首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Airborne EM footprints   总被引:1,自引:0,他引:1  
As frequency-domain airborne electromagnetic (AEM) studies move towards more detailed assessments of the near-surface, the behaviour of system footprints, and hence the spatial averages involved in the measurement, becomes important. Published estimates suffer from two main limitations: first, they are based on perfectly conducting, thin sheet models and, secondly, they are system specific. The present study is a revision of footprint estimates based on (i) a finitely conducting half-space and (ii) an at-surface scale estimate that uses the spatial equivalent of the conventional electromagnetic skin depth. In order to remove the system dependence, a transmitter footprint is defined in terms of electromagnetic skin distance. Only the limiting cases of vertical and horizontal magnetic dipole sources then require analysis. Electromagnetic skin distances, two for each of the coil orientations, are defined. The revised definition makes it possible to investigate the footprint behaviour of both towed-bird and fixed-wing AEM systems over an altitude range from 20 to 100 m. The footprint/altitude ratio has a primary dependence on altitude and a secondary dependence on both resistivity and frequency. The analysis covers a frequency range from 1 to 100 kHz and results are presented for two specific resistivity values that represent conductive (10 Ωm) and resistive (1000 Ωm) environments. The revised footprint parameters display a quasi-linear behaviour with altitude, particularly for mid-range frequencies. This behaviour enables the coefficients of linear, least-squares relationships to be obtained, thus assisting with the prediction of footprint estimates for survey planning and interpretation. A comparison of the new estimates with published values suggests that existing footprint values for a vertical magnetic dipole should be revised downward.  相似文献   

2.
接地导线源电磁场全域有效趋肤深度   总被引:3,自引:2,他引:1       下载免费PDF全文
为了更好地推进广域电磁法的发展和应用,本文以接地长导线源为例,研究了可控源电磁场全场域的有效趋肤深度.利用频域电偶极源在均匀半空间产生电磁场的闭合表达式,计算了不同电磁场分量定义的有效趋肤深度,并讨论了在不同频率、不同偏移距、不同电导率情况下,有效趋肤深度的变化特性.根据有效趋肤深度随偏移距的变化特征以及与平面波趋肤深度之间的关系,利用多项式拟合的办法在五个不同频率范围内给出了适用于全场域的有效趋肤深度快速估算公式.研究结果表明:不同分量定义的有效趋肤深度是不同的,但是它们随偏移距、频率、电导率等参数的变化趋势是类似的,而且在一定范围内都趋近于平面波趋肤深度.理论模型的研究表明,有效趋肤深度可以作为测量参数选取和数据解释工作的参考依据.  相似文献   

3.
频率域航空电磁法一维正演与探测深度   总被引:2,自引:0,他引:2       下载免费PDF全文
计算了偶极一偶极方式均匀半空间的频率域航空电磁响应及层状模型的相对异常响应,阐明了大地电导率、磁化系数,以及飞机飞行高度、探测装置、收发距对电磁响应的影响,计算结果说明了频率域航空电磁法的探测能力和探测条件.分析了三层模型的相对异常响应,给出了基于层状模型确定探测深度的方法.在水平共面方式下,收发距8m,飞行高度30m时,在3~4ppm噪声水平条件下,100Ωm大地探测深度为120m.  相似文献   

4.
Very low frequency (VLF) military communications systems provide a primary field that can be used for shallow geophysical surveys to locate ground water contamination and vertical geologic contacts. Useful properties that can be easily obtained from the interaction of the earth and the primary field are the magnitude of the vertical secondary magnetic field, the surface impedence, and the phase angle between the electrical and magnetic horizontal components. The variations in the secondary magnetic field can be related to vertical geologic contacts, such as the edges of landfill trenches. The surface impedence yields an apparent terrain conductivity, which can be used to locate low-resistivity anomalies often associated with contaminated ground water. The phase angle gives information on vertical variations in resistivity, phase angles less than 45° indicating increasing resistivity with depth. The depth of penetration of the VLF field is about one skin depth. For a frequency of 20 kHz, the skin depth in meters is approximately equal to 3.67 where p is terrain resistivity in ohmmeters.  相似文献   

