首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The Conquista chondrite consists of major olivine, low-Ca pyroxene (both ortho- and twinned clino-), troilite and metallic nickel-iron; minor glassy to microcrystalline material and pigeonite; and accessory chromite, high-Ca clinopyroxene and hydrous ferric oxides that formed by terrestrial weathering of metallic nickel-iron. Results of microscopic, electron microprobe, and bulk chemical studies, particularly the compositions of olivine (Fa17.2) and low-Ca pyroxene (Fs15.4); the contents of metallic nickel-iron (18.5%) and total iron (25.83%); and the ratios of Fe°/Fetotal (0.64), Fe°/Ni° (9.59) and Fetotal/SiO2 (0.69) indicate H-group classification. The pronounced, well-developed chondritic texture; the slight compositional variations in constituent phases; the high Ca contents of pyroxene and the presence of pigeonite, glassy to microcrystalline interstitial material rich in alkalis and SiO2, and of twinned low-Ca clinopyroxene suggest that Conquista is of petrologic type 4.  相似文献   

2.
Abstract— A search of active deflation basins near Jal, Lea County, New Mexico resulted in the discovery of two meteorites, Lea County 001 and 002. Lea County 001 has mean olivine and low-Ca pyroxene compositions of Fa19 and Fs17, respectively. These and all other mineralogical and petrological data collected indicate a classification of H5 for this stone. Lea County 002 has mean olivine and low-Ca pyroxene compositions of Fa2 and Fs4, and is unequilibrated. Although it is mineralogically most similar to Kakangari and chondritic clasts within Cumberland Falls, the high modal amount of forsterite makes Lea County a unique type 3 chondrite. Oxygen isotope data for Lea County 002 fall on an 16O-mixing line through those of the enstatite meteorites and IAB irons, a feature shared by Kakangari.  相似文献   

3.
Abstract— The Asuka 881931 meteorite is an unbrecciated ferroan ureilite and consists mainly of equi—granular olivine and pigeonite grains, a metal—sulfide network, interstitial silicates, and glass. Peripheral portions of equigranular olivine grains are often replaced by fine-grained forsterite—metal aggregates and sometimes by fine-grained enstatite—metal aggregates. These aggregates may have been produced from the equigranular olivine by reduction. Peripheral portions of equigranular pigeonite grains also are sometimes replaced by fine-grained orthopyroxene aggregates with tiny patches of Si-rich glass and may have been produced from the pigeonite by reduction reaction with silicate melt. Interstitial silicates are mainly orthopyroxene, magnesian pigeonite, high-Ca pyroxene (diopside/fassaite), and CaO-poor enstatite; and they crystallized from interstitial silicate melt. Interstitial glass is classified into two types—-Si-poor and Si-rich. The Si-poor glass is always in contact with equigranular olivine, but the Si-rich glass never contacts equigranular olivine and is in contact with pyroxene and the metal—sulfide network. Both types of glass were produced from an original interstitial silicate melt, but the Si-poor glass formed mainly by fractional crystallization of pyroxenes, and the Si-rich glass may have formed by addition of Si mainly from nearby metal—sulfide melt, as well as crystallization of pyroxenes. The Si-poor and Si-rich melts were finally quenched as interstitial glasses under rapid cooling conditions.  相似文献   

4.
Abstract— An H5 chondrite was found near the village of Rumanová, Slovakia. dominant minerals of the meteorite are enstatite, olivine, kamacite, taenite and troilite. The minor minerals are oligoclase, augite, pigeonite, accessory chromite, whitlockite and chlorapatite. The composition of olivine (Fa19.0) and low-Ca orthopyroxene (Fs17.0), and the density and chemical composition of the meteorite correspond to those of an H chondrite. Normal zoning of Ni in metal grains and parallel planar fractures in olivine suggest weak shock metamorphism of stage S3. Due to moderate oxidation of metal, iron hydroxides were formed corresponding to weathering stage W2.  相似文献   

