首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李向东 《古地理学报》2020,22(6):1065-1080
丘状交错层理多和风暴沉积相关,似丘状交错层理多和浊流沉积相关,随着研究的深入,早已打破了丘状(似丘状)交错层理分别只存在于浅水(深水)沉积环境中的界线,故近年来丘状(似丘状)交错层理在作为沉积环境判别标志方面出现了很大的争议和混淆,究其原因则在于对丘状交错层理和似丘状交错层理的成因机制缺乏明确的认识。在详细总结丘状(似丘状)交错层理的结构、形态特征和垂向序列的基础上发现: (1)丘状交错层理底界常为剥蚀面,内部削切关系发育且与洼状交错层理关系密切;垂向序列常出现层段缺失和丘状交错层理叠置。(2)似丘状交错层理纹层厚度变化多样;丘状层可镶嵌于平行层理或小型交错层理之中,且为连续沉积;垂向序列往往出现高流态沉积构造与低流态沉积构造交替叠置。依据这些特征并结合水槽实验的相关研究成果,从流体力学角度可将丘状(似丘状)交错层理的形成机制分为水动力机制和沉积机制两部分。两者的水动力机制完全相同,即为立轴漩涡形成,在自然界中一般为斜压波动引起。两者的沉积机制完全不同: 丘状交错层理为剥蚀悬砂沉积机制,而似丘状交错层理则为悬砂降落沉积机制。由于2种沉积机制所形成的沉积物悬浮浓度及其对沉积流体能量的要求不同,故形成丘状和似丘状交错层理各自不同的沉积特征。这对于从流体演化方面判断沉积环境具有非常重要的意义。  相似文献   

2.
There has been a lively debate since the 1980s on distinguishing between paleo-tsunami deposits and paleo-cyclone deposits using sedimentological criteria. Tsunami waves not only cause erosion and deposition during inundation of coastlines in subaerial environments, but also trigger backwash flows in submarine environments. These incoming waves and outgoing flows emplace sediment in a wide range of environments, which include coastal lake, beach, marsh, lagoon, bay, open shelf, slope and basin. Holocene deposits of tsunami-related processes from these environments exhibit a multitude of physical, biological and geochemical features. These features include basal erosional surfaces, anomalously coarse sand layers, imbricated boulders, chaotic bedding, rip-up mud clasts, normal grading, inverse grading, landward-fining trend, horizontal planar laminae, cross-stratification, hummocky cross-stratification, massive sand rich in marine fossils, sand with high K, Mg and Na elemental concentrations and sand injections. These sedimentological features imply extreme variability in processes that include erosion, bed load (traction), lower flow regime currents, upper-flow regime currents, oscillatory flows, combined flows, bidirectional currents, mass emplacement, freezing en masse, settling from suspension and sand injection. The notion that a ??tsunami?? event represents a single (unique) depositional process is a myth. Although many sedimentary features are considered to be reliable criteria for recognizing potential paleo-tsunami deposits, similar features are also common in cyclone-induced deposits. At present, paleo-tsunami deposits cannot be distinguished from paleo-cyclone deposits using sedimentological features alone, without historical information. The future success of distinguishing paleo-tsunami deposits depends on the development of criteria based on systematic synthesis of copious modern examples worldwide and on the precise application of basic principles of process sedimentology.  相似文献   

3.
波—流相互作用是复杂水动力条件下流体相互作用的主要方式之一,由波—流相互作用形成的复合流沉积是目前沉积学在流体相互作用这一领域研究较多的一种沉积类型。以已有的文献为基础,对波—流相互作用下细砂级颗粒的运动机制进行了综述,预测了波—流相互作用的沉积特征,总结了复合流的沉积构造鉴别标志。取得的主要认识有: (1)波—流相互作用总体上属于衰弱流(waning flow)悬浮沉积,其微观的沉积机制可分为5种: 越过崩落点的喷射沉积(S1)、残余涡动沉积(S2)、未到崩落点的喷射沉积(S3)、背流面的崩落沉积(S4)、垂直降落沉积(S5);(2)波—流相互作用的沉积过程总体上受悬砂量和沉积时间的控制,5种微观沉积机制在不同的悬砂量和沉积时间条件下可形成不同的沉积机制组合,从而导致不同的底床形态;(3)复合流沉积构造鉴别标志主要有: 复合流波痕、复合流层理、爬升型复合流层理、不对称丘状交错层理、准平行层理和频繁交替的不能充分发育的浪成波纹层理与流水层理等6类。上述认识对于复杂水动力条件下的沉积学研究及对深水、浅水沉积环境的识别均具有重要的意义。  相似文献   