5.
The interpretation of airborne VLF data represents an important aspect of geophysical mapping of the upper few hundred meters of the Earth's crust, especially in areas with crystalline rocks. We have examined the ability of the single frequency VLF method to provide quantitative subsurface resistivity information using two generic models and standard airborne parameters with a flight altitude of 70 m and a frequency of 16 kHz. The models are long thin conductor (10 m thick, 10 Ω m resistivity and 1 km long) and a wider buried conductive dike (100 Ω m resistivity and 500 m wide). Using standard regularized inversion it turned out that for both models the conductivity of the conductors are underestimated and the vertical resolution is rather poor. The lateral positions of the minimum of the resistivity distributions coincide well with the true positions of the shallow conductors. For deeper conductors the position of the minimum resistivity moves from the edges of the conductor into the conductor. The depth to the minimum of the resistivity anomalies correlates well with the true depth to the top of the conductors although the latter is always smaller than the former.Interpretation of field airborne data collected at 70 m flight height resolved both small scale and large scale near surface conductors (conductance ∼1 S). Deeper conductors show up in the VLF data as very long wavelength anomalies that are particularly powerful in delineating the lateral boundaries of the conductors. Many of the VLF anomalies in the Stockholm area are dominated by these deep conductor responses with some near surface conductors superimposed. The deep conductors often follow topographic lows coinciding with metasediments. We interpret the frequent absence of near surface responses at 70 m flight height as a result of weak coupling between the primary VLF wave and the small scale (in all three dimensions) near-surface conductors.Radio magnetotelluric (RMT) ground measurements were carried out along a short profile coinciding with part of an airborne profile. Using data at 9 frequencies (14–250 kHz) small scale conductors in the upper few tens of meters, not identified from the airborne data, could be well resolved. Large scale deeper conductors could be identified by both methods at nearly the same positions.  相似文献   

6.
A new approach for the profiling of movable sediment beds in laboratory experiments is presented. It couples a triangulation laser sensor and an ultrasonic level transmitter, and allows a non‐intrusive, fast and accurate measurement of bed topography without stopping the experimental runs. The distortion of the laser beam due to the refraction at the water surface is corrected by contemporaneously measuring the elevation of the water surface through the ultrasonic level transmitter and taking advantage of geometrical relations involving the water depth, distance of the sensors from the water surface, and the angles that the emitted laser beam forms with the vertical before and after refraction. Several tests, under either still‐ or flowing‐water conditions, as well as increasing/decreasing water surface elevation, were carried out to evaluate the accuracy of the measurements. These tests indicate that good‐quality measurements are obtained for flow depths in the range 0 < D < 60 mm, typical of morphodynamic laboratory experiments. Finally, two relevant applications to movable bed experiments carried out under either lagoonal or fluvial conditions are presented that show the effectiveness of the proposed profiling technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Electromagnetic fields in a non-uniform steel-cased borehole   总被引:1,自引:0,他引:1  
Since most oil wells are cased in steel, electromagnetic (EM) signals undergo severe attenuation as they diffuse across the casing. This paper examines an effect of non‐uniform casing properties on EM fields measured in a steel‐cased well embedded in a layered formation. We use a finite‐element method for computing secondary azimuthal electric fields in a cylindrically symmetric model, and analytically obtain primary fields for a homogeneous casing in a homogeneous whole space. Although steel casing largely masks EM signals induced into a layered formation, the induced signal is more pronounced in phase than in amplitude. The effect of casing non‐uniformity is quite large in measured fields but is highly localized. When electrical conductivity varies rapidly in the casing wall, the resulting EM fields also vary rapidly. A cross‐correlation function of these variations has strong peaks at two points, the interval between them being equal to the source–receiver distance. The high‐frequency coherent noise event caused by the non‐uniform casing can be greatly suppressed by low‐pass filtering to enhance EM signals indicating formation conductivity.  相似文献   

8.

