首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
1956-2007年新疆玛纳斯河流域气候变化趋势分析   总被引:6,自引:2,他引:4  
对玛纳斯河流域10个台站1956-2007年52 a的温度、降水量和蒸发量序列进行非参数检验,诊断其阶段性转换及变化趋势,并以阶段性转换的跳跃点为分割点,利用R/S分析方法预测其未来一段时间的变化趋势.结果表明:温度、降水量和蒸发量的跳跃点分别发生在1989、1998年和1988年,并且皆通过0.05水平的显著性检验,...  相似文献   

2.
丹丹  春喜  刘美萍  刘月 《冰川冻土》2013,35(4):874-882
以季风边缘区的霍林河流域为研究对象, 利用研究区周缘9个气象站台1951-2010年的逐月气象数据, 通过对气温和降水量进行趋势分析、Mann-Kendall检验以及相关分析, 探讨流域气候变化过程、特征及周期. 结果表明: 在1951-2010年年均气温上升2.3 ℃, 其倾向率为0.38 ℃·(10a)-1, 总体呈上升的趋势. 其中, 春季气温升幅最为明显, 倾向率为0.50 ℃·(10a)-1. 同时, 年均气温以1986年为跃点, 发生突变, 突变后的1987-2010年平均气温比突变前1951-1986年气温高1.3 ℃, 并存在6~8 a和15 a的周期律. 年降水量近60 a来减少了83.9 mm, 其倾向率为-13.98 mm·(10a)-1, 呈下降的趋势. 其中, 夏季降水量的下降最为明显, 倾向率为-11.41 mm·(10a)-1. 年降水量以1998年为跃点发生突变, 突变后的1999-2010年降水量比突变前1951-1998年下降76 mm. 并存在4 a和8~9 a的振荡周期. 流域气温变化与北极涛动呈正相关, 而降水量与夏季风指数呈负相关.  相似文献   

3.
党新成  李新贤  高建芳 《水文》2006,26(5):89-90,82
论述了新疆玛纳斯河流域自然地理、气候及河流概况,降雨、径流和泥沙的时空分布规律,从降水、径流、洪水、泥沙、水质等方面分析了该流域的水文与环境特征。  相似文献   

4.
周晓浩 《地下水》2022,(5):206-207
玛纳斯河流域由于地理位置关系,降水一般不多,流域高程差异较大,流域降水和冰雪融水的汇流十分复杂。考虑随着人类活动的不断深入,区域的水文和流量特征会不断地发生时空上的改变,深入分析了当前玛纳斯河流域水文特征及流量变化,结果表明:(1)径流量集中于夏季,主要为冰雪融水;(2)汛期含沙量高;(3)冬季冰情时间长,呈垂直地带性分布;(4)洪峰特征为峰不高但量大。研究为保持河流生态环境的稳定性与促进区域生态环境发展提供了保障。  相似文献   

5.
邹全  王国亚  贺斌  沈永平 《冰川冻土》2013,35(3):733-740
利用玛纳斯河流域肯斯瓦特站1957-2010年的气温、 降水和洪水径流等资料, 分析了该流域自1957年以来的气候变化以及夏季洪水径流过程对极端气候的响应. 结果表明: 玛纳斯河流域自1957年以来平均气温呈明显的上升趋势, 1979年是年均温由下降趋势转为上升的转折点, 并且1978年之后极端高温天气增多, 主要出现在7月份.玛纳斯河年降水量总的变化趋势是波动减少的, 1986年以后降水有所增加, 但只是恢复到多年平均降水量水平的上下波动.降水主要集中在4-8月, 约占年降水量的70%.气温高的月份与降水量多的月份并不完全对应, 如5月份气温较低, 但降水较大; 7月气温最高, 但6月降水量最大; 8月气温较高, 但降水量较少.玛纳斯河年径流主要集中在6-9月, 4个月的总径流量约占全年总径流量的80%, 7月份径流量最大, 约占全年总径流量的28.8%.历年最大洪峰流量呈显著增加趋势, 1993年是最大洪峰流量由下降变为增多的转折点, 而1994-2010年最大洪峰流量基本保持在高位上下波动.最大15日洪量占年径流量的比例较大, 说明洪水过程持续时间较长, 汛期水量较为集中.最大洪峰流量出现时间基本都在7月和8月上旬.玛纳斯河夏季月径流与夏季月气温和降水的关系并不密切, 低度相关, 说明玛纳斯河流域自1993年以来夏季洪水频繁发生, 尤其超标准洪水次数增多、 量级增大主要是由于夏季极端高温和极端降水天气增多引起的.  相似文献   

