首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spaced or domainal cleavage is widespread in deformed rocks of low metamorphic grade. This study presents evidence on the origin of spaced cleavage in deformed pelites from Silurian turbidite sequences in north-central Wales. The variable development of cleavage folia is related to the presence of concretions, which served to concentrate strain effects of well-developed cleavage folia in the matrix in some zones and to produce ‘strain shadows’ (few or no cleavage folia) in others. Compositional differences between matrix, narrow transition zones, and concretions also influenced the development of cleavage folia. Chlorite-muscovite porphyroblast growth was initiated before cleavage formation, but its further growth and development took place during cleavage formation. The relationship of cleavage to the concretions and to the chlorite-muscovite porphyroblasts indicates that cleavage developed in a matrix that must have been in an advanced state of lithification (anchimetamorphic to lowermost greenschist facies of metamorphism) and not during soft-sediment deformation.  相似文献   

2.
The Istanbul Terrane along the Black Sea coast in NW Anatolia, is a Gondwana-derived continental microplate, comprising a well-developed Paleozoic succession. Petrographic and X-ray diffraction studies were performed on rock samples from measured sections throughout Ordovician?CCarboniferous sedimentary units. Diagenetic-very low-grade metamorphic clastic (shale/mudstone, siltstone, sandstone) and calcareous rocks (limestone, dolomite) mainly contain phyllosilicates, quartz, feldspar, calcite, dolomite, hematite and goethite minerals. Phyllosilicates are primarily represented by illite, chlorite, mixed-layered chlorite?Cvermiculite (C?CV), chlorite?Csmectite (C?CS) and illite?Cchlorite (I?CC). Feldspar is commonly present in the Ordovician and Carboniferous units, whereas calcite and dolomite are abundant in the Silurian and Devonian sediments. The most important phyllosilicate assemblage is illite?+?chlorite?+?I?CC?+?C?CV?+?C?CS. Illite and chlorite-bearing mixed layer clays are found in all units. The amounts of illites increase in the upper parts of the Silurian series and the lower parts of the Devonian series, whereas chlorite and chlorite-bearing mixed-layers are dominant in the Ordovician and Carboniferous units. Kübler index values of illites reflect high-grade anchimetamorphism for the Early Ordovician rocks, low-grade metamorphism to high-grade diagenesis for the Middle Ordovician?CEarly Silurian rocks and high-grade diagenesis for the Late Silurian?CDevonian units. The K-white micas b cell dimensions indicate intermediate pressure conditions in the Early Ordovician?CEarly Silurian units, but lower pressure conditions in the Middle Silurian?CDevonian units. Illites are composed of 2M 1?±?1M d polytypes in all units, except for Upper Ordovician?CLower Silurian units which involve 1M polytype in addition to 2M 1 and 1M d polytypes. The 2M 1/(2M 1?+?1Md) ratios rise from Devonian to Ordovician together with the increasing diagenetic-metamorphic grade. Chlorites have IIb polytype. In general, crystal-chemical data of clay minerals in the Istanbul Terrane show a gradual increase in the diagenetic/metamorphic grade together with increasing depth. The new data presented in this work indicate that the diagenetic/metamorphic grade of the Paleozoic of the Istanbul Terrane is higher than that of the neighboring Zonguldak Terrane and generated by a single metamorphic phase developed at the end of Carboniferous. This finding contrasts with the metamorphic history of the neighboring Zonguldak Terrane that displays a distinct Early Devonian unconformity and a thermal event.  相似文献   

3.
The Nurra district in the Island of Sardinia (Italy) has a Palaeozoic basement and covers, consisting of Mesozoic carbonates, Cenozoic pyroclastic rocks and Quaternary, mainly clastic, sediments. The faulting and folding affecting the covers predominantly control the geomorphology. The morphology of the southern part is controlled by the Tertiary volcanic activity that generated a stack of pyroclastic flows. Geological structures and lithology exert the main control on recharge and groundwater circulation, as well as its availability and quality. The watershed divides do not fit the groundwater divide; the latter is conditioned by open folds and by faults. The Mesozoic folded carbonate sequences contain appreciable amounts of groundwater, particularly where structural lows are generated by synclines and normal faults. The regional groundwater flow has been defined. The investigated groundwater shows relatively high TDS and chloride concentrations which, along with other hydrogeochemical evidence, rules out sea-water intrusion as the cause of high salinity. The high chloride and sulphate concentrations can be related to deep hydrothermal circuits and to Triassic evaporites, respectively. The source water chemistry has been modified by various geochemical processes due to the groundwater–rock interaction, including ion exchange with hydrothermal minerals and clays, incongruent solution of dolomite, and sulphate reduction.  相似文献   

