首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
河南方城柏树岗金红石矿床含矿岩系主要由角闪(片)岩、变粒岩、斜长片岩、石英(片)岩及云母片岩组成、前者是主要含矿岩石。分为石英(片)岩、角闪(片)岩-云母斜长片岩、云母片岩-石英(片)岩三个岩性段,二段是主要含矿岩段。原岩为一套火山岩、正常沉积岩岩性组合。经历了两次变质作用,变质温压400~485℃、200~700MPa,变质时间416.1±0.5Ma,变质热液产生了少量细脉及脉岩。含矿岩系的形成变化是板块运动的结果。基性岩及基性岩质凝灰岩是钛的主要来源,变质作用是主要成矿作用。  相似文献   

2.
凯勒克赛依铁矿床是新疆阿尔泰唯一的小型镜铁矿床,赋存于一套变质火山-沉积岩系中,近矿围岩为白云母石英片岩,矿体呈层状,与地层产状一致,矿石具有块状、条带状、条纹状构造,矿石中金属矿物主要为镜铁矿(TFeO=87349%~88988%,TiO2=0~1042%,Al2O3=0036%~0256%),矿化具有沉积特征。近矿围岩镜铁矿白云母石英片岩锆石LA MC ICP MS U Pb谐和年龄为(3756 ± 06)Ma,限定成矿时代在376 Ma左右,即中泥盆世成矿,是阿尔泰为数不多的中泥盆世成矿作用的产物。同时也厘定含矿的变质火山-沉积岩系属中—晚泥盆世阿勒泰镇组,不是前人认为的早泥盆世康布铁堡组。  相似文献   

3.
The Tuolugou cobalt deposit is the first independent large-scale Co- and Au-bearing deposit discovered in northwestern China. It is located in the eastern Kunlun orogenic belt in Qinghai Province, and occurs conformably in low-grade metamorphic volcano-sedimentary rock series with well-developed Na-rich hydrothermal sedimentary rocks and typical hydrothermal sedimentary ore fabrics. Fluid inclusions and isotopic geochemistry studies suggest that cobalt mineralizing fluid is dominated by NaCl-H2O system, accompanied by NaCl-CO2-H2O-N2 system responsible for gold mineralization. Massive, banded and disseminated pyrite ores have similar compositions of He and Ar isotopes from the mineralizing fluid, with 3He/4He range between 0.10 to 0.31Ra (averaging 0.21Ra), and 40Ar/36Ar between 302 and 569 (averaging 373), which reflects that Co mineralizing fluids derived dominantly from meteoric water deeply circulating. δ34S values of pyrite approaches to zero (δ34S ranging from ?4.5‰ to +1.5‰, centering around ?1.8‰ to ?0.2‰), reflecting its deep source. Ore lead is characterized by distinctly high radiogenesis, with 206Pb/204Pb>19.279, 207Pb/204Pb>15.691 and 208Pb/204Pb>39.627, and its values show an increase trend from country rocks, regional Paleozoic volcanic rocks to ores. This may have suggested that high radiogentic ore Pb derived mainly from country rocks by leaching meteoric water-dominated hydrothermal fluid during its circulation at depth. Cobalt occurs mainly in sulfide phase (such as pyrite), but cobalt enrichment, and presence and increasing contents of Co-bearing minerals have a positive correlation with metamorphic degree. The Tuolugou deposit and other typical strata-bound Co-Cu-Au deposits have striking similarities in the geological features and metallogenic pattern of primary cobalt. All of them are syngenetic hydrothermal exhalative sedimentation in origin.  相似文献   

