首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrastructure dissolution susceptibility of the planktic foraminifer Globigerina bulloides, carbonate ion content of the water column, calcium carbonate content of the sediment surface, and carbonate/carbon weight percentage ratio derived from sediment surface samples were investigated in order to reconstruct the position of the calcite saturation horizon, the sedimentary calcite lysocline, and the calcium carbonate compensation depth (CCD) in the modern South Atlantic Ocean. Carbonate ion data from the water column refer to the GEOSECS locations 48, 103, and 109 and calcium carbonate data come from 19 GeoB sediment surface samples of 4 transects into the Brazil, the Guinea, and the Cape Basins. We present a new (paleo-) oceanographic tool, namely the Globigerina bulloides dissolution index (BDX). Further, we give evidence (a) for progressive G. bulloides ultrastructural breakdown with increasing carbonate dissolution even above the lysocline; (b) for a sharp BDX increase at the sedimentary lysocline; and (c) for the total absence of this species at the CCD. BDX puts us in the position to distinguish the upper open ocean and the upwelling influenced continental margin above from the deep ocean below the sedimentary lysocline. Carbonate ion data from water column samples, calcite weight percentage data from surface sediment samples, and carbonate/carbon weight percentage ratio appear to be good proxies to confirm BDX. As shown by BDX both the calcite saturation horizon (in the water column) and the sedimentary lysocline (at the sediment–water interface) mark the boundary between the carbonate ion undersaturated and highly corrosive Antarctic Bottom Water and the carbonate ion saturated North Atlantic Deep Water (NADW) of the modern South Atlantic.  相似文献   

2.
Although the carbonate compensation depth (CCD) for calcite, generally located in the depth range 4000–5000 m, is often proposed as a physiological barrier to deep-ocean colonization, many organisms with calcareous exoskeletons are found in the deepest oceanic trenches. Serpulid polychaetes inhabiting unprotected calcareous tubes are unlikely deep-sea inhabitants, yet, they are found at all oceanic depths from intertidal to hadal. Here we review and revise the published and unpublished records of Serpulidae from below 5000 m depth. We also describe tube ultrastructure and mineralogical content of available deep-sea serpulid tubes to obtain insights into their biomineralisation. Species belonging to the genera Bathyditrupa, Bathyvermilia, Hyalopomatus, Pileolaria (spirorbin) and Protis were found at depths from 5020 to 9735 m. However, only specimens of Protis sp. were truly hadal (>6000 m) being found at 6200–9700 m. Hadal specimens of Protis have irregularly oriented prismatic tube microstructure similar to that found in more shallow-water representatives of the genus. Initial EDX analysis suggested a mostly calcitic composition (i.e., the most stable CaCO3 polymorph) on the basis of high Mg levels. Surprisingly, however, tubes of Bathyditrupa hovei and a species of Protis analysed using the more reliable method of laser Raman spectroscopy were found to be composed of aragonite. The compensation depth for this less stable CaCO3 polymorph in the oceans is usually 2000–3000 m. We found no obvious structural adaptations to life at extreme depths in the studied serpulid tubes and how serpulids are able to biomineralise and maintain their tubes below the CCD remains to be explained.  相似文献   

3.
Surface samples of sediment cores from the Weddell Sea contain foraminiferal assemblages which are distinctly divided into calcareous or arenaceous populations and reflect CaCO3 dissolution in some regions. Water depth apparently is only partly responsible for this CaCO3 dissolution, the present CCD varying from 250 m to greater than 3700 m. Other factors such as water-mass properties, biological producitivity and sedimentation, all of which are controlled by the glacial regime of a region, are of major importance.Perennial sea-ice formation over the southwestern continental shelf causes a deficiency in surface productivity, limits air—sea interaction and produces cold, Saline Shelf Water which is apparently undersaturated with respect to CaCO3. In the eastern Weddell Sea, less severe glacial conditions appear to favor CaCO3 preservation on the continental shelf. In this area the CCD coincides approximately with major water-mass boundaries varying from over 700 m to approximately 500 m.The deepest and most widespread occurrence of calcareous foraminiferal assemblages coincides with the present region of Antarctic Bottom Water production in the Weddell Sea. Here the CCD is depressed from approximately 1500 m to over 3700 m from east to west along the outer edge of the slope and reflects intensification of mixing and subsequent increased biological productivity in that direction.  相似文献   