4.
Chlorite is a common sheet silicate that occurs in various lithologies over a wide grade range involving diagenesis and low‐grade metamorphism. Thus, the reaction progress of chlorite offers a unique opportunity for direct correlation of zonal classification of metasedimentary rocks based on illite crystallinity with metabasite mineral facies. To provide such correlation, chlorite crystallinity indices, apparent mean crystallite sizes and lattice strains, crystallite size distributions and compositions of chlorite from coexisting metapelites and metabasites were determined by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), analytical electron microscopy (AEM) and electron microprobe (EMP) methods. Samples were from Palaeozoic and Mesozoic formations of the Bükkium (innermost Western Carpathians, Hungary) that underwent Alpine (Cretaceous) orogenic metamorphism. Metapelites range in grade from late diagenesis to epizone, whereas metabasites vary from prehnite–pumpellyite through pumpellyite–actinolite to greenschist facies. Despite significant differences in composition, mineral assemblages and textures, reaction progress, as measured in part by chlorite crystallinity, in metapelites paralleled that in metabasites. Chlorite crystallinity and mean crystallite size increase and the proportion of mixed layers in chlorite decreases, whereas the calculated lattice strain does not change significantly with increasing metamorphic grade. Similar trends, but (especially at higher grades) significant differences, were found in mean crystallite size values using various methods for XRD line profile analyses. The increase in crystallite size with increasing grade was demonstrated also by direct TEM measurements on ion‐milled whole‐rock samples, but with a larger scatter of data at higher grades. In spite of the different kinds of mixed layering in chlorite (Mg‐rich smectitic, mostly random, local corrensite‐like units in metabasites, and Fe‐rich berthierine and dioctahedral smectite in metapelites), XRD‐calculated and TEM‐measured parameters were found to be reliable tools for measuring reaction progress and metamorphic grade of the same degree in both lithotypes.  相似文献   

5.
The textural and chemical evolution of allanite and monazite along a well‐constrained prograde metamorphic suite in the High Himalayan Crystalline of Zanskar was investigated to determine the P–T conditions for the crystallization of these two REE accessory phases. The results of this study reveals that: (i) allanite is the stable REE accessory phase in the biotite and garnet zone and (ii) allanite disappears at the staurolite‐in isograd, simultaneously with the occurrence of the first metamorphic monazite. Both monazite and allanite occur as inclusions in staurolite, indicating that the breakdown of allanite and the formation of monazite proceeded during staurolite crystallization. Staurolite growth modelling indicates that staurolite crystallized between 580 and 610 °C, thus setting the lower temperature limit for the monazite‐forming reaction at ~600 °C. Preservation of allanite and monazite inclusions in garnet (core and rim) constrains the garnet molar composition when the first monazite was overgrown and subsequently encompassed by the garnet crystallization front. Garnet growth modelling and the intersection of isopleths reveal that the monazite closest to the garnet core was overgrown by the garnet advancing crystallization front at 590 °C, which establishes an upper temperature limit for monazite crystallization. Significantly, the substitution of allanite by monazite occurs in close spatial proximity, i.e. at similar P–T conditions, in all rock types investigated, from Al‐rich metapelites to more psammitic metasedimentary rocks. This indicates that major silicate phases, such as staurolite and garnet, do not play a significant role in the monazite‐forming reaction. Our data show that the occurrence of the first metamorphic monazite in these rocks was mainly determined by the P–T conditions, not by bulk chemical composition. In Barrovian terranes, dating prograde monazite in metapelites thus means constraining the time when these rocks reached the 600 °C isotherm.  相似文献   