4.
位于西昆仑甜水海地块东段的大红柳滩赤铁矿是近几年发现的大型铁矿床,产于震旦纪甜水海岩群滨浅海相浅变质碎屑岩-碳酸盐岩中,赋矿岩性主要为含铁白云质大理岩、白云母石英片岩和硬绿泥石白云母石英片岩。通过矿体形态特征、矿物组合和矿石结构构造分析,认为该时期存在缺氧富铁洋盆或者深水盆地,矿床的形成经历了铁质沉积和变质改造两个阶段,属于新元古代沉积变质成因条带状硅铁建造矿床(BIF),找矿潜力巨大。该矿床是继塔什库尔干县一带发现了多个与火山岩建造密切相关的大型规模Algoma型BIF之后的重大找矿突破,也是西昆仑地区首次发现该类型矿床。深入开展该矿床的地质特征及勘探工作,能够指导西昆仑铁矿的下一步找矿方向,推进新疆地区条带状含铁建造(BIF)研究和西昆仑构造格局演化的认识。  相似文献   

5.
The Utanobori gold deposit is a low‐sulfidation, epithermal vein‐type deposit located in northern Hokkaido, Japan. The deposit is hosted by conglomerate, sandstone, and tuff of the Middle to Late Miocene Esashi Formation. These rocks were hydrothermally altered. Silica sinters and quartz‐adularia veins are common in the deposit. The quartz‐adularia veins either contain a ginguro band, which corresponds to the main gold‐bearing vein (Type 1 Veins), or do not contain a ginguro band but contain minor adularia (Type 2 Veins). Type 1 Veins are divided into three stages with 12–14 substages. Ore minerals identified include electrum, naumannite, chlorargyrite, bromargyrite, an unidentified Fe‐Sb mineral, and an Fe‐(Sb)‐As mineral. These ore minerals formed in the main mineralization stages I (bands I‐b and I‐d) and II (band II‐a). Scanning electron microscopy with cathodoluminescence images show that cathodoluminescence‐dark microcrystalline quartz exhibiting colloform (ghost‐sphere) texture is closely associated with ore minerals in the Type 1 Vein and Type 2 Vein, and the Al and K contents of such quartz are commonly >1000 ppm. This indicates that the ore minerals were crystallized from alkaline, silica‐saturated fluids at temperatures <200°C, which initially deposited amorphous silica that was recrystallized to microcrystalline quartz. The average Au content of electrum is 52.5 at% Au (n = 10), 65.7 at% Au (n = 20), and 55.5 at% Au (n = 5) in bands I‐b, I‐d, and II‐a, respectively, of Type 1 Veins. The δ34SCDT values of two fine‐grained disseminated pyrites in the altered conglomerate and bedded tuff in the argillic altered zone are ?4.3 and ?4.2‰. Ar‐Ar dating on adularia yielded 13.6 ± 0.06 Ma, 13.6 ± 0.07 Ma, and 13.6 ± 0.06 Ma for the stages I, II, and III of the Type 1 Vein, respectively. K‐Ar ages determined on adularia in the silica sinter and on whole‐rock of glassy rhyolite of the Esashi Formation are 15.0 ± 0.4 Ma and 14.6 ± 0.4 Ma, respectively. These radiometric ages indicate that silica sinter associated with the rhyolitic volcanic rocks formed prior to the main gold mineralization.  相似文献   

6.
孟洁  李厚民  李立兴  宋哲 《矿床地质》2018,37(5):961-984
八庙-青山金红石矿床位于豫、陕两省交界处的西峡县与商南县之间,大地构造位置处于南秦岭地块的北缘。矿体呈层状、透镜状赋存于一套低角闪岩相变质的基性火山岩内,矿化层与大理岩互层产出。目前对于其含矿岩系的时代归属问题尚有中新元古代与中晚古生代之争。锆石年代学分析结果显示八庙矿区含矿岩系的底板围岩含石榴子石二云石英片岩主要包含3个阶段的年龄,即2664~1373 Ma、1003~874 Ma和468~411 Ma,青山矿区的含金红石斜长角闪片岩主要包含4个阶段的年龄,即1860~1441 Ma、1103~969 Ma、832~780 Ma和433~418 Ma。2个样品的最小锆石年龄数据一致,且与前人在含矿岩系大理岩中发现的古生物化石指示的时代相近。因此,八庙-青山金红石矿床的赋矿地层时代应归属于早泥盆世。全岩地球化学分析结果表明含矿岩石具洋岛玄武岩特征,源区可能为石榴橄榄岩,指示高钛的岩浆物质来自深部地幔。  相似文献   