5.
NWA 10214 is an LL3‐6 breccia containing ~8 vol% clasts including LL5, LL6, and shocked‐darkened LL fragments as well as matrix‐rich Clast 6 (a new kind of chondrite). This clast is a dark‐colored, subrounded, 6.1 × 7.0 mm inclusion, consisting of 60 vol% fine‐grained matrix, 32 vol% coarse silicate grains, and 8 vol% coarse opaque grains. The large chondrules and chondrule fragments are mainly Type IB; one small chondrule is Type IIA. Also present are one 450 × 600 μm spinel‐pyroxene‐olivine CAI and one 85 × 110 μm AOI. Clast 6 possesses a unique set of properties. (1) It resembles carbonaceous chondrites in having relatively abundant matrix, CAIs, and AOIs; the clast's matrix composition is close to that in CV3 Vigarano. (2) It resembles type‐3 OC in its olivine and low‐Ca pyroxene compositional distributions, and in the Fe/Mn ratio of ferroan olivine grains. Its mean chondrule size is within 1σ of that of H chondrites. The O‐isotopic compositions of the chondrules are in the ordinary‐ and R‐chondrite ranges. (3) It resembles type‐3 enstatite chondrites in the minor element concentrations in low‐Ca pyroxene grains and in having a high low‐Ca pyroxene/olivine ratio in chondrules. Clast 6 is a new variety of type‐3 OC, somewhat more reduced than H chondrites or chondritic clasts in the Netschaevo IIE iron; the clast formed in a nebular region where aerodynamic radial drift processes deposited a high abundance of matrix material and CAIs. A chunk of this chondrite was ejected from its parent asteroid and later impacted the LL body at low relative velocity.  相似文献   

6.
Abstract— The Divnoe meteorite is an olivine-rich primitive achondrite with subchondritic chemistry and mineralogy. It has a granoblastic, coarse-grained, olivine groundmass (CGL: coarse-grained lithology) with relatively large pyroxene-plagioclase poikilitic patches (PP) and small fine-grained domains of an opaque-rich lithology (ORL). Both PP and ORL are inhomogeneously distributed and display reaction boundaries with the groundmass. Major silicates, olivine (Fa20–28) and orthopyroxene (Fs20–28 Wo0.5–2.5), display systematic differences in composition between CGL and ORL as well as a complicated pattern of variations within CGL. Accessory plagioclase has low K content and displays regular igneous zoning with core compositions An40–45 and rims An32–37. The bulk chemical composition of Divnoe is similar to that of olivine-rich primitive achondrites, except for a depletion of incompatible elements and minor enrichment of refractory siderophiles. Oxygen isotope compositions for whole-rock and separated minerals from Divnoe fall in a narrow range, with mean δ18O = +4.91, δ17O = +2.24, and Δ17O = ?0.26 ± 0.11. The isotopic composition is not within the range of any previously recognized group but is very close to that of the brachinites. To understand the origin of Divnoe lithologies, partial melting and crystallization were modelled using starting compositions equal to that of Divnoe and some chondritic meteorites. It was found that the Divnoe composition could be derived from a chondritic source region by ~20 wt% partial melting at T ~ 1300 °C and log(fO2) = IW-1.8, followed by ~60 wt% crystallization of the partial melt formed, and removal of the still-liquid portion of the partial melt. Removal of the last partial melt resulted in depletion of the Divnoe plagioclase in Na and K. In this scenario, CGL represents the residue of partial melting, and PP is a portion of the partial melt that crystallized in situ. The ORL was formed during the final stages of partial melting by reaction between gaseous sulfur and residual olivine in the source region. A prominent feature of Divnoe is fine μm-scale chemical variations within olivine grains, related to lamellar structures the olivines display. The origin of these structures is not known.  相似文献   

