首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
中国阿尔泰广泛发育的花岗质岩石已获得大量研究,但是其东南缘研究薄弱,制约了对整个阿尔泰造山带构造岩浆演化的认识。本文新获得阿尔泰东南缘四个花岗质岩体(昆格依特、库吉尔特、布铁乌及卡拉特玉别)锆石U-Pb年龄,分别为382±4Ma、381±4Ma、385±5Ma和363±6Ma。岩石学、地球化学特征等显示这些花岗质岩石具有高钾钙碱性、准铝质—弱过铝质的I型特点,全岩εNd(t)值为-2.42~-0.53,Nd模式年龄tDM为1.6~1.3Ga;锆石εHf(t)值为-3.44~+13.26,绝大多数为正值,锆石Hf二阶段模式年龄tDM-2为2.5~0.6Ga,表明源区物质组成复杂,有较多的新生幔源物质参与花岗质岩石的形成,并含有古老地壳成分。综合已有年龄分析显示,中国阿尔泰花岗质岩石的形成时代可分为480~440Ma(峰期460Ma)、420~390Ma(峰期400Ma)、390~370Ma(峰期380Ma)、370~360Ma(峰期365Ma)、360~350Ma。处于岩浆发育峰期的早泥盆世(420~390Ma)多为准铝-过铝质的钙碱性系列;中晚泥盆世(390~360Ma)多为准铝—弱过铝质的高钾钙碱性系列;370~360Ma为高钾钙碱性系列。该地区363Ma的高钾钙碱性花岗质岩石的确定,为进一步厘定整个阿尔泰泥盆纪花岗质岩浆由钙碱性(480~390Ma),到高钾钙碱性(390~360Ma),再到354Ma的布尔根碱性花岗岩的演变特点提供了新的证据,进一步揭示阿尔泰造山带该时期由俯冲增生演变到碰撞及后碰撞的演化过程。  相似文献   

2.
正Within the framework of the Deep-time Digital Earth (DDE)project,thematic databases driven by scientific issues will have strong scientific vitality.In the field of sedimentology,thematic databases based on the current unified sedimentary knowledge tree established by the Sedimentary Data Group (Fig.1),can solve specific scientific problems effectively and improve the scope and utility of the DDE platform significantly.  相似文献   

3.
<正>Objective The Chinese Altai as a key part of the Central Asian Orogenic Belt is characterized by numerous outcrops of Paleozoic granitoids and minor mafic plutons (Fig. 1a). It is widely accepted that Devonian ridge subduction played an important role in the tectonic evolution of the Chinese Altai. However, Carboniferous magmatism related to ridge subduction has received little attention. Moreover,  相似文献   

4.
The gold concentration areas in the northwestern Jiaodong Peninsula constituted an important gold metallogenetic region in Eastern China during the Mesozoic. The deep geological bodies’ texture characteristic is important for exploring the resources thoroughly and understanding the metallogenic process. The detailed textures were revealed using high-resolution seismic profiles through the three major ore-controlling structures-Sanshandao fault zone, Jiaojia fault zone and Zhaoping fault zone. This study aims to establish a deep structural framework of this area. Based on their formation mechanism, the fault structures developed in the area can be divided into regional and local fault structures. The structural styles are characterised by superimposing their compressional, strike-slip and extensional multi-stage activities. The crust is cut by vertical structures corresponding to a left-lateral strike-slip fault system on the surface. Nearby these structures are the arc-shape structures formed by multi-stage magma intrusions into the upper crust. Bounded by the Tancheng–Lujiang and Muping–Jimo fault zones, the current Jiaodong block, developed a series of NE-trending strike-slip fault systems, was probably formed by the assemblage of several obliquely aligned blocks. The intensive magmatism and hydrothermal activity between the blocks induced large-scale mineralisation. It provides a new angle of view for understanding the cratonic destruction and large ore-concentration formed during the Mesozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号