7.
山西中条山铜矿峪超大型斑岩铜矿床位于华北板块南部,秦岭造山带北侧,处在聚合板块活动大陆边缘的挤压-伸展的构造转换环境。矿区地层主要为古元古界"铜矿峪亚群",即火山-次火山岩,岩石经变质作用为绿片岩相和低角闪岩相。铜矿床在空间上与元古代钙碱性S型花岗斑(杂)岩体紧密共生,严格受火山机构控制。据辉钼矿Re-Os年龄,成矿时代为(2 108±32)Ma,是我国最古老的斑岩型铜矿床。铜矿床呈厚板状透镜体产出,矿石以细脉浸染状构造为主,有少量块状矿石产出。铜矿平均品位为0.68%,其中30%为富铜矿,并伴生钼、金。成矿热液主要源自深部地幔,也与地壳成分和天水渗入有关。因火山喷气和二次沸腾,在高侵位后,由分离作用形成碱质交代及石英绢云母化叠加红长石化的围岩蚀变,无面型环状分带特征。矿床成因推测为变火山热液斑岩型铜矿床。预测矿床深部可能赋存有岩浆房,找矿潜力很大。  相似文献   

8.
碾子沟金红石矿床基本地质特征   总被引:4,自引:4,他引:0  
碾子沟金红石矿区地层主要为上太古界变粒岩、斜长角闪片岩及榴闪岩 ;岩浆岩主要为晋宁期基性岩 ;构造主要为断裂。矿区蚀变岩发育 ,主要为细晶直闪片岩、粗晶直闪岩、中细晶滑石岩及细晶绿泥片岩。矿体呈似纺锤状、似板状及透镜状。矿石类型有浅褐色细晶直闪石型片状矿石、灰白色粗晶直闪石型块状矿石、灰绿色或灰白色中细晶滑石型块状矿石、黑色中细晶角闪石型片状矿石及灰绿色巨晶直闪石型块状矿石等 5种。以前 3种为主 ,矿石品位一般 2 %~ 15 %。矿床规模为大型 ,矿床为变质蚀变成因。  相似文献   

9.
The Eastern Tianshan Orogenic Belt (ETOB) in NW China is composed of the Dananhu–Tousuquan arc belt, the Kanggurtag belt, the Aqishan–Yamansu belt and the Central Tianshan belt from north to south. These tectonic belts have formed through arc–continent or arc–arc collisions during the Paleozoic. A number of Fe(‐Cu) deposits in the Aqishan–Yamansu belt, including the Heifengshan, Shuangfengshan and Shaquanzi Fe(‐Cu) deposits, are associated with Carboniferous–Early Permian volcanic rocks and are composed of vein‐type magnetite ores. Metallic minerals are dominated by magnetite and pyrite, with minor chalcopyrite. Calcite, chlorite, and epidote are the dominant gangue minerals. Pyrite separates of ores from those three deposits have relatively high and variable Re contents ranging from 3.7 to 184 ppb. All pyrite separates have very low common Os, allowing us calculation of single mineral model ages for each sample. Pyrite separates from the Heifengshan Fe deposit have an 187Re–187Os isochron age of 310 ± 23 Ma (MSWD = 0.04) and a weighted mean model age of 302 ± 5 Ma (MSWD = 0.17). Those from the Shuangfengshan Fe deposit have an isochron age of 295 ± 7 Ma (MSWD = 0.28) and a weighted mean model age of 292 ± 5 Ma (MSWD = 0.33). The Shaquanzi Fe‐Cu deposit has pyrite with an isochron age of 295 ± 7 Ma (MSWD = 0.26) and a weighted mean model age of 295 ± 6 Ma (MSWD = 0.23). Pyrite separates from these Fe(‐Cu) deposits have δ34SCDT ranging from ?0.41‰ to 4.7‰ except for two outliers. Calcite from the Heifengshan Fe deposit and Shaquanzi Fe‐Cu deposit have similar C and O isotope compositions with δ13CPDB and δ18OSMOW ranging from ?5.5‰ to ?1.0‰ and from 10‰ to 12.7‰, respectively. These stable isotopic data suggest that S, C, and O are magmatic‐hydrothermal in origin. The association of low‐Ti magnetite and Fe/Cu‐sulfides resembles those of Iron–Oxide–Copper–Gold (IOCG) deposits elsewhere. Our reliable Re–Os ages of pyrite suggest that the Fe(‐Cu) deposits in the Aqishan–Yamansu belt formed at ~296 Ma, probably in a back‐arc extensional environment.  相似文献   