6.
Summary Eclogitic rocks are hosted within gneisses and migmatites of the Hercynian basement of NE Sardinia. They are characterized by two compositional layers: garnet-pyroxene rich-layers and amphibole-plagioclase layers. The former contain structural, mineralogical and compositional relics of eclogite facies re-equilibration. Four stages of evolution have been identified: an eclogite stage, a granulite stage and a retrograde amphibolite to greenschist stage. A possible pre(?)-eclogite stage is documented by inclusions of euhedral tschermakitic amphibole + zoisite within the core of garnet. This early stage was followed by an increase in pressure under which the eclogite climax developed (T up to 700 °C, P =13-15 kbar), as documented by omphacite inclusions towards the rim of garnet.Characteristic mineral reactions after the eclogitic stage are: omphacite diopside + plagioclase (symplectite) and garnet orthopyroxene + plagioclase. These reactions testify the presence of a granulite stage during which the peak of metamorphism was reached (T up to 870'C, P 10 kbar). The orthopyroxene cummingtonite + quartz and garnet + diopside hornblende + plagioclase (kelyphite) transformations indicate extensive amphibolite retrogression (T = 550650 °C, P = 3-7 kbar). Finally, actinolite and chlorite developed (greenschist stage) at falling temperature and pressure (T = 300-400 °C, P < 2-3 kbar).
Mehrstufige metamorphe Reequilibration eklogitischer Gesteine aus dem hercynischen Basement NE Sardiniens (Italien)
Zusammenfassung Eklogitische Gesteine kommen in Gneisen und Migmatiten des hereynischen Basements in NE Sardinien vor. Sie sind durch einen modalen Zweitagenbau von einerseits Granat-Pyroxen andererseits Amphibol-Plagioklas charakterisiert. In ersteren sind Relikte einer strukturellen, mineralogischen und mineralchemischen Reequilibration unter eklogitfaziellen Bedingungen enthalten. Vier Entwicklungstadien sind unterscheidbar: ein Eklogit-, ein Granulit-, sowie ein retrogrades Amphibolit- und Grünschieferstadium. Ein mögliches prä(?)-eklogitisches Stadium ist durch die Einschlüsse von tschermakitischem Amphibol + Zoisit in Granatkernen angedeutet. Auf dieses Frühstadium folgte, dokumentiert durch Omphaziteinschlüsse im Granatrandbereich, Druckzunahme und es wurden eklogitfazielle Bedingungen (T bis zu 700 °C, P = 13-15 kbar) erreicht.Charakteristische Mineralreaktionen nach der Eklogitbildung sind Omphazit Diopsid + Plagioklas (Symplektite) und Granat Orthoyroxen + Plagioklas. Diese Reaktionen belegen das Vorliegen eines Granulitstadiums, während dem der Metamorphosehöhepunkt (T bis 870°C, P 10 kbar) erreicht wurde. Die Umwandlungen von Orthopyroxen Cummingtonit + Quarz und Granat + Diopsid Hornblende + Plagioklas (Kelyphit) belegen eine intensive retrograde amphibolitfazielle Überprägung (T = 550-650°C, P = 3-7 kbar). Aktinolith und Chlorit (Grünschieferstadium) bildeten sich bei weiter fallenden Temperaturen und Drucken (T = 300-400 °C, P < 2-3 kbar).
  相似文献   

7.
The Brixen Granodiorite is part of the Permian calc-alkaline plutonic association (Brixen Granodiorite, Ifinger Granite, Kreuzberg Granite, Cima d’Asta Granitoid) that intruded the Variscan Southalpine metamorphic basement. The Brixen Granodiorite is located to the south of the Periatriatic Lineament in the eastern part of the Southalpine basement complex and comprises a series of tonalitic, granitic and granodioritc intrusions, which were emplaced during the Permian (280?Ma) into the country rocks of the Brixen Quarzphyllites. The depth of these Southalpine granodioritic intrusions was less than 10?km (P?≤?0.3?GPa) and solidus temperatures were 670–720?°C (Visona, Mem Sci Geol 47:111–124, 1995; Acquafredda et al., Miner Petrogr Acta XL:45–53, 1997; Wyhlidal et al., Austr J Earth Sci 102:181–192, 2009). Only a small, about 200?m wide, contact aureole formed at the southern rim of the Brixen Granodiorite near the village Franzensfeste/Fortezza (South-Tyrol, Italy). Within the contact aureole four different zones can be distinguished based upon mineralogical, mineral chemical and textural features. Approximately 200?m from the granite contact zone I occurs. The rocks from this zone are macroscopically still quartzphyllites and are characterized by two texturally and chemically different generations of micas (muscovite, biotite) and the appearance of cordierite. Zone II is characterized by quartzphyllites containing pseudomorphs of cordierite + biotite after garnet. The inner contact aureole (zone III) starts approximately 50?m from the granite contact and shows already typical hornfels textures. This zone is characterized by the first occurrence of andalusite. In the innermost area (zone IV), ca 10?m from the granite contact, spinel and corundum occur. Geothermometry (two-feldspar-, Ti-in-biotite) yielded an increase in temperature from 540?°C in the outermost aureole (zone I) to <740?°C in the innermost aureole (zone IV). Pseudosection modelling of hornfelses from zones III and IV also resulted in similar P-T conditions of <0.28?GPa and <620?°C. This contact aureole represents one of the few well-developed remaining areas of Permian contact metamorphism in the Southalpine domain, which are otherwise mostly obliterated by late-stage hydrothermal alteration in the course of the Alpine tectonic overprint.  相似文献   