4.
Particulate organic carbon (POC) is vertically transported to the oceanic interior by aggregates and their ballasts, mainly CaCO3 and biogenic opal, with a smaller role for lithogenic aerosols through the mesopelagic zone. Diel migrating zooplankton communities effect vertical transport and remineralization of POC in the upper layers of the ocean. Below 1.5 km, the presence of zooplankton is reduced and thus the aggregates travel mainly by gravitational transport. We normalized the fluxes of POC, CaCO3, and biogenic opal from data published on samples collected at 134 globally distributed, bottom-tethered, time-series sediment trap (TS-trap) stations to annual mole fluxes at the mesopelagic/bathypelagic boundary (m/b) at 2 km and defined them as Fm/bCorg, Fm/bCinorg, and Fm/bSibio. Using this global data set, we investigated (1) the geographic contrasts of POC export at m/b and (2) the supply rate of ∑CO2 to the world mesopelagic water column. Fm/bCorg varies from 25 (Pacific Warm Pool) to 605 (divergent Arabian Sea) mmolC m−2 yr−1; Fm/bCinorg varies from >8 (high latitude Polar Oceans) or 15 (Pacific Warm Pool) to 459 (divergent Arabian Sea) mmolC m−2 yr−1; and Fm/bSibio, the most spatially/temporally variable flux, ranges from 6 (North Atlantic Drift) to 1118 (Pacific Subarctic Gyre) mmolSi m−2 yr−1. The oceanic region exhibiting the highest POC flux over a significantly large region is the area of the North Pacific Boreal Gyres where the average Fm/bCorg = 213, Fm/bCinorg = 126, and Fm/bSibio = 578 mmol m−2 yr−1. Fm/bCorg and Fm/bCinorg are particularly high in large upwelling margins, including the divergent Arabian Sea and off Cape Verde. One of the data sets showing the lowest flux over a significant region/basin is Fm/bCorg = 39, Fm/bCinorg = 69, and Fm/bSibio = 22 mmol m−2 yr−1 in the North Pacific subtropical/tropical gyres; Pan-Atlantic average fluxes are similar except Fm/bSibio fluxes are even lower. Where Corg/Cinorg and Sibio/Cinorg are <1 defines the “Carbonate Ocean”, and where these ratios are ?1 defines the “Silica Ocean”. The Carbonate Ocean occupies about 80% of the present world pelagic ocean between the two major oceanographic fronts, the North Pacific Polar Front and the Antarctic Polar Front, and the Silica Ocean is found on the polar sides of these fronts. The total global annual fluxes of Fm/bCorg, Fm/bCinorg, and Fm/bSibio at m/b calculated by parameterizations of the export flux data from 134 stations are surprisingly similar; 36.2, 33.8, and 34.6 teramol yr−1 (120, 112, and 114 mmol m−2 yr−1), respectively, resulting in a near uniform binary ratio between the above three elements of about one. The global ternary % ratios estimated from 152 TS-trap samples of the three elements are 35:32:33. From our global Fm/bCorg and a published model estimate of the global export production, we estimate the regeneration rate of CO2 through the mesopelagic zone by the biological pump is 441 teramolC yr−1. Based on our global Fm/bCinorg and recently estimated global primary production of PIC, 36-86 teramolC yr−1 of PIC is assumed to be dissolved within the upper 2 km of the water column.  相似文献   

5.
Time-series Mark 7 sediment traps were deployed at three stations at 0°N, 13°N and 48°N along 175°E to investigate seasonal and spatial variations of particulate material flux. Chemical analysis of particulate material was performed for four major chemical components, viz. opal, CaCO3, organic material and clay minerals, Cd and P in the particulate material were also determined. We discuss the characteristics of particulate material at each site and the transportation of Cd and P to deep water by the particulate material. The total mass fluxes and variation of fluxes at each site reflect oceanographic conditions, such as biological productivity and kind of major planktonic organisms. At the northern site, large mass fluxes with a spring bloom and high ratios of opal are characteristic. Relatively small mass fluxes with high ratios of CaCO3 are distinct, and dissolution of CaCO3 due to sinking is recognized in the middle latitude and 0°N sites. The larger flux at the lower trap than the upper trap at the equatorial site suggests influence by lateral transport in the deep water. Distinctive decreasing Cd/P ratio and CaCO3 concentrations in the particulate material with increasing depth suggests that the change of Cd/P ratio in the intermediate and deep water occurs through the dissolution of CaCO3. The dissolved Cd/P ratios in the deep water are proportional to the age of the deep water in the Atlantic but not in the Pacific. This is explained by the difference of kinds of particulate material transporting Cd and P in the deep water between the oceans. That is, the major planktonic organisms are planktons of CaCO3 tests in the Atlantic Ocean and diatoms of opal tests in the North Pacific Ocean.  相似文献   