10.
The Nage Cu-Pb deposit,a new found ore deposit in the southeast Guizhou province,southwest China,is located on the southwestern margin of the Jiangnan Orogenic Belt.Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations,and are structurally controlled by EW-trending fault.It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb.Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks.The ore minerals include chalcopyrite,galena and pyrite,and gangue minerals are quartz,sericite and chlorite.The H-O isotopic compositions of quartz,S-Cu-Pb isotopic compositions of sulfide minerals,Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit.The δ65CuNBS values of chalcopyrite range from-0.09% to +0.33‰,similar to basic igneous rocks and chalcopyrite from magmatic deposits.δ65CuNBS values of chalcopyrite from the early,middle and final mineralization stages show an increasing trend due to63Cu prior migrated in gas phase when fluids exsolution from magma.δ34SCDT values of sulfide minerals range from 2.7‰ to +2.8‰,similar to mantle-derived sulfur(0±3‰).The positive correlation between δ65CuNBS and δ34SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma.δDH2OSMOW and δ18OH2O-SMOW values of water in fluid inclusions of quartz range from 60.7‰ to 44.4‰ and +7.9‰ to +9.0‰(T=260°C),respectively and fall in the field for magmatic and metamorphic waters,implicating that mixed sources for H2O in hydrothermal fluids.Ores and sulfide minerals have a small range of Pb isotopic compositions(208Pb/204Pb=38.152 to 38.384,207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve,and similar to Neoproterozoic host rocks(208Pb/204Pb=38.201 to 38.6373,207Pb/204Pb=15.648 to 15.673 and 206Pb/204Pb=17.820 to 18.258),but higher than diabase(208Pb/204Pb=37.830 to 38.012,207Pb/204Pb=15.620 to 15.635 and206Pb/204Pb=17.808 to 17.902).These results imply that the Pb metal originated mainly from host rocks.The H-O-S-Cu-Pb isotopes tegather with geology,indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.  相似文献   

11.
鸡南铁矿床位于吉林省和龙地区,地处华北克拉通北缘与兴蒙造山带接壤的龙岗地块北部,是东北地区发现较早的BIF型铁矿床之一。该矿床铁矿体主要呈层状、似层状、扁豆状赋存于鞍山群鸡南组上段中部层位,含矿岩石以黑云斜长片麻岩、角闪黑云斜长片麻岩、黑云角闪斜长片麻岩及斜长角闪岩为主,为角闪岩相的中低级区域变质岩系;主要矿石类型为条带状磁铁石英岩型和块状磁铁角闪岩型。为确定该矿床含矿建造的原岩、变质时代及构造背景,重点对含矿岩系中的斜长角闪岩进行了岩石地球化学和锆石U-Pb年代学研究。结果表明:斜长角闪岩的地球化学特征表现为富集大离子亲石元素、轻微富集重稀土元素;主量元素质量分数与中性-基性岩类基本相似,结合原岩恢复图解,判断其原岩类型为亚碱性玄武岩(拉斑玄武岩),形成于弧后盆地背景;LA-ICP-MS锆石U-Pb年代学研究中,2个较老的锆石测点年龄分别为(2 468±15)和(2 469±9)Ma,代表区内峰期变质年龄(约2 460 Ma),26个锆石测点的测年数据较为集中,加权平均年龄为(2 275±25)Ma,代表区内退变质年龄。通过与国内外典型BIF型铁矿床的对比研究认为,区内的鸡南铁矿与官地铁矿同属Algoma型铁矿床。  相似文献   