本文基于感应测井中的几何因子与一阶Born近似理论,通过柱坐标系下耦合势Helmholtz方程三维有限体积法研究建立了各向异性地层中含环状天线槽的随钻方位电磁波测井几何因子.首先,通过引入环状电流源与径向磁偶极子源电磁场Green函数,并结合Green第二积分公式,推导出随钻方位电磁波测井仪器中环形电场和横向磁场微小变化与各向异性地层中水平和垂直电导率相对摄动量之间的关系,得到轴向和横向感应电动势微小变化量计算方法与柱坐标系中轴向和横向分量空间灵敏度函数(三维几何因子)表达式.在此基础上,进一步给出径向和纵向微分几何因子计算公式.然后,应用耦合势三维有限体积法确定发射线圈产生的感应电磁场以及环状电流源与径向磁偶极子源电磁场Green函数的数值解.最后,给出不同频率、不同倾角、不同各向异性系数等多种情况下该仪器的空间灵敏度函数与微分几何因子的数值结果,用于分析考查仪器的响应特征与空间探测能力.

  相似文献   

9.
New methods for obtaining and quantifying spatially distributed subsurface moisture are a high research priority in process hydrology. We use simple linear regression analyses to compare terrain electrical conductivity measurements (EC) derived from multiple electromagnetic induction (EMI) frequencies to a distributed grid of water‐table depth and soil‐moisture measurements in a highly instrumented 50 by 50 m hillslope in Putnam County, New York. Two null hypotheses were tested: H0(1), there is no relationship between water table depth and EC; H0(2), there is no relationship between soil moisture levels and EC. We reject both these hypotheses. Regression analysis indicates that EC measurements from the low frequency EM31 meter with a vertical dipole orientation could explain over 80% of the variation in water‐table depth across the test hillslope. Despite zeroing and sensitivity problems encountered with the high frequency EM38, EC measurements could explain over 70% of the gravimetrically determined soil‐moisture variance. The use of simple moisture retrieval algorithms, which combined EC measurements from the EM31 and EM38 meters in both their vertical and horizontal orientations, helped increase the r2 coefficients slightly. This first hillslope hydrological analysis of EMI technology in this way suggests that it may be a promising method for the collection of a large number of distributed soilwater and groundwater depth measurements with a reasonable degree of accuracy. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
航空瞬变电磁法对地下典型目标体的探测能力研究   总被引:2,自引:2,他引:0       下载免费PDF全文
航空电磁法的探测能力受飞行高度、发射波形、发射磁矩和发射基频等因素的影响,致使不同分量间的勘探能力存在差异.航空电磁如对所有磁场和磁感应分量、on-和off-time数据进行观测和解释,不仅数据量大、耗时长,而且出现大量冗余数据.目前国内针对此问题尚无系统解决方法.本文针对吊舱式直升机航空电磁系统,采用积分方程法求解频率域响应,经汉克尔变换转换到时间域,计算了地下三维目标体的 B 和d B /dt时间域响应.利用异常体响应与背景场响应作比值,并通过设定响应阀值定义最大勘探深度,进而分析不同发射波形、不同分量以及on-和off-time期间的航空电磁系统的探测能力.基于本文分析手段,可根据实际勘探目标,确定一套探测能力较强的航空电磁最佳参数组合,为野外测量和数据处理提供技术指导,高效完成勘探任务.  相似文献   