4.
The hydrodynamic mechanisms responsible for the genesis and facies variability of shallow-marine sandstone storm deposits (tempestites) have been intensely debated, with particular focus on hummocky cross-stratification. Despite being ubiquitously utilized as diagnostic elements of high-energy storm events, the full formative process spectrum of tempestites and hummocky cross-stratification is still to be determined. In this study, detailed sedimentological investigations of more than 950 discrete tempestites within the Lower Cretaceous Rurikfjellet Formation on Spitsbergen, Svalbard, shed new light on the formation and environmental significance of hummocky cross-stratification, and provide a reference for evaluation of tempestite facies models. Three generic types of tempestites are recognized, representing deposition from: (i) relatively steady and (ii) highly unsteady storm-wave-generated oscillatory flows or oscillatory-dominated combined-flows; and (iii) various storm-wave-modified hyperpycnal flows (including waxing–waning flows) generated directly from plunging rivers. A low-gradient ramp physiography enhanced both distally progressive deceleration of the hyperpycnal flows and the spatial extent and relative magnitude of wave-added turbulence. Sandstone beds display a wide range of simple and complex configurations of hummocky cross-stratification. Features include ripple cross-lamination and ‘compound’ stratification, soft-sediment deformation structures, local shifts to quasi-planar lamination, double draping, metre-scale channelized bed architectures, gravel-rich intervals, inverse-to-normal grading, and vertical alternation of sedimentary structures. A polygenetic model is presented to account for the various configurations of hummocky cross-stratification that may commonly be produced during storms by wave oscillations, hyperpycnal flows and downwelling flows. Inherent storm-wave unsteadiness probably facilitates the generation of a wide range of hummocky cross-stratification configurations due to: (i) changes in near-bed oscillatory shear stresses related to passing wave groups or tidal water-level variations; (ii) multidirectional combined-flows related to polymodal and time-varying orientations of wave oscillations; and (iii) syndepositional liquefaction related to cyclic wave stress. Previous proximal–distal tempestite facies models may only be applicable to relatively high-gradient shelves, and new models are necessary for low-gradient settings.  相似文献   

5.
This study proposes a tsunami depositional model based on observations of emerged Holocene tsunami deposits in outcrops located in eastern Japan. The model is also applicable to the identification of other deposits, such as those laid down by storms. The tsunami deposits described were formed in a small bay of 10–20-m water depth, and are mainly composed of sand and gravel. They show various sedimentary structures, including hummocky cross-stratification (HCS) and inverse and normal grading. Although, individually, the sedimentary structures are similar to those commonly found in storm deposits, the combination of vertical stacking in the tsunami deposits makes a unique pattern. This vertical stacking of internal structures is due to the waveform of the source tsunamis, reflecting: 1) extremely long wavelengths and wave period, and 2) temporal changes of wave sizes from the beginning to end of the tsunamis.

The tsunami deposits display many sub-layers with scoured and graded structures. Each sub-layer, especially in sandy facies, is characterized by HCS and inverse and normal grading that are the result of deposition from prolonged high-energy sediment flows. The vertical stack of sub-layers shows incremental deposition from the repeated sediment flows. Mud drapes cover the sub-layers and indicate the existence of flow-velocity stagnant stages between each sediment flow. Current reversals within the sub-layers indicate the repeated occurrence of the up- and return-flows.