12.
Laterite deposit at Sheikh-Marut(NW Mahabad,West-Azarbaidjan province,Iran) occurred within middle-upper Permian carbonate rocks.It consists of seven stratiform and/or discontinuous lenticular layers extending over 4.2 km in length and having thicknesses ranging from 3 to 14 m.Mineralogical data show that the ores contain kaolinite and hematite as major and boehmite, diaspore,halloysite,amesite,anatase,and muscovite-illite as minor mineral phases.The computed Ce anomaly values in the ores range from 0.05 to 20.84.Conservative index(e.g.,Eu/Eu) suggests that this deposit is a product of alteration and weathering of basaltic rocks.Rhythmic increment ofΣREE values of the ores with approaching to the carbonate bedrocks shows an in-situ occurrence of lateritization processes.Mass change calculations of elements indicate that two competing processes namely leaching and fixation were the major regulating factors in concentration variation of REEs (La-Lu) in this deposit.The obtained results show that pH increase of weathering solutions by carbonate bedrocks,existence of organic matters,and the degree of comlexation with organic ligands played remarkable role in distribution of REEs during lateritization.Further geochemical considerations revealed that secondary phosphates,Mn-oxides and -hydroxides,diaspore,and anatase were the potential hosts for REEs in this deposit.  相似文献   

13.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   

14.
内蒙古高腰海BIF(条带状建造)型铁矿位于华北克拉通西部陆块北缘,产于固阳绿岩带。矿体赋存于新太古代-古元古代色尔腾山群毛忽洞组斜长角闪岩中。铁矿石发育针柱状-粒状变晶结构,具条带状构造。矿物成分以磁铁矿、石英、角闪石为主。对选自赋矿围岩——斜长角闪岩中的热液锆石进行LA-ICP-MS U-Pb定年,得出了(1 933±12)Ma的加权平均年龄,其代表高腰海BIF富矿热事件。原岩恢复显示斜长角闪岩为正变质岩,Zr/Ti-Nb/Y图解显示其为亚碱性玄武岩系列。元素地球化学特征显示原岩可能为T-MORB(过渡型洋脊玄武岩)。结合T-MORB形成的构造环境及区域上BIF成矿规律,初步认为高腰海铁矿形成于岛弧叠加地幔柱的构造环境。  相似文献   

15.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

16.
Abstract. Whole-rock chemical compositions of the Besshi basic schist closely associated with the Besshi massive sulfide deposit from the Sanbagawa Belt are reported. Studied samples were collected from four outcrops around the Dozan-goe, central Shikoku. Common metamorphic mineral assemblage of the basic schist is albite + epidote + actinolite + chlorite ± muscovite ± quartz. Major element contents are similar to those of typical tholeiitic basalts. Trace element patterns of the basic schist normalized to normal mid-ocean ridge basalt (N-MORB) are generally flat, although concentrations of highly mobile large-ion lithophile elements are quite variable. Chondrite-normalized rare earth element (REE) patterns are flat to slightly light REE-depleted patterns. In the Hf-Th-Ta and Nb-Zr-Y discrimination diagrams, basic schist samples closely associated with the sulfide deposit are plotted within the N-MORB field. The Th/Nb ratios of the basic schist are also comparable to those of N-MORB. These geo-chemical lines of evidence indicate that the protolith of the Besshi basic schist is N-MORB and the Besshi sulfide deposit was formed by hydrothermal activity in conjunction with MOR volcanism.  相似文献   