7.
Abstract— A newly fallen Sudanese meteorite named Al Zarnkh was investigated using room and liquid nitrogen temperature Mössbauer measurements, X‐ray diffraction (XRD), and electron probe microanalysis (EPMA) in conjunction with energy dispersive X‐ray microscopy. The Mössbauer spectra exhibited strong paramagnetic doublets with magnetic sextets. The doublets are assigned to olivine and pyroxene, while the magnetic sextets are assigned to troilite and kamacite. Based on microprobe analyses and textural studies, olivine is the most abundant phase and occurs as fine to medium grained laths both in the groundmass and in barred olivine chondrules. Both orthopyroxenes and clinopyroxenes are present and these tend to be granular. Plagioclase is an abundant interstitial groundmass phase. Chromites were detected in some groundmass olivine and are highly chromiumand iron‐rich with no Fe3+ detected. The kamacite contains small amounts of Co. The mole fraction of the Fe end‐member of olivine (fayalite) and orthopyroxene (ferrosilite) are found to be about 28% and 23%, respectively. These values are compared with that obtained from two chondritic meteorites. Based on these results, the studied meteorite is classified as an ordinary LL5 chondrite.  相似文献   

8.
Abstract— A new, large, ordinary chondrite has been recovered from near the strewn field of Gibeon iron meteorites in Namibia, and is designated Korra Korrabes, after the farm property on which the specimens were found in 1996–2000. A total of ~140 kg of related specimens were recovered, including a large stone of 22 kg, and hundreds of smaller objects between 2 g and several kilograms. Cut surfaces indicate that Korra Korrabes is a breccia, containing 10–20% of light grey‐brown clasts up to 3 cm across in a uniform, darker grey‐brown host that contains abundant round chondrules, and irregular grains of Fe‐Ni metal and troilite up to 1 cm across. The vast majority of the stone is unshocked, although some clasts show mild shock features (stage S2), and one chondrule fragment is moderately shocked (stage S3). Weathering grade varies between W1 and W2. Microprobe analyses indicate variable compositions of olivine (Fa13.8–27.2, n = 152, percent mean deviation = 7.82%) and low‐Ca pyroxene (multiply twinned clinobronzite, Fs8.4–27.8, n = 68). There is excellent preservation of magmatic textures and mineralogy within many chondrules, including normally zoned olivine (Fa13.8–18.9) and low‐Ca pyroxene (Fs0.2–20.9) phenocrysts, and abundant glass, some of whose compositions are unusually alkaline (Na2O + K2O = 13.6–16.3 wt%) and Ca‐deficient (CaO = 0‐0.75 wt%), seemingly out of magmatic equilibrium with associated clinoenstatite or high‐Al calcic clinopyroxene crystals. Textural and mineralogical features indicate that Korra Korrabes is an H3 chondrite breccia, which represents the largest and least equilibrated stony meteorite yet recovered from Namibia; it is now one of the four largest unequilibrated ordinary chondrites worldwide.  相似文献   

9.
Northwest Africa (NWA) 10414 is an unusual shergottite with a cumulate texture. It contains 73% coarse prismatic pigeonite, plus 18% interstitial maskelynite, 2% Si‐rich mesostasis, 2% merrillite, and minor chromite‐ulvöspinel. It contains no olivine, and only ~3% augite. Phase compositions are pigeonite (En68‐43Fs27‐48Wo5‐15) and maskelynite An~54‐36, more sodic than most maskelynite in shergottites. Chromite‐ulvöspinel composition plots between the earliest and most fractionated spinel‐group minerals in olivine‐phyric shergottites. NWA 10414 mineralogically resembles the contact facies between Elephant Moraine 79001 lithologic units A and B, with abundant pigeonite phenocrysts, though it is coarser grained. Its most Mg‐rich pigeonite also has a similar composition to the earliest crystallized pyroxenes in several other shergottites, including Shergotty. The Shergotty intercumulus liquid composition crystallizes pigeonite with a similar composition range to NWA 10414 pigeonite, using PETROLOG. Olivine‐phyric shergottite NWA 6234, with a pure magma composition, produces an even better match to this pigeonite composition range, after olivine crystallization. These observations suggest that after the accumulation of olivine from an olivine‐phyric shergottite magma, the daughter liquid could precipitate pigeonite locally to form this pigeonite cumulate, before the crystallization of overlying liquid as a normal basaltic shergottite.  相似文献   