8.
《Geodinamica Acta》2013,26(5):309-329
The metamorphic basement of the Asinara island represents a key area of the Sardinia Variscan segment, because it displays an almost complete cross-section through the inner part of the Sardinia Variscan belt, where different tectono-metamorphic complexes have been juxtaposed along narrow belts of high-strain concentration. Detailed field mapping coupled with preliminary studies on the structural and metamorphic features of this small island, allow to draw a better picture of the structural frame issued from the Variscan collision in the inner zone of the belt. Three deformation phases related to crustal thickening in a compressive and transpressive, partitioned tectonic regime, followed by a later phase of extensional deformation have been recognised. In spite of a general HT/LP metamorphic overprint, linked to the post-collisional deformation phases, a relic Barrovian zoneography is still detectable. The Barrovian assemblages are preto syn-kinematic with respect to the D2 deformation phase, and pre-date the third, contractional tectonic event.

The HT/LP assemblage indicates a static growth of weakly deformed by the last deformation events. The complex geometry of the fabric associated to the D2 and D3 deformation events suggests an heterogenous deformation history with a monoclinic geometry characterized by switching of the stretching lineation orientation and a contrasting sense of displacement, probably controlled by a northward partitioned pure shear.  相似文献   

9.
New Rb/Sr and K/Ar data on minerals and whole-rocks from the metamorphic basement of Northeastern Sardinia are presented. A formation of augen gneiss of volcano-sedimentary origin yields a Rb/Sr whole-rock age of 441±33 m.y.; a Rb/Sr isochron age of 306±10 m.y. is found for the minerals separated from one of these samples. K/Ar measurements on micas also yield ages of 319–284 m.y. A banded migmatite which originated through a process of metamorphic differentiation was analysed by the Rb/Sr method. Six bands, treated as whole-rock samples, fit an isochron of 344±7 m.y. Biotite and plagioclase from one of these bands yield an isochron age of about 300 m.y.The radiometric results reported in this paper and all those previously published are discussed in order to investigate the tectono-metamorphic history of this important segment of the ancient Mediterranean basement. It is argued that in this area there is only indirect evidence of a Caledonian orogenic event (late orogenetic acidic magmatites emplaced 458-441 m.y. ago) while the main features of the metamorphic basement must be related to the Hercynian orogeny the climax of which can be fixed at about 340 m.y. The concordance of the ages of the separated minerals (310-300 m.y.) suggests that the metamorphic succession stayed above the specific critical temperatures for about 40 m.y., after which it was suddenly uplifted contemporaneous with the emplacement of the, essentially post-kinematic, Hercynian granitoids.  相似文献   

10.
In the Ligurian Apennines and the Brianzonese area of the Maritime Alps (Northern Italy), and in the Lucanian Apennines and Calabria (Southern Italy), pumpellyite formed during the Alpine metamorphism is widespread in terranes of Late Paleozoic to Miocene age, particularly in mafic ophiolites (Tethyan ophiolites of Jurassic-Early Cretaceous age).Pumpellyite developed under variable metamorphic conditions, which include zeolite, prehnite-pumpellyite, pumpellyite-actinolite, lawsonite-albite and blueschist facies. Pumpellyite from rocks belonging to all these facies was studied in 30 specimens of different chemistry, derived mostly from ophiolitic basalt and gabbro, but also from gneiss, amphibolite, and greywacke protoliths.Microprobe data give evidence of strong compositional variations of pumpellyite. The ranges are extreme for Al and Fetot (Al2O3=18.74–30.91; FeOtot=0.46–12.71), to a lesser extent for Mg (MgO=0.58–4.00), with a reciprocal variation of Al and Fetot which suggests that most Fe is Fe3+.Pumpellyite compositions can be related with the metamorphic conditions, particularly an increase of the Al/Fetot ratio with increasing pressure, but larger compositional variation for each facies in the Al-Fetot-Mg diagram than those previously described was recognized. Particularly the compositions of pumpellyite from the pumpellyite-actinolite and blueschist fades assemblages extend towards higher Fetot contents. Moreover, pumpellyites of the lawsonite-albite facies rocks result to be more aluminous than in blueschist facies; such relations appear to be inconsistent with that expected by the effects of pressure on the Al content.As the rocks are generally incompletely re-equilibrated, their bulk chemistry is not an important factor of pumpellyite composition; in fact the correlations of Al, Fetot and Mg are low. The local environment of crystallization, more evidently the composition of the precursor minerals, seems to be a major controlling factor. The observed topologic relations indicate that either the nature of the precursor mineral, or the presence of relict phases have a great influence on the pumpellyite composition. The observed variations within individual specimens, as well as the interspecimen ones, can be explained by small-scale inhomogeneities and in some cases by differences in the activity of O2.It can be therefore concluded that the composition of pumpellyite often reflects disequilibrium crystallization and cannot be generally used as an indicator of metamorphic conditions.  相似文献   