17.
The Yinshan deposit in the Jiangnan tectonic belt in South China consists of Pb‐Zn‐Ag and Cu‐Au ore bodies. This deposit contains approximately 83 Mt of the Cu‐Au ores at 0.52% Cu and 0.8 g/t Au, and 84 Mt of the Pb‐Zn‐Ag ores at 1.25% Pb, 1.02% Zn and 33.3 g/t Ag. It is hosted by low‐grade metamorphosed sedimentary rocks and mafic volcanic rocks of the lower Mesoproterozoic Shuangqiaoshan Group, and continental volcanic rocks of the Jurassic Erhuling Group and dacitic subvolcanic rocks. The ore bodies mainly consist of veinlets of sulfide minerals and sulfide‐disseminated rocks, which are divided into Cu‐Au and Pb‐Zn‐Ag ore bodies. The Cu‐Au ore bodies occur in the area close to a dacite porphyry stock (No. 3 stock), whereas Pb‐Zn‐Ag bodies occur in areas distal from the No. 3 stock. Muscovite is the main alteration mineral associated with the Cu‐Au ore bodies, and muscovite and chlorite are associated with the Pb‐Zn‐Ag ores. A zircon sensitive high‐resolution ion microprobe U‐Pb age from the No. 3 dacite stock suggests it was emplaced in Early Jurassic. Three 40Ar‐39Ar incremental‐heating mineral ages from muscovite, which are related to Cu‐Au and Pb‐Zn‐Ag mineralization, yielded 179–175 Ma. These muscovite ages indicate that Cu‐Au mineralization occurred at 178.2±1.4 Ma (2σ), and Pb‐Zn‐Ag mineralization at 175.4±1.2 Ma (2σ) and 175.3±1.1 Ma (2σ), which supports a restricted period for the mineralization. The Early Jurassic ages for the mineralization at Yinshan are similar to that of the porphyry Cu mineralization at Dexing in Jiangnan tectonic belt, and suggest that the polymetallic mineralization occurred in a regional transcompressional tectonic regime.  相似文献   

18.
羊鼻山铁矿位于佳木斯地块中部,铁建造主要产于兴东群大盘道组第一岩段,含铁建造为一套由石榴石云母石英片岩、矽线石黑云母石英片岩和片麻岩等组成的孔兹岩系,其原岩形成于浅海陆棚沉积环境。矿石中金属矿物主要为磁铁矿,并被少量后期黄铁矿交代,非金属矿物主要为石英与矽线石,二者均呈定向排列,矿石构造以条带状构造为主,少量呈块状构造。据成矿地质条件和矿床特征,结合区域矿床对比研究,认为羊鼻山铁矿成因属BIF型,初步划归Superior型。含铁建造中矽线石黑云母石英片岩中碎屑锆石U-Pb年龄可分为4组,分别为1 006~1 212 Ma、1 238~1 480 Ma、1 521~1 742 Ma以及1 800 Ma,据最小年龄可推断羊鼻山铁矿含铁建造的沉积上限年龄为1 006Ma;1 238~1 480 Ma年龄组丰度最大,反映铁建造与围岩的剥蚀区岩石以中元古界岩浆岩为主;而最大年龄组中的2 672 Ma与2 711 Ma样品为佳木斯地块最古老的锆石之一,说明佳木斯地块存在太古代结晶基底。结合同样被认为是佳木斯地块结晶基底的麻山群近期年代学研究结果,认为兴东群应为麻山群的下伏地层。  相似文献   