10.
Abstract— A composition approximating the lithology A groundmass of the Elephant Moraine (EET) 79001 martian basalt (Eg; McSween and Jarosewich, 1983) has been used to investigate the petrogenesis of the meteorite and the behavior of Cr and V at different oxygen fugacities. Crystallization experiments were carried out over a range of temperatures, and oxygen fugacities of either iron‐wüstite (IW) or IW + 2 (i.e., 1.5 log units below the quartz‐fayalite‐magnetite (QFM) buffer). Comparison of trace element concentrations (obtained by secondary ion mass spectrometry (SIMS) analysis) in experimental silicates with those of natural silicates supports the Fe‐Ti oxide‐derived oxygen fugacity of QFM ?1.8 ± 0.3 for this basalt (Herd et al., 2001). Experimental distribution coefficients, in conjunction with SIMS analyses of rims from the olivine and pyroxene xenocrysts in lithology A, as well as analyses of lithology A groundmass pigeonite cores, are used to calculate coexisting liquid concentrations of V and Cr. Liquid compositions derived from pigeonite xenocryst rims and groundmass pigeonite cores are similar, suggesting that the rims of orthopyroxene xenocrysts are overgrowths, which have not previously been accounted for when reconstructing the groundmass composition. This implies that the Eg composition requires modification. A similar exercise for the ferroan rims on olivine xenocrysts yields very different liquid compositions, indicating that these rims are not overgrowths but are part of the xenocryst assemblage. These results are shown to be consistent with the petrography of lithology A xenocrysts.  相似文献   

11.
Abstract— Fayalitic olivine (Fa32) is the major component of the matrices and dark inclusions of CV3 and other unequilibrated chondrites. It occurs most commonly as rims, veins and halos in and around chondrule silicates in the Allende-type (CV3OXA) chondrites and, to a much lesser extent, in the reduced (CV3R) and Bali-type (CV3OXB) chondrites. The olivines have distinctive platy, tabular and lath- or irregular-shaped crystals, with the ratio of the two types varying widely. In CV3OXB chondrites, matrix fayalitic olivines range up to Fag99.9; whereas, in the other CV3 chondrites, the range is much smaller. The platy and tabular anisotropic forms of the fayalitic olivines strongly suggest growth from a vapor, and the nature of the occurrences suggests that CV3 matrices are unequilibrated mixtures of nebular materials. We argue that the parent body hydration/dehydration model has numerous inconsistencies that make this hypothesis highly unlikely. These include: (1) There is no direct evidence linking fayalitic olivine to precursor phyllosilicates. (2) Dehydration of phyllosilicates cannot explain the wide range of morphologies of the fayalitic olivines. (3) Fayalitic olivine clearly predates the formation of the hydrous phases in CV3 chondrites and is one of the phases that breaks down to form phyllosilicates (Keller et al., 1994). (4) The unequilibrated nature of the matrix, including fine-scale zoning in 10 μm sized fayalitic olivine crystals, would not survive the parent body metamorphism required in the dehydration model. (5) A dark inclusion in the Ningqiang chondrite contains fayalitic olivine rimmed by glassy and microcrystalline material (Zolensky et al., 1997), which probably formed by radiation damage. This indicates that the fayalitic olivine was exposed to solar radiation in a nebular setting. (6) Some Allende chondrules contain unaltered primary, anhydrous glassy mesostasis in contact with the host matrix (e.g., Ikeda and Kimura, 1995). Chondrule mesostases would not have survived parent body hydration without becoming hydrated and would probably not survive the metamorphic heating required in the dehydration scenario. (7) Single platy and barrel-shaped crystals of fayalitic olivine are present in accretionary rims in calcium-aluminum-rich inclusions (CAIs) (MacPherson and Davis, 1997), which developed in the nebula. (8) Matrix lumps completely encased in chondrules in ordinary chondrites contain mainly fayalitic olivine (Scott et al., 1984), which indicates a nebular origin. (9) Oxygen isotopic compositions of Allende matrix and dark inclusions strongly indicate little or no hydration for Allende and its components (Clayton, 1997). We favor a nebular vaporization/recondensation model in which vaporization of chondritic dust produced a fayalite-rich vapor, followed by formation of the fayalitic olivine by direct recondensation from the vapor, epitactic growth on surfaces of existing forsterite and enstatite in chondrules, and replacement of existing forsterite and enstatite by gas-solid exchange.  相似文献   