11.
Summary. ?In the Nurra region, NW Sardinia, oolitic ironstones are interlayered within coarsening upward metasedimentary sequences of siltstone, sandstone, breccia, and conglomerate. A Caradoc-Early Ashgill age is suggested by the analogies with metasediments of Central-Southern Sardinia following the Sardinian tectonic phase. The sequences including oolitic ironstones are overlain by black metapelite of inferred Hirnantian to early Silurian age. The ooids consist of chamosite, siderite or magnetite or, rarely, stilpnomelane. Chamosite ooids consist of up to 30 lamellae and sporadically show clustering of magnetite grains in core and rim, and widespread late replacement by siderite. The alternation of chamosite and Fe-oxide observed in a few samples points to an ooid transport over the crests and hollows of megaripples in a continental shelf at 0–60 m depth, and/or a random displacement of the littoral environments in a rapidly evolving continent-sea transition zone producing an alternation of oxidizing and reducing conditions. Black phosphate clasts, including older Fe-ooids, frequently occur. The oolitic ironstones of Nurra are variable mixtures of an Al-Si-Ti rich- detrital component and a Fe-rich chemical component. The abundance of chamosite and siderite explains the high values of LOI and the high Fetot, Fe2+ and Al contents and the low Si amounts in comparison with other Phanerozoic oolitic ironstones. The detrital elements are Al, Si, Ti, Mg, Zr, Th. Chemical precipitation processes supplied Fe, Ca, P, Sr, HREE. The chondrite-normalized pattern shows a slight LREE enrichment, a clear negative Eu anomaly, and a flat HREE trend typical of many Ordovician oolitic ironstones. The NASC-normalized pattern has a convex shape, with peaks for Sm, Gd, like in all the pre-Devonian phosphate deposits. The numerous phosphate clasts, pyrite pockets, diffuse organic matter, and lack of glauconite suggest an upward extension of the oxygen minimum layer in a stratified basin, up to a depth of 60 m, and allow the estimation of log fO2 = − 72 to − 80 and pH = 9.0–9.5. for the underlying pyrite zone (depth > 60 m). Here the pore waters leached Eu2+ from the bottom sediments giving the observed negative anomaly of the chondrite-normalized REE pattern.
Résumé ?Dans la région de la Nurra, Sardaigne nord-ouest, des niveaux ferrugineux oolithiques sont intercalés dans des séquences métasédimentaires composées de silts, grès, brèches et conglomerats. Un age Caradoc-Ashgill inférieur est suggéré par les analogies avec les métasédiments de la Sardaigne centrale-méridionale postérieurs à la phase tectonique Sarde. Les séquences qui contiennent les niveaux ferrugineux oolithiques sont surmontées par des métapélites noires pour lesquelles on suppose un age Hirnantien à Siliurien inférier. Les oolithes sont constituées de chamosite, siderite ou magnétite ou rarement, stilpnomelane. Les oolithes de chamosite peuvent avoir jusq’à 30 enveloppes dans le cortex et sporadiquement elles montrent une concentration de grains de magnétite au centre et sur le bord et un vaste replacement tardif par de la sidérite. L’alternation de enveloppes à chamosite et à oxydes de fer observée dans quelques échantillons indique un transport des oolithes sur la crête et dans la dépression de rides géantes sur une plateforme continentale à 0–60 m de profondeur et/ou bien un déplacement casuel des milieux c?tiers dans une zone de transition entre mer et continent en rapide évolution, ce qui produisait une alternation de conditions oxydantes et réduisantes. On trouve fréquemment des intraclastes noirs de phosphate qui contiennent des oolithes ferrugineuses plus anciennes. Les niveaux oolithiques ferrugineux de la Nurra sont le résultat d’un mélange en proportions variables entre une composante détritique riche en Al, Si,Ti et une composante chimique riche en fer. L’abondance de chamosite et sidérite explique les hautes valeurs de perte au feu et la haute teneur en Fetot, Fe2+ et Al et la basse teneur en Si en comparaison avec d’autres formations oolithiques ferrugineuses Phanérozo?ques. Les éléments détritiques sont Al, Si, Ti, Mg, Zr, Th. Les processus de précipitation chimique ont fourni Fe, Ca., P, Sr, HREE. Les teneurs de terres rares normalisées aux chondrites montrent un léger enrichissement en LREE, une évidente anomalie négative de Eu, et une disposition en plateau des HREE, qui est tipique de beaucoup de formations oolithiques ferrugineuses Ordoviciennes. Les teneurs normalisées aux NASC forment une courbe convexe avec deux maxima pour Sm et Gd, comme dans tout les dép?ts phosphatés pré-Dévoniens. Les nombreux intraclastes de phosphate, les cavités pleines de pyrite, l’abondance de matière organique et l’absence de glacounie suggèrent une extension vers plus faible profondeurs ( jusq’à 60 m) de la couche d’eau marine ayant la moindre teneur en oxygène dans un bassin stratifié. Pour la zone à pyrite qui est en dessous de la zone oolithique (profondeur > 60 m) on estime les conditions suivantes: log fO2 = − 72 à− 80 et pH = 9.0–9.5. Les eaux intergranulaires solubilisent et emportent le Eu2+ des sediments du fond et donnent l’anomalie négative de Eu pour les teneurs de terres rares normalisées aux chondrites.


