相似文献   

5.
Integral and differential distributions of sunspot diameters are studied for the last seven 11-year cycles of solar activity. Data of the Greenwich catalogue, Pulkovo’s database, and the “Solniechnyie Dannyie” bulletin are used. We found that the average index of integral distribution α is 6.0 for the diameters from 50 to 90 Mm and independent of the Wolf’s numbers, but it depends on a cycle phase in the majority of cycles (four of seven), i.e., it is higher during the ascending phase, of intermediate value during the maximum phase and minimum during the declining phase. Cycles 17, 18, and 22 behave differently: the index α is either invariable with phase or the variations differ from the above ones. It turned out that cycles 17 and 18 are peculiar by sunspot diameters, i.e., sunspots of up to 140–180 Mm in diameter, the largest over the last 80 years, have been observed. Three assumptions concerning the nature of these gigantic sunspots have been proposed: (a) these sunspots occur due to changes in differential rotation of the sun, (b) these sunspots are a certain independent statistical assembly formed in a sporadic discrete region of the convective zone, and (c) these sunspots are surface “fragments” of the relict magnetic field of the solar nucleus.  相似文献   

6.
This paper presents the study of normalized north–south asymmetry, cumulative normalized north–south asymmetry and cumulative difference indices of sunspot areas, solar active prominences (at total, low (?40°) and high (?50°) latitudes) and Hα solar flares from 1964 to 2008 spanning the solar cycles 20–23. Three different statistical methods are used to obtain the asymmetric behavior of different solar activity features. Hemispherical distribution of activity features shows the dominance of activities in northern hemisphere for solar cycle 20 and in southern hemisphere for solar cycles 21–23 excluding solar active prominences at high latitudes. Cumulative difference index of solar activity features in each solar cycle is observed at the maximum of the respective solar cycle suggesting a cyclic behavior of approximately one solar cycle length. Asymmetric behavior of all activity features except solar active prominences at high latitudes hints at the long term periodic trend of eight solar cycles. North–south asymmetries of SAP (H) express the specific behavior of solar activity at high solar latitudes and its behavior in long-time scale is distinctly opposite to those of other activity features. Our results show that in most cases the asymmetry is statistically highly significant meaning thereby that the asymmetries are real features in the N–S distribution of solar activity features.  相似文献   

7.
The diurnal variation of cosmic ray intensity, based on the records of two neutron monitor stations at Athens (Greece) and Oulu (Finland) for the time period 2001 to 2014, is studied. This period covers the maximum and the descending phase of the solar cycle 23, the minimum of the solar cycles 23/24 and the ascending phase of the solar cycle 24.These two stations differ in their geographic latitude and magnetic threshold rigidity. The amplitude and phase of the diurnal anisotropy vectors have been calculated on annual and monthly basis.From our analysis it is resulted that there is a different behaviour in the characteristics of the diurnal anisotropy during the different phases of the solar cycle, depended on the solar magnetic field polarity, but also during extreme events of solar activity, such as Ground Level Enhancements and cosmic ray events, such as Forbush decreases and magnetospheric events. These results may be useful to Space Weather forecasting and especially to Biomagnetic studies.  相似文献   

8.
The cyclicity of weak local and strong large-scale components of the low-latitude solar magnetic field during the last three cycles of solar activity is studied using the average monthly values for the total area of sunspots and general magnetic field of the sun as a star. A local decrease in the value of magnetic flux is found for both components of the magnetic field in the phase of growing solar activity. This decrease coincides in time with the intervals of monopolarity for the polar magnetic field of the sun.  相似文献   

9.
Three particles with energies of 36, 35, and 58 EeV arrived from one sky region were recorded by two EAS arrays during a day. The events are assumed to have been produced by the beam of particles that resulted from the interaction of cosmic rays with a relativistic shock front.  相似文献   