11.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

12.
The diffusion of electromagnetic fields is dependent not only on conductivity, but also on magnetic permeability, dielectric permittivity and polarizability, i.e. dispersive conductivity. The long‐offset transient electromagnetic (LOTEM) method is mainly used to determine the spatial distribution of conductivity in the subsurface. However, earlier work on loop‐loop TEM suggests that transient EM methods can also be affected by induced polarization (IP). Numerous 1D forward calculations were carried out to study the IP effect on LOTEM data, using the Cole‐Cole relaxation model to simulate the polarizability of the ground. Besides the polarizability of each layer, the IP effect depends on the LOTEM field set‐up and the spatial distribution of conductivity in the ground. In particular, near‐surface layers with high chargeabilities can significantly distort the late time transients of the electric field components in the vicinity of the transmitter. The influence of polarizable layers on the magnetic field components can be neglected under normal circumstances. In 1997 and 1999, LOTEM measurements were carried out at Mt. Vesuvius in Italy to explore the geological structure of the volcano. Sensitivity studies on the effect of polarizable layers suggest that high chargeabilities in connection with conductive layers at greater depths would result in a detectable distortion of the electric field transients. Although the simultaneous IP measurements revealed high chargeabilities in a near‐surface layer, no evidence of IP effects could be found in the measured LOTEM data. We conclude that the observed chargeabilities are local and that 3D effects are probably present in the data. Another aspect is the measurement of the system response, which is usually measured by placing a receiver very close to the transmitter. Therefore, large distortions can be expected if near‐surface polarizable layers exist. This was verified in practice by field measurements in an area with high chargeabilities in Longerich, Cologne.  相似文献   

13.
Very early times in the order of 2–3 μs from the end of the turn‐off ramp for time‐domain electromagnetic systems are crucial for obtaining a detailed resolution of the near‐surface geology in the depth interval 0–20 m. For transient electromagnetic systems working in the off time, an electric current is abruptly turned off in a large transmitter loop causing a secondary electromagnetic field to be generated by the eddy currents induced in the ground. Often, however, there is still a residual primary field generated by remaining slowly decaying currents in the transmitter loop. The decay disturbs or biases the earth response data at the very early times. These biased data must be culled, or some specific processing must be applied in order to compensate or remove the residual primary field. As the bias response can be attributed to decaying currents with its time constantly controlled by the geometry of the transmitter loop, we denote it the ‘Coil Response’. The modelling of a helicopter‐borne time‐domain system by an equivalent electronic circuit shows that the time decay of the coil response remains identical whatever the position of the receiver loop, which is confirmed by field measurements. The modelling also shows that the coil response has a theoretical zero location and positioning the receiver coil at the zero location eliminates the coil response completely. However, spatial variations of the coil response around the zero location are not insignificant and even a few cm deformation of the carrier frame will introduce a small coil response. Here we present an approach for subtracting the coil response from the data by measuring it at high altitudes and then including an extra shift factor into the inversion scheme. The scheme is successfully applied to data from the SkyTEM system and enables the use of very early time gates, as early as 2–3 μs from the end of the ramp, or 5–6 μs from the beginning of the ramp. Applied to a large‐scale airborne electromagnetic survey, the coil response compensation provides airborne electromagnetic methods with a hitherto unseen good resolution of shallow geological layers in the depth interval 0–20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.  相似文献   

14.
时间域航空电磁法激电效应对电磁扩散的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
由于激发极化效应的影响,时间域航空电磁晚期道信号经常会出现变号现象.基于电阻率的传统反演方法无法对变号数据进行正确反演,因此通常在数据处理中予以剔除.为深入了解极化介质的电磁扩散特征,认识航空瞬变电磁负响应的产生机理,本文研究时间域航空电磁系统的电磁扩散特征.我们以均匀极化、非极化半空间及层状介质模型为例,通过直接积分的方法求解频率域电场响应,并由欧姆定律得到电流响应,再经过汉克尔变换得到时间域电流响应.通过研究电流随时间在地下极化介质中的传播特征研究电磁扩散过程;通过对比不同激电参数对电磁扩散的影响,研究极化介质中感应电流与极化电流的扩散规律,从而合理地解释极化介质中负响应的产生机理.基于本文研究和分析结果,可加深对时间域航空电磁法中激电效应的认识.  相似文献   