Received February 10, 1999;/revised version accepted June 30, 1999  相似文献   

12.
Andalusite–staurolite–biotite hornfels metamorphosed beneath the mafic layered rocks of the Bushveld Complex, South Africa, preserves a detailed record of the relative timing of porphyroblast growth and metamorphic reactions. The sequence inferred from microstructures shows considerable overlap of the period of growth of porphyroblasts of staurolite, cordierite, biotite and andalusite, and the persistence over a similar interval of the reactant porphyroblastic phase chloritoid. This is inconsistent with calculations of equilibrium phase relations, and implies that disequilibrium processes controlled the prograde reaction sequence, despite the slow heating rates involved (1 °C per 10 000 yr). The early appearance of cordierite by a metastable reaction and its subsequent disappearance indicates that delayed nucleation of porphyroblastic phases, rather than simply sluggish reaction, is required to account for the sequence of growth. The predicted reactions for the first appearance of andalusite and staurolite have low entropy of reaction, and do not occur until they have been overtaken in terms of reaction affinity by high‐entropy devolatilisation reactions involving the breakdown of chlorite. Once the porphyroblasts have nucleated, metastable chloritoid‐breakdown reactions also contribute to their growth. The implied magnitude of the critical overstepping for andalusite nucleation is around 5 kJ mole?1 (equivalent to 40 °C for the chlorite‐breakdown reaction), and that for other phases is expected to decrease in the order andalusite>staurolite>cordierite. Coupling between nucleation rate, crystal growth rates and the resulting grain size distribution suggests that the rate constants of natural reactions are at least an order of magnitude lower than those measured in the laboratory. Pseudomorphs after chloritoid and cordierite conserve volume but not Al or other species of low mobility, suggesting a breakdown mechanism controlled by an interface process such as the slow dissolution of the refractory porphyroblast phase, rather than by a transport step.  相似文献   