6.
我国新疆玛纳斯河流域的冰川变化极大影响流域内及其周边地区的经济社会发展.使用国产高分一号(GF-1)遥感影像和Landsat8数据,分别通过基于多源数据的冰川识别方法和波段比值法获取了2013年玛纳斯河流域冰川信息,结合玛纳斯河流域第一次(1964年)、第二次(2009年)冰川编目数据与1998年、2003年TM影像冰川目视解译结果等四期的冰川边界矢量数据,对玛纳斯河流域1964-2013年50 a来的冰川变化特征进行了综合分析.研究结果显示:玛纳斯河流域冰川自2009年以来有略微增加的趋势,2013年冰川面积比2009年增加了10.25 km2,这在一定程度上抑制了长期以来冰川的快速消融;1964-2013年,玛纳斯河流域的冰川总体呈减少趋势;冰川面积从1964年的673.61 km2减少到2013年的512.07 km2,面积减少161.54 km2,减少23.98%;近50 a来,流域内冰川面积在海拔4500 m及以上呈净增加趋势,而在海拔4500 m以下呈净减少趋势,冰川在海拔(4000±100) m左右退缩的速率最大,高达0.5 km2·a-1;冰川面积的减少主要体现为大量的冰舌后退和小面积冰川的快速消融,超过85%的冰川冰舌后退距离在200 m以上;该流域的冰川变化主要集中在南、北两个坡向,在南坡向上出现明显的先减少和后增加的变化趋势;1964-2013年,玛纳斯河流域的气温和降水量呈较明显的增加趋势,线性增加率分别为0.26℃·(10a)-1和16.07 mm·(10a)-1.研究结果表明气温的持续升高和降水量的增加分别是导致玛纳斯河流域冰川减少期和增加期形成的主要原因.  相似文献   

7.
北疆玛纳斯河流域人工绿洲演变过程及其特点   总被引:5,自引:0,他引:5  
利用历史文献资料、实地调查和监测资料, 并结合遥感影像解译数据, 分析了近2 000 a来玛纳斯河流域人工绿洲的演变进程, 探讨了人工绿洲扩展过程与水资源利用的关系以及绿洲扩张的特点. 结果显示: 近2 000 a来玛纳斯河流域人工绿洲的形成和演变可以分为4个时期: 17世纪以前以牧为主时期, 流域人工绿洲仅呈星点分布在交通要道和军事据点; 17世纪以后到1949年才进入半农半牧时期, 流域人工绿洲呈小块状分布在河、泉引水方便之处; 1949年以后玛纳斯河流域人工绿洲进入了以农为主时期, 人工绿洲由小片联接成大片, 扩大成新疆第四大绿洲群; 20世纪70年代以后城市化时期, 流域绿洲的二、三产业快速崛起.根据绿洲发展演变与水资源开发程度和灌溉水平将以农为主时期细分为4个阶段, 从4个阶段不同水利条件和灌溉水平下绿洲的规模可以看出人工绿洲的演变进程是与流域水资源利用水平紧密结合的; 玛纳斯河流域绿洲扩张的特点有: 人文因素对其有很大影响, 移民屯垦在绿洲发展中起了重要作用, 近60 a来人工绿洲面积成倍扩大, 尽管水利建设支撑绿洲发展, 但仍受到流域水资源的限制.  相似文献   