6.
The saturation of calcite and aragonite in the Arctic Ocean   总被引:1,自引:0,他引:1  
We report on the chemical saturation of CaCO3 in the waters of the Arctic Ocean calculated from total alkalinity (AT) and total dissolved inorganic carbon (CT). Data based on four different expeditions are presented: International Arctic Ocean Expedition (IAOE-91), Arctic Ocean Section 94 (AOS94), Polarstern Arctic '96 expedition (ACSYS 96), and Joint Ocean Ice Study 97 (JOIS 97). The results show a lysocline at around 3500 m for aragonite and that most of the Arctic Ocean sea floor lies above the lysocline for calcite. The only anomaly is the low degree of saturation at the shelf break depth in the Canadian Basin seen in the sections of the AOS94 and JOIS 97 cruises, correlated with nutrient maxima and very low O2 concentration, suggesting decomposition of organic matter. The insignificant variability in degree of saturation between the deep waters of the different basins in the Arctic Ocean indicates a very low sedimentation/remineralisation of organic soft matter.  相似文献   

7.
Fifty years of measurements at Ocean Station Papa (OSP, 50°N, 145°W) show trends in the interior waters of the subarctic Pacific that are both impacted by short term (few years to bi-decadal) atmospheric or ocean circulation oscillations and by persistent climate trends. Between 1956 and 2006, waters below the ocean mixed layer to a depth of at least 1000 m have been warming and losing oxygen. On density surfaces found in the depth range 100-400 m (σθ = 26.3-27.0), the ocean is warming at 0.005-0.012 °C y−1, whereas oxygen is declining at 0.39-0.70 μmol kg−1 y−1 or at an integrated rate of 123 mmol m−2 y−1 (decrease of 22% over 50 years). During this time, the hypoxic boundary (defined as 60 μmol O2 kg−1) has shoaled from ∼400 to 300 m. In the Alaska Gyre, the 26.2 isopycnal occasionally ventilates, whereas at OSP 26.0σθ has not been seen at the ocean surface since 1971 as the upper ocean continues to stratify. To interpret the 50 year record at OSP, the isopycnal transport of oxygenated waters within the interior of the subarctic Pacific is assessed by using a slightly modified “NO” parameter [Broecker, W., 1974. “NO” a conservative water-mass tracer. Earth and Planetary Science Letters 23, 100-107]. The highest nitrate-oxygen signature in interior waters of the North Pacific is found in the Bering Sea Gyre, Western Subarctic Gyre and East Kamchatka Current region as a consequence of winter mixing to the ∼26.6 isopycnal. By mixing with low NO waters found in the subtropics and Okhotsk Sea, this signature is diluted as waters flow eastward across the Pacific. Evidence of low NO waters flowing north from California is seen along the coasts of British Columbia and SE Alaska. Oxygen in the subsurface waters of the Alaskan Gyre was supplied ∼60% by subarctic and 40% by subtropical waters during WOCE surveys, whereas such estimates are shown to periodically vary by 20% at OSP. Other features discernable in the OSP data include periods of increased ventilation of deeper isopycnals on an ∼18 year cycle and strong, short term (few month) variability caused by passing mesoscale eddies. The potential impacts of declining oxygen on coastal ecosystems are discussed.  相似文献   