15.
We study a new marine electromagnetic configuration that consists of a ship‐towed inductive source transmitter and a series of remote electric dipole receivers placed on the seafloor. The approach was tested at the Palinuro Seamount in the southern Tyrrhenian Sea, at a site where massive sulphide mineralization has been previously identified by shallow drilling. A 3D model of the Palinuro study area was created using bathymetry data, and forward modelling of the electric field diffusion was carried out using a finite volume method. These numerical results suggest that the remote receivers can theoretically detect a block of shallowly buried conductive material at up to ~100 m away when the transmitter is located directly above the target. We also compared the sensitivity of the method using either a horizontal loop transmitter or a vertical loop transmitter and found that when either transmitter is located directly above the mineralized zone, the vertical loop transmitter has sensitivity to the target at a farther distance than the horizontal loop transmitter in the broadside direction by a few tens of metres. Furthermore, the vertical loop transmitter is more effective at distinguishing the seafloor conductivity structure when the vertical separation between transmitter and receiver is large due to the bathymetry. As a horizontal transmitter is logistically easier to deploy, we conducted a first test of the method with a horizontal transmitter. Apparent conductivities are calculated from the electric field transients recorded at the remote receivers. The analysis indicates higher apparent seafloor conductivities when the transmitter is located near the mineralized zone. Forward modelling suggests that the best match to the apparent conductivity data is obtained when the mineralized zone is extended southward by 40 m beyond the zone of previous drilling. Our results demonstrate that the method adds value to the exploration and characterization of seafloor massive sulphide deposits.  相似文献   

16.
Helicopter electromagnetic (HEM) systems are commonly used for conductivity mapping and the data are often interpreted using an isotropic horizontally layered earth model. However, in regions with distinct dipping stratification, it is useful to extend the model to a layered earth with general anisotropy by assigning each layer a symmetrical 3 × 3 resistivity tensor. The electromagnetic (EM) field is represented by two scalar potentials, which describe the poloidal and toroidal parts of the magnetic field. Via a 2D Fourier transform, we obtain two coupled ordinary differential equations in the vertical coordinate. To stabilize the numerical calculation, the wavenumber domain is divided into two parts associated with small and large wavenumbers. The EM field for small wavenumbers is continued from layer to layer with the continuity conditions. For large wavenumbers, the EM field behaves like a DC field and therefore cannot be sensed by airborne EM systems. Thus, the contribution from the large wavenumbers is simply ignored. The magnetic fields are calculated for the vertical coaxial (VCX), horizontal coplanar (HCP) and vertical coplanar (VCP) coil configurations for a helicopter EM system. The apparent resistivities defined from the VCX, VCP and HCP coil responses, when plotted in polar coordinates, clearly identify the principal anisotropic axes of an anisotropic earth. The field example from the Edwards Aquifer recharge area in Texas confirms that the polar plots of the apparent resistivities identify the principal anisotropic axes that coincide well with the direction of the underground structures.  相似文献   