The tsunami deposits are vertically divided into four depositional units, Tna to Tnd in ascending order, reflecting the temporal change of wave sizes in the tsunami wave trains. Unit Tna is relatively fine-grained and indicative of small tsunami waves during the early stage of the tsunami. Unit Tnb is a protruding coarse-grained and thickest-stratified division and is the result of a relatively large wave group during the middle stage of the tsunami. Unit Tnc is a fine alternation of thin sand sheets and mud drapes, deposited from waning waves during the later stage of the tsunami. Unit Tnd is deposited during the final stage of the tsunami and is composed mainly of suspension fallout. Cyclic build up of these sub-layers and depositional units cannot be explained by storm waves with short wave periods of several to ten seconds common in small bays.  相似文献   


6.
Herring-bone cross-stratification occurs in tributary mouth bar sediments less than 150 yr old in Warrena Creek near its confluence with the Castlereagh River some 2000 river kilometres from the sea in northern New South Wales. These streams have low gradients, with straight to anastomosing channels which become sinuous and distributive downstream. Channel beds are sand but banks are almost exclusively mud which is burrowed and extensively penetrated by roots. Herring-bone cross-stratification results from flow reversals in Warrena Creek during flood events. Flow direction depends upon discharge and stage in the creek relative to that in the adjacent river. The lithofacies resemble inter-tidal deposits and could easily be misidentified on the basis of herring-bone cross-stratification in an ancient sedimentary sequence. Herringbone cross-stratification should be regarded as diagnostic of depositional environments in which current directions are principally determined by reversals of water surface gradient, rather than by regional slope. Flow reversal phenomena may be a characteristic of very low gradient fluvial systems.  相似文献   

7.
鄂尔多斯盆地东胜地区沉积体系与砂岩型铀成矿   总被引:7,自引:0,他引:7  
赵宏刚  欧光习 《铀矿地质》2006,22(3):136-142,189
沉积体系分析在可地浸砂岩型铀矿床的研究中起着非常重要的作用.本文以沉积体系分析和层序地层学为依据,对鄂尔多斯盆地东胜地区中侏罗统直罗组沉积体系特征、沉积相的空间展布、沉积环境的演化和层序地层学等方面进行了研究,认为:(1)沉积相的平面分布控制着砂体的空间展布,进而影响着赋铀砂体的空间分布;(2)沉积相和沉积环境的演化创造了良好的岩相及岩性组合条件,有利于层间氧化作用的进行;(3)沉积层序控制了3层结构的岩性空间组合.  相似文献   

8.
Hummocky cross-stratification is a sedimentary structure which is widely interpreted as the sedimentary record of an oscillatory current generated by energetic storm waves remobilizing surface sediment on the continental shelf. Sedimentary structures named hummocky cross-stratification-like structures, similar to true hummocky cross-stratification, have been observed in the Turonian–Senonian Basque Flysch Basin (south-west France). The bathymetry (1000 to 1500 m) suggests that the observed sedimentary structures do not result from a hydrodynamic process similar to those acting on a continental shelf. The morphology of these three-dimensional structures shares similarities with the morphology of hummocky cross-stratification despite a smaller size. The lateral extent of these structures ranges from a few decimetres to many decimetres; they consist of convex-up domes (hummock) and concave-up swales with a non-erosive base. Four types of hummocky cross-stratification-like geometries are described; they occur in association with structures such as climbing current ripple lamination and synsedimentary deformations. In the Basque Flysch, hummocky cross-stratification-like structures are only found in the Tc interval of the Bouma sequence. Hummocky cross-stratification-like structures are sporadic in the stratigraphic series and observed only in few turbidite beds or bed packages. This observation suggests that hummocky cross-stratification-like structures are linked genetically to the turbidity current but form under a very restricted range of parameters. These structures sometimes show an up-current (upslope) migration trend (antidunes). In the described examples, they could result from standing waves forming at the upper flow interface because of Kelvin–Helmholtz instability.  相似文献   

9.
通过对青海通天河盆地古、新近纪地层层序、沉积特征、物源区及沉积环境分析,建立其垂向相序,总结出该区具冲积扇相、三角洲相、湖泊相的特点,并得出通天河盆地古、新近纪物源区主要为北部开心岭隆起区的结论。根据石膏、灰岩夹层及粒度特征等环境标志推测:中始新世气候炎热湿润,晚始新世气候炎热干燥,渐新世气候炎热湿润,中中新世气候温暖潮湿;青藏高原的隆升具有阶段性。  相似文献   