8.
新疆玛纳斯河流域平原地下水水-岩作用模拟   总被引:4,自引:0,他引:4  
玛纳斯河流域平原区地下水化学演化较为复杂,从上游至下游的变化特点主要以Na+、Ca2+、 HCO3-、SO42-含量和TDS值的高低相间交替演化为主。本文对此演化机理进行了水-岩作用模拟研究,模拟结果表明:①矿物相的溶解、析出和蒸发作用、稀释作用共同控制着地下水水化学的演化;②从研究区上游往下,由于地层岩性颗粒逐渐变细,水中矿物相迁入、迁出的数量逐渐增大,水-岩作用逐渐增强;③研究区上游的水-岩作用主要是地表水或灌溉水入渗补给的影响,研究区中下游的水-岩作用主要受蒸发作用的影响;④由于地表水或灌溉水的大量混入,局部的水化学演化往往不符合一般演化规律,甚至于往相反的方向演化,TDS呈下降趋势,产生复杂的过渡水化学类型。  相似文献   

9.
运用模糊数学综合评判法评价玛纳斯河流域地下水质量   总被引:3,自引:1,他引:3  
白铭  张新康  王涛 《地下水》2005,27(3):169-170,186
运用模糊数学评判法,对玛纳斯河流域主要开采含水层地下水质量进行综合评价,从确定数学模型、计算权重、建立模糊关系矩阵,到综合评价合成运算方法等方面,全面介绍本方法的具体运用过程,并对评价结果进行简析.  相似文献   

10.
新疆玛纳斯河流域平原区地下水水文地球化学特征研究   总被引:2,自引:0,他引:2  
地下水是玛纳斯河流域主要的供水水源,为宏观掌握该区地下水化学特征,了解区域地下水主要形成过程,运用舒卡列夫分类法、数学统计法、吉布斯图、离子比及同位素的方法,在分析玛纳斯河流域平原区典型剖面的地下水水化学常量组分、吉布斯图、离子比和同位素特征的基础上,进行了研究区水文地球化学特征研究。结果表明:研究区潜水和承压水水力联系紧密;从上游、中游到下游,潜水、承压水的δ18O、δD值逐渐增大。地下水形成主要受蒸发浓缩、大气降水及碳酸盐岩和硫酸盐岩的溶滤作用。  相似文献   

11.
50 a来我国干湿气候界线的空间变化分析   总被引:12,自引:1,他引:12  
采用干燥度指数为干湿气候区的划分标准, 通过近50 a来年降水量干湿气候界线与干燥度干湿气候界线变动对比分析, 结果表明: 在气候变暖, 降水区域差异性显著的情况下, 我国干旱/半干旱分界线与半干旱/湿润分界线也表现出显著的区域差异性, 且具有"U型"分布特征. 在东北北部, 250 mm年雨量线为干旱/半干旱分界线, 450 mm年雨量线为半干旱/湿润分界线, 半干旱气候向西退缩, 范围缩小; 在东北南部、华北区与河套地区, 300 mm年雨量线为干旱/半干旱分界线, 700 mm年雨量线作为半干旱/湿润分界线, 干旱气候与半干旱气候向东南方向扩展, 空间范围在扩大, 成为"U型"分布的凸出部位; 在西南区与河套以西的西北东部, 250 mm年雨量线为干旱/半干旱分界线, 500 mm年雨量线为半干旱/湿润分界线, 干旱半干旱气候变化不大. 决定我国干湿气候界线空间变化的主要因素是由西太平洋副热带高压位置与强度导致的东南季风、孟加拉弯暖流所导致的西南季风以及西风环流等综合作用的降水量的区域差异性.  相似文献   