8.
Data on the carbonate system of the Northwestern Indian Ocean obtained on a cruise of F.S. Meteor during SW monsoon in July/August 1995 were compared with those of George et al. [George, M.D., Kumar, M.D., Naqvi, S.W.A., Banerjee, S., Narvekar, P.V., de Sousa, S.N., Jayakumar, D.A., 1994. A study of the carbon dioxide system in the northern Indian Ocean during premonsoon. Mar. Chem. 47, 243–254] collected during intermonsoon. In general, deep water values agreed well between the two expeditions. Surface waters, however, showed a substantial increase in dissolved inorganic carbon (CT) in the coastal regions due to strong upwelling in the SW monsoon. This was also accompanied by very high CO2 partial pressures in surface waters. The north–south gradients in vertical profiles of the measured parameters in the Arabian Sea are discussed by comparing profiles from the oligotrophic equatorial region with those from the highly productive central Arabian Sea. The effect of denitrification on regenerated CT and AT is minor, with contributions of <9 and <8 μmol kg−1, respectively, to the total amount regenerated also utilizing oxygen. The dissolution of biogenic carbonates is discussed; different approaches to define the depth, where the dissolution starts (lysocline(s), carbonate critical depth (CCrD)), are compared together with the calculation of saturation depth from carbonate concentrations. It is shown, that small differences in measured CT and AT (found between our data and those measured during GEOSECS) and different calculation approaches to the CO2 system (different dissociation constants for species involved and taking into account phosphate and silicate concentrations) can produce pronounced differences in the calculated saturation depths. However, CT and AT data suggest substantial dissolution of biogenic carbonate in the water column even above the calcite lysocline, irrespective of the procedures followed to calculate this horizon.  相似文献   

9.
The larval fish assemblage was investigated in the shallow, nearshore region of a proposed marine protected area in eastern Algoa Bay, temperate South Africa, prior to proclamation. Sampling was conducted at six sites along two different depth contours at ∼5 m and ∼15 m to assess shore association. Larvae were collected by means of stepped oblique bongo net tows deployed off a ski-boat, twice per season for 2 years between 2005 and 2007. In total, 6045 larval fishes were collected representing 32 families and 78 species. The Gobiidae, Cynoglossidae, Clupeidae, Engraulidae and Sparidae were the dominant fish families. Catches varied significantly among seasons peaking in spring with a mean of ∼200 larvae/100 m3. Mean overall larval density was higher along the deeper contour, at ∼15 m (40 larvae/100 m3). The preflexion stage of development dominated catches at the ∼5 m (80%) and ∼15 m (73%) depth contours. Body lengths of Argyrosomus thorpei, Caffrogobius gilchristi, Diplodus capensis, Heteromycteris capensis and Solea turbynei, all estuary associated species, were larger at the shallow sites nearer to shore. Larvae of coastal species that produce benthic eggs dominated catches (75%) in the shallow sites (∼5 m) but were less abundant (32%) farther from shore at the deeper (∼15 m) sites. All developmental stages of D. capensis, Engraulis capensis, H. capensis, Sardinops sagax and two Pomadasys species were found in the study area. It appears that some species use the shallow nearshore as a nursery area.  相似文献   

10.
Recent carbonate data collected in the North Pacific were combined with the data in the literature in order to understand more clearly the carbonate chemistry in the North Pacific. Our analyses show that inorganic CaCO3 dissolution contributes about 26% of the total inorganic CO2 increase of deep water, after leaving the Southern Ocean. The calcium and alkalinity data indicate a CaCO3 dissolution rate of 0.060±0.010 and 0.053±0.005 µ mol kg–1 yr–1 respectively, for waters deeper than 2,000 m in reference to the Weddell Sea Deep Water. The organic carbon decomposition rate is 0.107±0.012 µ mol kg–1 yr–1 while the oxygen consumption rate is 0.13±0.002 µ mol kg–1 yr–1. These results which are based on the direct comparison of two water masses agree well with other estimates which are based on methods such as the one-dimensional-diffusion-advection model. Comparison of data along the two sections at 165°E and 150°W shows no significant difference in the ratio of the CaCO3 dissolution rate and the organic carbon decomposition rate. The eastern section, however, has a higher TCO2 input than the western section because of the older age of the deep water along the eastern section.  相似文献   

11.
INTRODUCTIONTwoimportantinterfacespunctuatingtheabyssalverticaltrans sectionarecarbonatelyso clineandcarbonatecompensationdepth (CCD) .Thecarbonatelysoclineislabeledbyabruptincrementofcarbonatedissolutiononcalcitemicrofossilssuchasplanktonicforaminifertests(Berger,1 96 8) ,ordecreasingapparentlyinpercentageofthecarbonateproportion (Panetal ,1 988) .ThoughtherearemanyachievementsonthecarbonatecycleandCCDresearches(Wangetal ,1 995;Rottman ,1 979;Thunelletal ,1 992 ;Zhengetal ,1 993;Mia…  相似文献   