17.
Three‐dimensional receiver ghost attenuation (deghosting) of dual‐sensor towed‐streamer data is straightforward, in principle. In its simplest form, it requires applying a three‐dimensional frequency–wavenumber filter to the vertical component of the particle motion data to correct for the amplitude reduction on the vertical component of non‐normal incidence plane waves before combining with the pressure data. More elaborate techniques use three‐dimensional filters to both components before summation, for example, for ghost wavelet dephasing and mitigation of noise of different strengths on the individual components in optimum deghosting. The problem with all these techniques is, of course, that it is usually impossible to transform the data into the crossline wavenumber domain because of aliasing. Hence, usually, a two‐dimensional version of deghosting is applied to the data in the frequency–inline wavenumber domain. We investigate going down the “dimensionality ladder” one more step to a one‐dimensional weighted summation of the records of the collocated sensors to create an approximate deghosting procedure. We specifically consider amplitude‐balancing weights computed via a standard automatic gain control before summation, reminiscent of a diversity stack of the dual‐sensor recordings. This technique is independent of the actual streamer depth and insensitive to variations in the sea‐surface reflection coefficient. The automatic gain control weights serve two purposes: (i) to approximately correct for the geometric amplitude loss of the Z data and (ii) to mitigate noise strength variations on the two components. Here, Z denotes the vertical component of the velocity of particle motion scaled by the seismic impedance of the near‐sensor water volume. The weights are time‐varying and can also be made frequency‐band dependent, adapting better to frequency variations of the noise. The investigated process is a very robust, almost fully hands‐off, approximate three‐dimensional deghosting step for dual‐sensor data, requiring no spatial filtering and no explicit estimates of noise power. We argue that this technique performs well in terms of ghost attenuation (albeit, not exact ghost removal) and balancing the signal‐to‐noise ratio in the output data. For instances where full three‐dimensional receiver deghosting is the final product, the proposed technique is appropriate for efficient quality control of the data acquired and in aiding the parameterisation of the subsequent deghosting processing.  相似文献   

18.
The possibility of a time‐domain electromagnetic sounding method using excitation and measurement of vertical electric fields to search for and identify deeply buried reservoirs of hydrocarbons offshore is investigated. The method operates on source–receiver offsets, which are several times less than the depth of the reservoir. Geoelectric information is obtained from the transient responses recorded in the pauses between the pulses of electric current in the absence of the source field. The basics of the method, as well as its sensitivity, resolution, and the highest accessible depth of soundings for various geological conditions in a wide range of sea depths, are analyzed. For the analysis, 1D and 3D geoelectric models of hydrocarbon reservoirs are used. It is shown that under existing technologies of excitation and measurement of vertical electric fields, the highest accessible depth of soundings can be up to 4 km. Technology for the inversion and interpretation of transient responses is demonstrated on experimental data.  相似文献   

19.
声电效应测井的有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
关威  姚泽鑫  胡恒山 《地球物理学报》2017,60(11):4516-4526

本文研究声电效应测井波场的有限差分模拟算法.忽略井外地层中诱导电磁场对孔隙弹性波的影响,将求解动电耦合波方程组的问题解耦,先计算孔隙弹性波,再计算其诱导电磁场.基于轴对称柱坐标系下的速度-应力交错网格,采用时域有限差分计算井孔流体声波和井外地层孔隙弹性波.将电磁场近似看作似稳场,基于轴对称柱坐标系下的5点式有限差分网格,求解不同时刻的电位Poisson方程,计算诱导电场.结果表明:本文算法可准确模拟频率6.0 kHz的声电效应测井全波;在声波测井频率范围内,电导率、动电耦合系数和动态渗透率的低频近似对伴随电磁场的计算影响不大;地层水平界面导致伴随反射斯通利波的电场和显著的界面电磁波,后者对于探测地层界面具有潜在的应用价值.

  相似文献   

20.

利用层状大地中偶极源响应的正演算法, 计算地中电偶极源激发的极低频地震电磁场并分析其在地球环境下的传播特征.设计了多个水平层状地球模型, 分别模拟和展示了深埋地中的电偶极源的响应和空间分布特征.重点分析了含地壳波导+LAI波导模型的高阻大地中, 倾斜电偶极源激励响应随观测点的偏移距和垂直位置、激励源深度、地壳波导结构和参数变化时各场量响应的幅频特征.研究表明, 用倾斜电偶极源模拟和分析高阻大地中孕震电磁辐射的响应及在大地电磁系统中的传播特性是可行的; 模拟的高阻大地中的电磁辐射在地壳波导和LAI波导中均表现有慢衰减或幅值增强特性, 但两个波导效应具有不同的频率选择性; 高阻大地中的电磁辐射在波导的高阻介质中具有幅值强、衰减慢的特点.建议在高阻地层出露的地表、井中或海底的高阻岩层中以及大气层中布设测站.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号