12.
Shergottites have provided abundant information on the volcanic and impact history of Mars. Northwest Africa (NWA) 14672 contributes to both of these aspects. It is a vesicular ophitic depleted olivine–phyric shergottite, with average plagioclase An61Ab39Or0.2. It is highly ferroan, with pigeonite compositions En49-25Fs41-61Wo10-14 like those of basaltic shergottites, for example, NWA 12335. Olivine (Fo53-15) has discrete ferroan overgrowths, more ferroan when in contact with plagioclase than when enclosed by pyroxene. The pyroxene (a continuum of augite, subcalcic augite, and pigeonite) is patchy, with ragged “cores” enveloped or invaded by ferroan pyroxene. Magma mixing may be responsible for capture of olivine and formation of pyroxene mantles. The plagioclase is maskelynite-like in appearance, but the original laths were (congruently) melted and the melt partly crystallized as fine dendrites. Most of the 14% vesicles occur within plagioclase. Olivine, pyroxene, and ilmenite occur in part as fine aggregates crystallized after congruent melting with limited subsequent liquid mixing. There are two fine-grained melt components, barred plagioclase with interstitial Fe-bearing phases, and glass with olivine dendrites, derived by melting of mainly plagioclase and mainly pyroxene, respectively. Rare silica particles contain coesite and/or quartz, and silica glass. The rock has experienced >50% melting, compatible with peak pressure >~65 GPa. It is the most highly shocked shergottite so far, at shock stage S6/7. It may belong to the group of depleted shergottites ejected at ~1 Myr from Tooting Crater.  相似文献   

13.
Abstract— Magmatic inclusions occur in type II ureilite clasts (olivine‐orthopyroxene‐augite assemblages with essentially no carbon) and in a large isolated plagioclase clast in the Dar al Gani (DaG) 319 polymict ureilite. Type I ureilite clasts (olivine‐pigeonite assemblages with carbon), as well as other lithic and mineral clasts in this meteorite, are described in Ikeda et al.(2000). The magmatic inclusions in the type II ureilite clasts consist mainly of magnesian augite and glass. They metastably crystallized euhedral pyroxenes, resulting in feldspar component‐enriched glass. On the other hand, the magmatic inclusions in the large plagioclase clast consist mainly of pyroxene and plagioclase, with a mesostasis. They crystallized with a composition along the cotectic line between the pyroxene and plagioclase liquidus fields. DaG 319 also contains felsic lithic clasts that represent various types of igneous lithologies. These are the rare components not found in the common monomict ureilites. Porphyritic felsic clasts, the main type, contain phenocrysts of plagioclase and pyroxene, and their groundmass consists mainly of plagioclase, pyroxene, and minor phosphate, ilmenite, chromite, and/or glass. Crystallization of these porphyritic clasts took place along the cotectic line between the pyroxene and plagioclase fields. Pilotaxitic felsic clasts crystallized plagioclase laths and minor interstitial pyroxene under metastable conditions, and the mesostasis is extremely enriched in plagioclase component in spite of the ubiquitous crystallization of plagioclase laths in the clasts. We suggest that there are two crystallization trends, pyroxene‐metal and pyroxene‐plagioclase trends, for the magmatic inclusions and felsic lithic clasts in DaG 319. The pyroxene‐metal crystallization trend corresponds to the magmatic inclusions in the type II ureilite clasts and the pilotaxitic felsic clasts, where crystallization took place under reducing and metastable conditions, suppressing precipitation of plagioclase. The pyroxene‐plagioclase crystallization trend corresponds to the magmatic inclusions in the isolated plagioclase clast and the porphyritic felsic clasts. This trend developed under oxidizing conditions in magma chambers within the ureilite parent body. The felsic clasts may have formed mainly from albite component‐rich silicate melts produced by fractional partial melting of chondritic precursors. The common monomict ureilites, type I ureilites, may have formed by the fractional partial melting of alkali‐bearing chondritic precursors. However, type II ureilites may have formed as cumulates from a basaltic melt.  相似文献   