10.
通过对四川盆地龙门山区甘溪石沟里剖面实测,建立了石沟里剖面泥盆系养马坝组风暴沉积的识别标志,进而对其风暴岩进行了系统研究。石沟里养马坝组风暴沉积的重要标志包括冲刷面、渠模等风暴侵蚀构造和粒序层理、平行层理、丘状交错层理等风暴浪构造。该区养马坝组发育了6种类型的风暴沉积单元组成序列,据此建立了完整的风暴序列模式,由粒序层理段(Sa)、平行层理段(Sb)、丘状交错层理段(Sc)、波状层理段(Sd)和泥岩段(Se)组成,底部常发育冲刷面和渠模构造。龙门山区甘溪石沟里养马坝组风暴沉积可分为近源风暴和远源风暴2种类型,依据风暴沉积的剖面结构类型和沉积构造特点,建立了该区风暴沉积序列的分布模式。龙门山区甘溪石沟里养马坝组发育的风暴沉积是该区混合沉积发育、抑制生物礁发育的重要控制因素,对于该区古地理重建具有重要的指示意义。  相似文献   

11.
四川盆地白垩纪沙漠石英沙颗粒表面特征   总被引:1,自引:0,他引:1       下载免费PDF全文
石英具有较大的硬度和较高的化学稳定性,因而其颗粒表面特征能很好地反映沉积环境。而通过扫描电镜研究石英颗粒表面微细特征是分析沉积环境行之有效的方法。虽然多数人认为四川盆地白垩纪地层存在沙漠沉积(打儿凼组和夹关组),但仍有人对沙漠沉积的存在持怀疑态度,并认为是河流成三角洲沉积。过去关于其沉积环境的判别主要是根据沉积结构和构造,并未对其石英沙颗粒表面特征进行过系统分析。笔者对采自四川盆地白垩系不同层位地层的样品进行了石英沙颗粒表面特征系统分析。结果表明,石英沙颗粒表面特征分析可以成功地将石英沙区分为风成和水成沉积。因此,本文从石英沙颗粒表面特征方面进一步肯定了四川盆地白垩纪古沙漠的存在。  相似文献   

12.
The Bengal Basin, in the north-eastern part of the Indian subcontinent, contains a thick (± 22 km) early Cretaceous-Holocene sedimentary succession. The Neogene succession in the Sylhet Trough of the basin reaches a thickness of more than 6 km of which the Surma Group contains important sandstone reservoirs. Lithologically, the group consists of a succession of alternating shales, siltstones, sandy shales and sandstones, with minor conglomerates. This research work is a sedimentological analysis of the subsurface Neogene succession encountered in the petroleum exploration wells in the Sylhet Trough of the Bengal Basin. Detailed lithologic logs of the cores, based on considering texture and sedimentary structure, permit a subdivision into eight lithofacies, e.g., a shale-dominated facies, interbedded fine sandstones and mudstones, ripple-laminated sandstones, parallel-laminated sandstones, massive sandstones, cross-bedded sandstones, cross-bedded sandstones with pebble/granule lag and conglomerates. Characteristic sedimentary structures of the Surma Group, such as flaser-, wavy- and lenticular-bedding, bipolarity of ripple cross-stratification, evenly laminated sand/silt-streaked shales, reactivation surfaces within cross-bedded sandstone sets, mud-drapes on foreset laminae and herringbone cross-stratification as well as small-scale vertical sequences (several fining-upward cycles) are diagnostic for tidal influence. On the basis of the lithofacies associations and prograding character of the deposits revealed from the electrofacies associations, the Surma Group sediments have been interpreted as representing deposits of tide-dominated deltaic depositional setting.  相似文献   