10.
In the present study, the north–south asymmetry of filaments in solar cycles 16–21 is investigated with the use of the solar filaments observed at the Observatoire de Paris, Section de Meudon from March 1919 to December 1989. Filament activity is found regularly dominated in each of cycles 16–21 in the same hemisphere as that inferred by sunspot activity, and it is found to run in a different asymmetrical behavior at different latitudinal bands, suggesting that the north–south asymmetry of filament activity should be a function of latitudes. The regularity on the north–south asymmetry of sunspot activity given by Li et al. (2002b) is demonstrated by filament activity. The periods in the north–south asymmetry of solar filament activity are 9.13, and 12.8 years without the solar cycle found.  相似文献   

11.
Recent direct measurements of the energy spectra of the major mass components of cosmic rays have indicated the presence of a ‘kink’ in the region of 200 GeV per nucleon. The kink, which varies in magnitude from one element to another, is much sharper than predicted by our cosmic ray origin model in which supernova remnants are responsible for cosmic ray acceleration and it appears as though a new, steeper component is responsible.The component amounts to about 20 percent of the total at 30 GeV/nucleon for protons and helium nuclei and its magnitude varies with nuclear charge; the unweighted fraction for all cosmic rays being 36%.The origin of the new component is subject to doubt but the contenders include O, B, A, supergiant and Wolf-Rayet stars, by way of their intense stellar winds. Another explanation is also in terms of these particles as the sources but then being trapped, and even further accelerated, in the Local Bubble.  相似文献   

12.
Possible acceleration of cosmic rays passing through a kind of amplification channel (via anomalous diffusion modes of propagating plane-wave fronts) induced by a system of rotating gases (or disk-like gases) is presented. Our novel numerical results after detailed analysis were based on the quantum discrete kinetic model (considering Uehling–Uhlenbeck collision term) which has been used to study the propagation of plane (e.g., acoustic) waves propagating in composite-particle gases under uniform gravitational fields.  相似文献   

13.
The present investigation attempts to quantify the temporal variation of Solar Flare Index(SFI)with other activity indices during solar cycles 21-24 by using different techniques such as linear regression,correlation,cross-correlation with phase lag-lead,etc.Different Solar Activity Indices(SAI)considered in this present study are Sunspot Number(SSN),10.7 cm Solar Radio Flux(F10.7),Coronal Index(CI)and MgⅡCore-to-Wing Ratio(MgⅡ).The maximum cycle amplitude of SFI and considered SAI has a decreasing trend from solar cycle 22,and cycle 24 is the weakest solar cycle among all other cycles.The SFI with SSN,F10.7,CI and MgⅡshows hysteresis during all cycles except for solar cycle 22 where both paths for ascending and descending phases are intercepting each other,thereby representing a phase reversal.A positive hysteresis circulation exists between SFI and considered SAI during solar cycles 22 and 23,whereas a negative circulation exists in cycles 21 and 24.SFI has a high positive correlation with coefficient values of 0.92,0.94,0.84 and 0.81 for SSN,F10.7,CI and MgⅡrespectively.According to crosscorrelation analysis,SFI has a phase lag with considered SAI during an odd-number solar cycle(solar cycles21 and 23)but no phase lag/lead during an even-numbered solar cycle(solar cycles 22 and 24).However,the entire smoothed monthly average SFI data indicate an in-phase relationship with SSN,F10.7 and MgⅡ,and a one-month phase lag with CI.The presence of those above characteristics strongly confirms the outcomes of different research work with various solar indices and the highest correlation exists between SFI and SSN as well as F10.7 which establishes that SFI may be considered as one of the prime activity indices to interpret the characteristics of the Sun’s active region as well as for more accurate short-range or long-range forecasting of solar events.  相似文献   

14.
In this paper we investigate the presence and temporal evolution of galactic cosmic rays (GCRs) time-series and three solar parameters, namely the daily sunspot number, the coronal green line and the 10.7 cm solar radio flux over the period 1996–2003 by the wavelet technique. A number of short- and intermediate-term quasi-periodicities were also detected in both GCR and solar parameters. For the short-term range, we have identified quasi-periods of 16–30 days, 40–55 days, 60–70 days, 80–90 days and 80–100 days. In the case of intermediate range, the significant periods were 120–140 days, 150–170 days, 190–210 days, 240–260 days, ≈1.09 yr. and ≈1.23 yr. The wavelet power spectra show that all the above-mentioned periods are intermittent in nature and occurred in different time-series in different intervals. The result exhibits that the well-known “Rieger period” of (150–160 days) was prominent in both GCR and solar data sets during the ascending phase of cycle 23. Possible reasons behind the observed periods were discussed with the help of previous results and existing numerical models.  相似文献   