14.
Abstract— Y74123 is an olivine-rich, relatively unshocked ureilite and contains more interstitial pigeonitic materials than do ureilites which have been reported previously. Thus, Y74123 is especially suited for detailed study of the interstitial materials. We have studied these materials by optical microscope, electron microprobe, scanning electron microscope, high resolution transmission electron microscope (TEM) and analytical TEM to gain a better understanding of their nature and origin. Y790981, with shock partial melts, has also been examined by the same techniques. Bulk chemical compositions of the interstitial materials in Y74123 are pyroxene-like and have higher CaO and Al2O3 contents than the large pigeonite and olivine core. Interstitial materials at olivine-pigeonite grain boundaries are richer in CaO and Al2O3 than those at olivine-olivine grain boundaries. TEM observations of the interstitial material of Y74123 show that it consists of alternating pigeonite-augite lamellae more than 3.5 μm thick on (001). This texture suggests that the rim material had already crystallized before the parent body breakup. The shock-produced glassy veins in Y790981 cut through the rim materials. These observations are consistent with the idea that the interstitial materials in this ureilite are a mixture of residual liquids of high Ca melts and shock-produced partial melts of olivine and pigeonite. This mixture accumulated along the grain boundaries and some of it is trapped within grains.  相似文献   

15.
The Tillaberi stone fell in April 1970 in Republic of Niger. In the 157 g piece sent to Paris, a centimeter wide lithic inclusion is found. Contrary to previous assumptions, the stone is an L6 chondrite in which few chondrules can be distinguished; olivine is Fa 25 ± 0.4 percent with minor amounts of Ca, Cr, Ti; orthopyroxene is Fs 21.6 ± 1.2 percent with a rather large scatter of the amounts of minor elements. The feldspar, well developed, contains 10 to 11 percent An, 84 to 85 percent Ab, five percent Or, and 0.77 ± 0.09 percent FeO. The lithic inclusion contains much feldspar which corresponds to 14 to 17 percent An, 75 to 79 percent Ab, four to five percent Or without almost any FeO. This inclusion contains also rounded grains of olivine and minute crystals of chromite. It has a frothy microdoleritic texture with a frozen border against the chondritic material. As the nickel rich grains are either martensite or acicular plessite and the silicates are undeformed, a quick cooling after a short but intense heating is postulated to account for the mineralogical characteristics.  相似文献   

16.
Abstract— We report here the petrography, mineralogy, and geochemistry of lunar meteorite Sayh al Uhaymir 300 (SaU 300). SaU 300 is dominated by a fine‐grained crystalline matrix surrounding mineral fragments (plagioclase, pyroxene, olivine, and ilmenite) and lithic clasts (mainly feldspathic to noritic). Mare basalt and KREEPy rocks are absent. Glass melt veins and impact melts are present, indicating that the rock has been subjected to a second impact event. FeNi metal and troilite grains were observed in the matrix. Major element concentrations of SaU 300 (Al2O3 21.6 wt% and FeO 8.16 wt%) are very similar to those of two basalt‐bearing feldspathic regolith breccias: Calcalong Creek and Yamato (Y‐) 983885. However, the rare earth element (REE) abundances and pattern of SaU 300 resemble the patterns of feldspathic highlands meteorites (e.g., Queen Alexandra Range (QUE) 93069 and Dar al Gani (DaG) 400), and the average lunar highlands crust. It has a relatively LREE‐enriched (7 to 10 x CI) pattern with a positive Eu anomaly (?11 x CI). Values of Fe/Mn ratios of olivine, pyroxene, and the bulk sample are essentially consistent with a lunar origin. SaU 300 also contains high siderophile abundances with a chondritic Ni/Ir ratio. SaU 300 has experienced moderate terrestrial weathering as its bulk Sr concentration is elevated compared to other lunar meteorites and Apollo and Luna samples. Mineral chemistry and trace element abundances of SaU 300 fall within the ranges of lunar feldspathic meteorites and FAN rocks. SaU 300 is a feldspathic impact‐melt breccia predominantly composed of feldspathic highlands rocks with a small amount of mafic component. With a bulk Mg# of 0.67, it is the most mafic of the feldspathic meteorites and represents a lunar surface composition distinct from any other known lunar meteorites. On the basis of its low Th concentration (0.46 ppm) and its lack of KREEPy and mare basaltic components, the source region of SaU 300 could have been within a highland terrain, a great distance from the Imbrium impact basin, probably on the far side of the Moon.  相似文献   