13.
塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组发育较为典型的风暴岩。风暴沉积标志主要有冲刷充填构造、风暴砾屑层和丘状交错层理等。在野外实测和室内薄片观察基础上,依据风暴沉积物、沉积位置和沉积标志组合的不同,划分出5种风暴沉积序列。序列Ⅰ为mm级或cm级的递变纹层,截切深水微生物礁,为风暴浪基面以下的深水陆棚远源风暴浊流沉积;序列Ⅱ发育异地型风暴砾屑、粒序段、平行纹层段和水平层理黑色钙质页岩,为风暴浪基面与晴天浪基面之间的缓斜坡下部沉积;序列Ⅲ为风暴成因的生屑、砾屑与平行纹层、丘状纹层的组合,多出现在风暴浪基面与晴天浪基面之间的缓斜坡上部;序列Ⅳ以渠模与复合丘状交错层理的组合为特征,为水体较浅的晴天浪基面附近的沉积;序列Ⅴ由风暴砂砾屑及沉积充填构造、平行纹层段组成,上部单元为正常天气沉积的蓝细菌礁滩垮塌体,为晴天浪基面以上的台地边缘礁滩前缘沉积。风暴层序自下而上的沉积环境演化为深水陆棚→浅水陆棚缓斜坡下部→缓斜坡上部→台地边缘前缘,形成向上变浅沉积特征。风暴岩的发现和研究,对于塔里木早寒武世古纬度与古板块演化、古地理及沉积学研究具有重要意义。  相似文献   

14.
The Mesoproterozoic Pandikunta Limestone, a shallow water carbonate platform succession in the Pranhita-Godavari Valley, south India, displays well developed climbing ripple lamination and storm deposited structures, such as HCS, wave ripple-lamination, combined-flow ripple-lamination and low angle trough cross-stratification. Different types of stratification developed in calcisiltite with minor amounts of very fine quartz sand and silt. The climbing ripple structures exhibit a complex pattern of superposition of different types (type A, B and S) within cosets pointing to a fluctuating rate of suspension depositionversus bedform migration, and an unsteady character of the flow. Close association of climbing ripple structures, HCS with anisotropic geometry, wavy lamination and combined-flow ripple-lamination suggest that the structures were formed by storm generated combined-flow in a mid-shelf area above the storm wave base. The combined-flow that deposited the climbing ripple structures had a strong unidirectional flow component of variable magnitude. The climbing ripple structure occurs as a constituent of graded stratified beds with an ordered vertical sequence of different types of lamination, reflecting flow deceleration and increased rate of suspension deposition. It is inferred that the beds were deposited from high-density waning flows in the relatively deeper part of the ancient shelf. The structures indicate that the Pandikunta platform was subjected to open marine circulation and intense storm activities. The storm deposited beds, intercalated with beds of lime-mudstone, consist primarily of fine sand and silt size carbonate particles that were hydrodynamically similar to quartz silt. Detrital carbonate particles are structureless and are of variable roundness. The particles were generated as primary carbonate clasts in coastal areas by mechanical disintegration of rapidly lithified beds, stromatolites or laminites, and the finest grade was transported to the offshore areas by storm-generated currents.  相似文献   

15.
应用深水沉积学和地震沉积学的相关理论,通过岩心观察描述、钻测井资料分析及平面沉积相编图,对下刚果盆地A区块白垩系Pointe Indienne组深水重力流的类型、沉积特征、垂向沉积组合及沉积模式进行了探讨分析,指出该地区发育砂质碎屑流、泥质碎屑流、浊流及与重力流形成过程相关的滑动—滑塌沉积,并总结了该深水重力流的沉积模式。结果表明:砂质碎屑流沉积以块状层理细砂岩为主,含大型漂浮泥砾和泥岩撕裂屑;泥质碎屑流沉积以泥级碎屑为主,含有少量的暗色泥岩碎屑和砂质团块,见“泥包砾”结构;浊流沉积以发育完整或不完整的鲍马序列为特征;滑动—滑塌沉积具有明显的剪切滑移面,可见旋转火焰构造、砂岩扭曲杂乱分布及褶皱变形层;纵向上可识别出4种类型的重力流沉积垂向组合,以多期砂质碎屑流沉积叠置和砂质碎屑流沉积与浊流沉积叠置最为常见;研究区深水重力流沉积可分为上部扇、中部扇和外部扇3部分,上部扇以主水道沉积为主;中部扇以辫状水道和溢岸沉积为主,砂体厚度较大;外部扇以朵叶体沉积和薄层浊积岩为主,砂体厚度相对较薄。  相似文献   