12.
气候变化对玛纳斯河的径流量影响预测模拟分析   总被引:1,自引:0,他引:1  
王晓杰  刘海隆  包安明 《冰川冻土》2012,34(5):1220-1228
山区积雪和冰川融水径流是内陆干旱区的重要水资源, 研究全球变暖情景下温度对融雪径流的影响具有重要意义. 以典型的内陆河玛纳斯流域上游为例, 利用基于度-日因子算法的SRM(Snowmelt Runoff Model)融雪径流模型, 根据当前变化趋势和年内分配模拟出20种假定来模拟未来气候情景(气温上升1 ℃、 2 ℃、 3 ℃、 4 ℃和降水变化率为0、 ±10%、 ±20%的随机组合情况)下的河道径流量, 从而计算出径流量的变化率, 分析了温度和降水变化对径流量的影响. 结果表明: 对于以雪冰融水为主要补给的玛纳斯河, 随着温度和降水的增加, 径流量也会增加, 并会使融雪径流提前. 假定降水量不发生大的变化, 温度增高1 ℃, 径流量增大13%~16%; 在气温一定时, 降雨量增加10%, 径流量增加2%左右, 说明气温和降水都对干旱区内陆河山区径流形成具有重要影响. 该研究对制定气候变化情景下的水资源适应对策具有重要指导意义.  相似文献   

13.
基于生态经济功能区划的玛纳斯河流域生态服务价值评价   总被引:1,自引:0,他引:1  
利用遥感和GIS技术, 对玛纳斯河流域及不同生态经济功能区1958-2006年的土地利用变化进行了分析, 并借助Costanza评估模型探讨了研究区及不同生态经济功能区的生态服务价值变化特征.结果表明: 在1958-2006年期间, 流域生态服务价值从22 130.86×106元下降到16 050.45×106元, 净损失6 080.41×106元.研究区各土地利用类型的生态服务价值系数接近于区域真实值, 结果可信.流域不同生态经济功能区的生态服务价值存在明显的时空变化; 基于不同生态经济功能区的生态经济特点和生态问题, 提出相应的生态恢复策略以提高流域总的生态服务价值, 对实现该区的可持续发展具有重要意义.  相似文献   

14.
为了深入研究近60年来多种气候、水文要素对海河流域干旱变化的影响,采用Mann-Kendall非参数检验法对流域内气温、降水、径流等要素进行了分析,并采用Z指数法对流域的干旱特征进行了研究。结果表明:20世纪50年代以来,海河流域经历了湿润-正常-干旱的变化过程;21世纪初,流域北部地区出现偏旱现象,多次干旱的面积覆盖率低于40%,少部分干旱覆盖率较高,最高达98%;从时间上看,1980年是发生干旱现象的一个临界点,无论是从发生次数还是覆盖面积上,1980年以后要明显大于1980年以前。从干旱发生频率上分析,海河流域发生轻度和一般干旱的高频地区多分布在滦河流域以及北部山区,中部平原地区干旱爆发频率相对较低,重大干旱事件则在中南部平原地区发生频率更高。综合全部干旱事件,滦河流域为干旱频发区,其次为海河流域东部地区,西部地区则频率相对较低。  相似文献   

15.
塔里木河流域气候与径流变化及生态修复   总被引:3,自引:2,他引:3  
邓铭江 《冰川冻土》2006,28(5):694-702
从20世纪90年代中期开始,塔里木河流域气温上升、降水增加,阿克苏河、开都河等主要河流几乎同步进入持续的丰水周期时段,为塔里木河流域生态修复创造了绝好的“天时”和历史性机遇.这种大区域的气候异常变化现象引起了国内外广大学者的广泛关注,区域气候异常变化是全球气温上升影响盆地气候向温湿转型,还是一个世纪性的水文周期变化现象,一时间成为了学术界的热点议题.系统分析了塔里木河流域山区水文气象站近50 a来的气温、降水、河川径流以及塔里木河来水量变化,并系统评价了利用开都河丰水期的有利时机,向塔里木河下游应急输水及其生态修复情况.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号