15.
According to a proposal of Lloyd-Evans (1985), the average charge of particles in the cosmic radiation near 1014eV can be determined by observing the effect of the solar magnetic field on the Sun's shadow in the angular distribution of energetic primary cosmic ray particles. This suggestion is shown to be realizable with a new type of EAS-array proposed for the purpose of high energy -ray astronomy. The same measurement provides information on the integrated strength of the solar magnetic field. As the array will be sensitive and provide good angular resolution down to a few times 1012eV, more detailed results on the primary composition near 1013eV can be obtained by investigating the shape of the shadow of the Moon as affected by the geomagnetic field.  相似文献   

16.
The role of nearby galactic sources, the supernova remnants, in formation of observed energy spectrum and large-scale anisotropy of high-energy cosmic rays is studied. The list of these sources is made up based on radio, X-ray and gamma-ray catalogues. The distant sources are treated statistically as ensemble of sources with random positions and ages. The source spectra are defined based on the modern theory of cosmic ray acceleration in supernova remnants while the propagation of cosmic rays in the interstellar medium is described in the frameworks of galactic diffusion model. Calculations of dipole component of anisotropy are made to reproduce the experimental procedure of “two-dimensional” anisotropy measurements. The energy dependence of particle escape time in the process of acceleration in supernova remnants and the arm structure of sources defining the significant features of anisotropy are also taken into account. The essential new trait of the model is a decreasing number of core collapse SNRs being able to accelerate cosmic rays up to the given energy, that leads to steeper total cosmic ray source spectrum in comparison with the individual source spectrum. We explained simultaneously the new cosmic ray data on the fine structure of all particle spectrum around the knee and the amplitude and direction of the dipole component of anisotropy in the wide energy range 1 TeV–1 EeV. Suggested assumptions do not look exotic, and they confirm the modern understanding of cosmic ray origin.  相似文献   

17.
We investigate the statistical distribution of X-class flares and their relationship with super active regions (SARs) during solar cycles 21–23. Analysis results show that X1.0–X1.9 flares accounted for 52.71 % of all X-class flares, with X2.0–X2.9 flares at 20.59 %, X3.0–X4.9 at 13.57 %, X5–X9.9 at 8.37 % and ≥X10 at 4.75 %. All X-class flares occurred around the solar maximum during solar cycle 22, while in solar cycle 23, X-class flares were scattered in distribution. In solar cycle 21, X-class flares were distributed neither in a concentrated manner like cycle 22 nor in a scattered manner as cycle 23. During solar cycles 21–23, 32.2 % of the X1.0–X1.9 flares, 31.9 % of the X2.0–X2.9 flares, 43.3 % of the X3.0–X4.9 flares, 81.08 % of the X5.0–X9.9 flares, and 95.2 % of the ≥X10 flares were produced by SARs.  相似文献   

18.
A study on north–south (N–S) asymmetry of different solar activity features (DSAF) such as solar proton events, solar active prominences [total, low (?40°) and high (?50°) latitudes], Hα flare indices, soft X-ray flares, monthly mean sunspot areas and monthly mean sunspot numbers carried out from May 1996 to October 2008. Study shows a southern dominance of DSAF during this period. During the rising phase of the cycle 23 the number of DSAF approximately equals on both, the northern and the southern hemispheres. But these activities tend to shift from northern to southern hemisphere during the period 1998–1999. The statistical significance of the asymmetry time series using a χ2-test of goodness of fit indicates that in most of the cases the asymmetry is highly significant, meaning thereby that the asymmetry is a real feature in the N–S distribution of DSAF.  相似文献   

19.
We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space – unless the baryonic loading is much larger than previously anticipated.  相似文献   

20.
We briefly describe the concept and method of “similar cycles” to be used in sunspot prediction. We have checked on the reliability of this method and made the comparison of the predictions and observations for the 23rd solar activity cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号