16.
松辽盆地南部青山口组湖相风暴沉积   总被引:8,自引:0,他引:8  
用岩心观察、粒度分析、薄片鉴定等方法,研究了松辽盆地南部青山口组湖相风暴沉积。结果表明,本区风暴沉积具有:a.丘状交错层理、冲刷面、渠模、截切构造、泄水构造及生物扰动成因等沉积构造;b.以跳跃总体为主、悬浮总体不发育的粒度特征;c.典型的“似鲍玛序列”。风暴沉积物源来自于西部斜坡区的(扇)三角洲及滨浅湖滩坝沉积,按其沉积特征及与物源的关系,又可进一步分为原地风暴岩和异地风暴岩。  相似文献   

17.
新疆库车坳陷克拉苏冲断带白垩系巴什基奇克组一、二段是一套由细砂岩、中粗砂岩、含砾砂岩、粉砂岩及泥岩组成的碎屑岩组合。通过30余口钻井(包括6口新取心井)的岩心、测井、录井、薄片及粒度等资料的分析, 结合区域地质资料, 确认克拉苏冲断带巴什基奇克组一、二段发育砂质辫状河三角洲沉积。其岩性以岩屑砂岩为主;粒度概率曲线具有牵引流特征;砂体中发育楔状交错层理及冲刷、充填构造等丰富的强水动力沉积构造及间断正韵律;砂体延伸远、面积大展布稳定, 砂地比值高;发育水下分流河道、分流间湾等微相。据三角洲砂体的岩性、沉积构造及沉积序列等特征, 建立了三角洲沉积模式。稳定的构造背景、开阔的盆地、丰富的物源供给使得研究区辫状河三角洲前缘沉积非常发育, 其以水下分流河道沉积为主体, 物性好, 砂体延伸远, 可向盆地中央方向推进35~60km, 砂体纵横叠置, 为岩性油气藏的形成提供了有利的储集空间。  相似文献   

18.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

19.
Storm-driven currents can carry sand from the shoreline tens of kilometres out onto the continental shelves where it is moulded by storm waves into a storm-sand bed showing distinctive sedimentary structures, including hummocky crossstratification. An understanding of the nature of the depositional currents and the processes that form hummocky cross-stratification comes from the work of oceanographers, observations by geologists and experimental studies in the laboratory, although the conclusions reached are sometimes conflicting. Storm-sandstone beds provide valuable information about sediment dispersal and depositional systems in nearshore and shelf environments. Hummocky crossstratification indicates the activity of storm waves and hence the approximate depth of ancient shelf seas.  相似文献   

20.
陆相深水重力流水道的类型细分及其沉积模式是制约其油气勘探开发的重要因素,但研究程度低。通过对鄂尔多斯盆地南缘瑶曲铁路桥剖面三叠系延长组实测、水道形态参数统计及岩相、粒度等分析,开展了湖相重力流水道的沉积特征、沉积过程及沉积模式研究。结果表明:(1)研究区内可识别出4期复合水道,主要为洪水重力流成因。根据其内部单一水道及单砂体形态特征、岩相组成,将其细分为沉积型和过渡型两类。(2)剖面下部2期复合水道为沉积型,以悬浮载荷成因岩相为主,常见块状净细砂岩、薄层泥岩岩相组合和鲍马序列岩相组合;上部2期复合水道为过渡型,岩相以底床载荷与悬浮载荷共存为特征,自下而上以交错层理细砂岩或叠瓦状泥砾细砂岩与含泥砾/泥岩撕裂屑块状细砂岩、平行层理粗粉砂岩及薄层泥岩的岩相组合为特征。(3)结合单一水道规模及其相互关系,建立了区内过渡、沉积型重力流水道的半定量沉积模式。过渡型水道内部侵蚀与沉积作用共存,单一水道宽度小、宽厚比低,呈透镜状,水道间切割性强,砂体横向稳定性较低,表现出不定向叠加、侧向拼接样式;沉积型水道内部由沉积作用主导,单一水道宽度较大、宽厚比较高,呈似板状—透镜状,砂体横向稳定性较高,表现出稳定的垂向加积样式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号