19.
The Luanling gold telluride deposit in the Xiong'ershan region is located in the southern margin of the North China Craton. The deposit formed in four stages, that is, an early pyrite‐quartz stage (I), a pyrite‐molybdenite stage (II), a sulfide‐telluride‐gold stage (III), and a late carbonate stage (IV). Six species of telluride in stage (III) are recognized, including hessite, altaite, petzite, unidentified Au‐Ag‐Te mineral, empressite, and unidentified Ag‐Te‐S mineral. Gold occurs mostly as native gold and electrum along the microfractures of sulfides or the contact between sulfide and telluride. The mineralization temperature of stage I and stage III ranges from 296 to 377°C and 241 to 324°C, respectively. Tellurides in stage III precipitate at the log?S2 from ?14.3 to ?7.3 and log?Te2 from ?17.4 to ?9.4. The ores were formed in an oxidizing environment. The Re‐Os model ages of molybdenite are 162–164 Ma, which indicate that the main ore formation stage was in the Late Jurassic. The Re contents of five molybdenite samples from the Luanling deposit have a range of 36.32–81.95 ppm, except for one large value of 220 ppm, which indicates that the ore‐forming materials are mainly derived from a crustal‐dominated source. The δ34S values of sulfides range from ?17.6 to ?6.2‰, whereas those of sulfates are from 6.8 to 11.5‰. The δ34S∑S value of the ore‐forming system is 0.0–3.7‰, indicating that the sulfur of the Luanling deposit derived from a deep igneous source. Mineral association and isotope data of the Luanling deposit, together with its geodynamic setting, imply that this deposit belongs to a part of the metallogenic system of the Nannihu‐Sandaozhuang, Shangfangou porphyry molybdenum deposits, and the Late Jurassic granitic intrusions.  相似文献   

20.
新疆赞坎铁矿床位于西昆仑塔什库尔干地块西段,是近年新发现的一个大型沉积变质型磁铁矿床。赋矿岩系布伦阔勒群主要由黑云母石英片岩、斜长角闪片岩、变粒岩、硅质岩及磁铁石英岩等组成。目前探明工业矿体4条,单个矿体长度大于2.5km,矿体厚10~70m;局部见高品位铁矿段(mFe50%),长度达900m,厚度40m左右。矿石类型主要为2种,一种为原生的条纹-条带状磁铁矿(为主);另一种为热液改造形成的块状(高品位铁矿石)及浸染状磁铁矿。矿石稀土元素配分(PAAS)表明,原生条纹-条带状铁矿石Ce和Y元素异常不明显(~1.15、~0.94),Eu具正异常(~1.69),Y/Ho平均值为25,稀土配分模式与沉积变质型铁矿相似。而受改造的矿石中,浸染状矿石具有较高的稀土总量,明显富集轻稀土,La和Ce显示正异常(~1.46、~1.17),Y显示负异常(=0.66~0.72),Eu表现为强烈的正异常(~4.37),稀土配分模式明显不同于原生条纹-条带状铁矿石。矿体围岩斜长角闪片岩(变沉积岩)中的碎屑锆石U-Pb年龄为591±1Ma,结合前人对矿区内侵入体的年代学研究(霏细斑岩,533Ma),大致反映沉积铁矿的形成时代为新元古代至早寒武世。电子探针显示,条带状磁铁矿中的TiO_2、AL_2O_3、MgO、MnO含量较低,标型组分含量与沉积变质型磁铁矿颇为接近,在磁铁矿单矿物成因图解中,条带状磁铁矿整体显示磁铁矿为沉积变质型铁矿;浸染状矿石和块状矿石的组成与典型沉积变质型铁矿的偏离反映了后期岩浆-构造热事件对条带状铁矿石的改造;上述结果显示赞坎铁矿整体属于沉积变质型铁矿(BIF)。调查发现赞坎高品位铁矿体与早寒武世侵入的霏细斑岩联系密切,高品位矿石及其围岩发育一定程度的矽卡岩化,如阳起石化、碳酸盐化和黄铁矿化。本文推测高品位铁矿石的成因可能为霏细斑岩的岩浆热液溶解并运移早期沉积变质铁矿中的含铁物质,在构造发育处充填交代形成块状磁铁富矿石。在早寒武世侵入到矿区中部的霏细斑岩体中,同时发育有角砾状磁铁矿和脉状磁铁矿,因此,岩浆热液改造原生条带状铁矿石形成高品位铁矿石的时代应为早寒武世。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号