17.
Abstract– Low‐iron, manganese‐enriched (LIME) olivine grains are found in cometary samples returned by the Stardust mission from comet 81P/Wild 2. Similar grains are found in primitive meteoritic clasts and unequilibrated meteorite matrix. LIME olivine is thermodynamically stable in a vapor of solar composition at high temperature at total pressures of a millibar to a microbar, but enrichment of solar composition vapor in a dust of chondritic composition causes the FeO/MnO ratio of olivine to increase. The compositions of LIME olivines in primitive materials indicate oxygen fugacities close to those of a very reducing vapor of solar composition. The compositional zoning of LIME olivines in amoeboid olivine aggregates is consistent with equilibration with nebular vapor in the stability field of olivine, without re‐equilibration at lower temperatures. A similar history is likely for LIME olivines found in comet samples and in interplanetary dust particles. LIME olivine is not likely to persist in nebular conditions in which silicate liquids are stable.  相似文献   

18.
Abstract— The Rumuruti meteorite shower fell in Rumuruti, Kenya, on 1934 January 28 at 10:43 p.m. Rumuruti is an olivine-rich chondritic breccia with light-dark structure. Based on the coexistence of highly recrystallized fragments and unequilibrated components, Rumuruti is classified as a type 3–6 chondrite breccia. The most abundant phase of Rumuruti is olivine (mostly Fa~39) with about 70 vol%. Feldspar (~14 vol%; mainly plagioclase), Ca-pyroxene (5 vol%), pyrrhotite (4.4 vol%), and pentlandite (3.6 vol%) are major constituents. All other phases have abundances below 1 vol%, including low-Ca pyroxene, chrome spinels, phosphates (chlorapatite and whitlockite), chalcopyrite, ilmenite, tridymite, Ni-rich and Ge-containing metals, kamacite, and various particles enriched in noble metals like Pt, Ir, arid Au. The chemical composition of Rumuruti is chondritic. The depletion in refractory elements (Sc, REE, etc.) and the comparatively high Mn, Na, and K contents are characteristic of ordinary chondrites and distinguish Rumuruti from carbonaceous chondrites. However, S, Se, and Zn contents in Rumuruti are significantly above the level expected for ordinary chondrites. The oxygen isotope composition of Rumuruti is high in δ17O (5.52 ‰) and δ18O (5.07 ‰). Previously, a small number of chondritic meteorites with strong similarities to Rumuruti were described. They were called Carlisle Lakes-type chondrites and they comprise: Carlisle Lakes, ALH85151, Y-75302, Y-793575, Y-82002, Acfer 217, PCA91002, and PCA91241, as well as clasts in the Weatherford chondrite. All these meteorites are finds from hot and cold deserts having experienced various degrees of weathering. With Rumuruti, the first meteorite fall has been recognized that preserves the primary mineralogical and chemical characteristics of a new group of meteorites. Comparing all chondrites, the characteristic features can be summarized as follows: (a) basically chondritic chemistry with ordinary chondrite element patterns of refractory and moderately volatile lithophiles but higher abundances of S, Se, and Zn; (b) high degree of oxidation (37–41 mol% Fa in olivine, only traces of Fe, Ni-metals, occurrence of chalcopyrite); (c) exceptionally high Δ17O values of about 2.7 for bulk samples; (d) high modal abundance of olivine (~70 vol%); (e) Ti-Fe3+?rich chromite (~5.5 wt% TiO2); (f) occurrence of various noble metal-rich particles; (g) abundant chondritic breccias consisting of equilibrated clasts and unequilibrated lithologies. With Rumuruti, nine meteorite samples exist that are chemically and mineralogically very similar. These meteorites are attributed to at least eight different fall events. It is proposed in this paper to call this group R chondrites (rumurutiites) after the first and only fall among these meteorites. These meteorites have a close relationship to ordinary chondrites. However, they are more oxidized than any of the existing groups of ordinary chondrites. Small, but significant differences in chemical composition and in oxygen isotopes between R chondrites and ordinary chondrites exclude formation of R chondrites from ordinary chondrites by oxidation. This implies a separate, independent R chondrite parent body.  相似文献   