13.
The geochemical patterns of major and trace elements in zonal garnets and the mineral inclusions in them formed by progressive and regressive metamorphism of pelites are established. It is shown that an increase in temperature and pressure led to a decrease in the Y and HREE contents in garnets, and the increase in their contents is related to a decrease in the PT-parameters of their formation. A negative correlation between the CaO and REE contents in garnet indicates their isomorphism. The main reason for the sharp increase in the CaO content in garnets during collision metamorphism is mass transfer between the garnet and the plagioclase. The deviations from this situaiton, which are expressed in simultaneous increase in the grossular component in garnet and the anorthite component in plagioclase, are caused by metamorphic reactions related to the epidote decomposition. The mass transfer of major and trace elements between the reacting phases in metamorphic reactions mostly occurred with preservation of the balance of matter. The mirror shape and the character of the REE patterns of the rock-forming minerals relative to the composition of the rock indicate the equilibration of the HREE and Y contents between garnet, the major concentrator of these elements in the rock, and other phases. The balance between the LREEs and HREEs in the rock is achieved by the presence of variable amounts of monazite.  相似文献   

14.
To evaluate the palaeo-environmental parameters of a portion of the Sardinia–Corsica microplate during the Messinian drop in sea level, we examined the chemistry and mineralogy of upper Tortonian–lower Messinian (late Miocene) clayey continental deposits from NW Sardinia. Differences exist between the uppermost part of the succession, which is devoid of carbonate phases, and the lower part, reflecting changes in provenance and climate. The carbonate-free samples were probably derived from quartzite of the metamorphic basement and were deposited under a climate characterized by alternating dry and relatively wet periods. The other samples were derived from basement phyllite and were deposited under a warm, dry climate that promoted the capillary rise of Ca2+ and bicarbonate from a shallow water table, and therefore, the precipitation of carbonate. This part of the succession contains both calcite and dolomite. The presence of barite indicates an important concentration of SO4 2? in the solution from which the CaMg(CO3)2 precipitated. The formation of dolomite under hypersaline conditions may be explained by bacterial degradation of organic matter, which produced CO2 and ammonia, thereby increasing the solution alkalinity. The succession formed in an oxic environment, except for a calcite-rich level that formed under relatively reducing conditions. For this level, the large amount of calcite and the lack of dolomite indicate an alkaline environment and a very low Mg2+/Ca2+ ratio in the soil solution. These observations, coupled with the reducing conditions, indicate the availability of large amounts of degraded organic matter, probably related to a period typified by a wetter climate.  相似文献   

15.
Garnet and plagioclase pairs from fourteen selected samples, from garnet to sillimanite zones, collected along a NS traverse throughout the metamorphic basement of NE Sardinia, have been analyzed by microprobe.Beyond the garnet isograd, plagioclase has albitic composition and the garnet (a Ca-rich almandine) shows Ca/ Ca+Mg+Fe ratios of about 0.35–0.30, fairly constant from core to rim.Towards the North, still in the garnet zone, when on the large albitic core of plagioclase a thin and discontinuous oligoclasic rim (An22–An18) formed, we observe in the garnet edge an abrupt decrease of the Ca/Ca+Mg+Fe ratio (0.27–0.16).In the staurolite and sillimanite zones garnet does not show significant Ca-zoning and it is characterized by low Ca content (Ca/Ca+Mg+Fe<0.1); the coexisting plagioclase has oligoclasic (An16–An27) composition.The chemical data and the microstructural evidence on growth time indicate that the garnet and plagioclase had a strong mutual interference in determining the relative Ca distribution.The most relevant reactions are discussed and, in particular, the antipathetical Ca-zoning, recorded by garnet and plagioclase in the garnet zone, is considered as the evidence of temperature increase during growth of the two minerals. It is also suggested that the sharp variation of Ca content at the garnet edge was controlled by the discontinuous nature of plagioclase solid solution in the peristeritic range.The order of appearance of garnet and oligoclase in the basement of NE Sardinia is also discussed in comparison with other well known metamorphic sequence (Vermont, New Zealand and Dalradian). It is concluded that the different order of appearance is controlled other than the different nature of the calcic phases in the lower grade zones also by the in the fluid phase.  相似文献   

16.
Bauxite deposits are widespread in NW Sardinia. They formed during the middle Cretaceous, in consequence of a period of emergence of the Mesozoic carbonate shelf. In the Nurra area the geometries derived by the Middle Cretaceous tectonic phases controlled the ore typologies. Two bauxite profiles, laying on different bedrocks, were sampled. The bauxitization proceeded from the surface downward, with the accumulation of Al2O3 and residual ‘immobile’ elements (Al, Ti, HFSE), and corresponding mobility and loss of SiO2 and Fe2O3. Epigenetic kaolinite formed close to faults and joints, probably as a result of silicification, introduced by low temperature hydrothermal solutions. Rare earth elements, especially LREE, are concentrated in Fe-rich bauxite horizons, probably due to scavenging by goethite. REE-enrichment is not observed in the boehmite-rich horizons. Very high REE contents are observed in a Fe-depleted horizon due to the occurrence of REE accessory minerals, probably of the bastnäsite group. Conservative indices, including TiO2/Al2O3 and Ti/Cr ratios, and Eu anomalies (Eu/Eu*), suggest that the deposits formed by weathering of sediments derived from mafic rocks of the Hercynian basement. This, in turn, implies that the basement was exposed during middle Cretaceous.  相似文献   