19.
We used chemical equilibrium and chemical kinetic calculations to model chemistry of the volatiles released by heating different types of carbonaceous, ordinary and enstatite chondritic material as a function of temperature and pressure. Our results predict the composition of atmospheres formed by outgassing during accretion of the Earth and other terrestrial planets. Outgassing of CI and CM carbonaceous chondritic material produces H2O-rich (steam) atmospheres in agreement with the results of impact experiments. However, outgassing of other types of chondritic material produces atmospheres dominated by other gases. Outgassing of ordinary (H, L, LL) and high iron enstatite (EH) chondritic material yields H2-rich atmospheres with CO and H2O being the second and third most abundant gases. Outgassing of low iron enstatite (EL) chondritic material gives a CO-rich atmosphere with H2, CO2, and H2O being the next most abundant gases. Outgassing of CV carbonaceous chondritic material gives a CO2-rich atmosphere with H2O being the second most abundant gas. Our results predict that the atmospheres formed during accretion of the Earth and Mars were probably H2-rich unless the accreted material was dominantly CI and CM carbonaceous chondritic material. We also predict significant amounts of S, P, Cl, F, Na, and K in accretionary atmospheres at high temperatures (1500-2500 K). Finally, our results may be useful for interpreting spectroscopic observations of accreting extrasolar terrestrial planets.  相似文献   

20.
The lightly-shocked ureilite RC027 was found in Roosevelt County, New Mexico in 1984. In terms of petrography, texture, mineral compositions, bulk chemical composition, and oxygen isotopic composition it is a typical ureilite. It contains ~75% olivine (Fo 79.4) and 25% pigeonite (mg 81.3, Wo 8.0), with intergranular graphite and (Fe, Ni) metal. It also contains less than 1% of fine-grained, interstitial silicate material, which had not previously been recognized in any ureilite. This material is an assemblage of low-Ca pyroxene (Wo 3.5–9, mg 87–93), augite (Wo 24–36, mg 90–98), glass (typically ~95% SiO2, 4% Al2O3, 0.5% Na2O), and crystalline SiO2. This material has an igneous texture, indicating that it crystallized from an interstitial liquid. Low-Ca pyroxene compositions indicate that the interstitial liquid was not in equilibrium with core pigeonite and olivine and cannot have been either an evolved intercumulus liquid or a low-degree partial melt. It may contain a component of shock-melted olivine and pigeonite, although petrographic evidence indicates that it could not have been an in situ shock melt. One sample of RC027 has a V-shaped rare earth element pattern, typical of ureilites. Another is depleted in light rare earth elements (LREE), similar to acid-treated samples of ureilites, which suggests that LREE in ureilites are contained in an inhomogeneously-distributed phase. RC027 shows the strongest olivine preferred-orientation yet observed in a ureilite. Its fabric is characteristic of fabrics formed by tabular minerals in a fluid laminar flow regime and is unlike those formed by syntectonic recrystallization and plastic flow. The elemental and isotopic compositions of noble gases in RC027 are typical of previously analyzed ureilites. This result indicates that there is no correlation of noble gas content with degree of shock in ureilites, and thus suggests that the gases were present in the ureilite material before shock. Cosmogenic He and Ne contents indicate cosmic ray exposure ages of 1.7 and 1.9 Myr, respectively. Thus, RC027 is not paired with Kenna (a ureilite also found in Roosevelt County), which has an exposure age of ~33 Myr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号