17.
Abstract Mineralogical and petrological studies of Triassic Verrucano metasediments of the Northern Apennines are reported. The widespread occurrence of Al-silicates allows the delineation of four metamorphic zones with increasing metamorphic grade: (1) kaolinite zone (well Perugia 2, Umbria); (2) kaolinite-pyro-phyllite zone (Monte Argentario and part of the Verrucano of the Monticiano-Roccastrada area and Monti Leoni); (3) pyrophyllite zone (Monti Pisani, Iano, Monti Leoni, the Monticiano-Roccastrada area and some wells in the Larderello region); (4) kyanite zone (Massa area and some wells in the Larderello area).
The four metamorphic zones correspond to temperatures ranging from 300°C to about 450°C. On the basis of the Si content of muscovite and geological arguments, pressures of between 3 and 5 kbar are estimated. The metamorphic zones are located more or less parallel to the bent north-west-south-east trending structural zonation of the Northern Apennines, with the concave side towards the Tyhrrenian Sea.
During the Alpine orogeny, the Verrucano metasediments underwent three folding phases each of which has produced an axial plane schistosity (S1, S2, S3). During the first folding phase the Verrucano sediments were buried increasingly deeply within the crust from east to west. The climax of Alpine metamorphism was attained prior to the second folding phase with crystallization of porphyroblasts of kyanite and chloritoid in a central area located between Massa and Larderello. The inferred paleo-temperature distribution pattern resembles an asymmetric thermal high defined by the kyanite zone, and surrounded by the pyrophyllite zone. A similar pattern is still present in the Tuscan crust, as indicated by a series of geothermal anomalies passing through the Northern Apennines.  相似文献   

18.
Chemical data are presented for 49 muscovites from high and low Al specimens collected form N.W. Maine at metamorphic grades ranging from the upper staurolite to the upper sillimanite zone. Data also are presented for two muscovite from St. Paul Island, two muscovites+three paragonites from Gassetts, Vermont, and one muscovite from an adamellite in N. W. Maine.These data given further information on the effects of P, T, and bulk composition on muscovite composition. Specifically, temperature clearly influences the Na/Na+K ratio of muscovite in limiting assemblages but may not have much effect on the phengite content. Increase in pressure clearly does cause an increase in phengite content. Bulk composition (assemblage) has a very great effect on both Na/Na+K ratio and phengite content so that attempts to use either of these factors to monitor metamorphic grade should generally be done in the context of a limiting assemblage.  相似文献   

19.
Ammonium fixed in micas of metamorphic rocks is a sensitive indicator both of organic-inorganic interactions during diagenesis as well as of the devolatilization history and fluid/rock interaction during metamorphism. In this study, a collection of geochemically well-characterized biotite separates from a series of graphite-bearing Paleozoic greenschist- to upper amphibolite-facies metapelites, western Maine, USA, were analyzed for ammonium nitrogen () contents and isotopic composition (δ15NNH4) using the HF-digestion distillation technique followed by the EA-IRMS technique. Biotite separates, sampled from 9 individual metamorphic zones, contain 3000 to 100 ppm with a wide range in δ15N from +1.6‰ to +9.1‰. Average contents in biotite show a distinct decrease from about 2750 ppm for the lowest metamorphic grade (∼500 °C) down to 218 ppm for the highest metamorphic grade (∼685 °C). Decreasing abundances in are inversely correlated in a linear fashion with increasing K+ in biotite as a function of metamorphic grade and are interpreted as a devolatilization effect. Despite expected increasing δ15NNH4 values in biotite with nitrogen loss, a significant decrease from the Garnet Zones to the Staurolite Zones was found, followed by an increase to the Sillimanite Zones. This pattern for δ15NNH4 values in biotite inversely correlates with Mg/(Mg + Fe) ratios in biotite and is discussed in the framework of isotopic fractionation due to different exchange processes between or , reflecting devolatilization history and redox conditions during metamorphism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号