12.
The composition and dynamics of the phytoplankton communities and hydrographic factors that control them are described for eastern and western Australia with a focus on the Eastern Australian Current (EAC) and Leeuwin Current (LC) between 27.5° and 34.5°S latitude. A total of 1685 samples collected from 1996 to 2010 and analysed for pigments by high performance liquid chromatography (HPLC) showed the average TChla (monovinyl+divinyl chlorophyll a) concentration on the west coast to be 0.28±0.16 ??g L−1 while it was 0.58±1.4 ??g L−1 on the east coast. Both coasts showed significant decreases in the proportions of picoplankton and relatively more nanoplankton and microplankton with increasing latitude. On both coasts the phytoplankton biomass (by SeaWiFS) increased with the onset of winter. At higher latitudes (>27.5°S) the southeast coast developed a spring bloom (September) when the mean monthly, surface chlorophyll a (chla) concentration (by SeaWiFS) was 48% greater than on the south west coast. In this southern region (27.5-34.5°S) Synechococcus was the dominant taxon with 60% of the total biomass in the southeast (SE) and 43% in the southwest (SW). Both the SE and SW regions had similar proportions of haptophytes; ∼14% of the phytoplankton community. The SW coast had relatively more pelagophytes, prasinophytes, cryptophytes, chlorophytes and less bacillariophytes and dinophytes. These differences in phytoplankton biomass and community composition reflect the differences in seasonality of the 2 major boundary currents, the influence this has on the vertical stability of the water column and the average availability of nutrients in the euphotic zone. Seasonal variation in mixed layer depth and upwelling on the west coast appears to be suppressed by the Leeuwin Current. The long-term depth averaged (0-100 m) nitrate concentration on the west coast was only 14% of the average concentration on the east coast. Redfield ratios for NO3:SiO2:PO4 were 6.5:11.9:1 on the east coast and 2.2:16.2:1 on the west coast. Thus new production (nitrate based) on the west coast was likely to be substantially more limited than on the eastcoast. Short term (hourly) rates of vertical mixing were greater on the east coast. The more stable water column on the west coast produced deeper subsurface chlorophyll a maxima with a 25% greater proportion of picoeukaryotes.  相似文献   

13.
14.
The bait-attending fauna of the abyssal-hadal transition zone of the Kermadec Trench, SW Pacific Ocean (4329-7966 m), was investigated using a baited camera and a trap lander. The abyssal stations (4329-6007 m) revealed a typical scavenging fish community comprising macrourids and synaphobranchid eels, as well as natantian decapods. At the hadal depths of 7199 and 7561 m, the endemic liparid Notoliparis kermadecensis was observed aggregating at the bait reaching surprisingly high numbers of 5 and 13, respectively. A total of 3183 invertebrate samples were collected (mean deployment time=16 h) of which 97.8% were of the order Amphipoda (nine families, 16 species). Ten of the amphipod species represent new distributional records for the Kermadec Trench and the New Zealand Exclusive Economic Zone; this includes the shallowest known record of the endemic hadal amphipod Hirondellea dubia (6000, 6007 m). Using amphipods to statistically examine the compositional change across the abyssal-hadal boundary, an ecotone between depths <6007 and >6890 m was found, indicating that there is an ecologically distinct bait-attending fauna in this trench.  相似文献   

15.
Rose Bengal stained benthic foraminifera were studied from 11 cores collected along two depth transects off southern Portugal: one in the Lisbon-Setúbal Canyon and the other along the canyon edge. The total standing stocks and distribution of foraminifera were investigated in relation to sediment and pore water geochemistry. Nitrate was used as a redox indicator, sedimentary chlorophyll a and CPE (chloroplastic pigment equivalents) contents as a measure of labile organic matter, and total organic carbon as a measure of bulk organic matter availability.The canyon sediments were enriched in organic carbon and phytopigments at all water depths in comparison with the canyon edge. Water depth seemed to control sedimentary phytopigment content, but not total organic carbon. No significant correlation was seen between pigment and total organic carbon content.The abundance of calcareous foraminifera correlated with the phytodetritus content, whereas a weaker correlation was observed for the agglutinated taxa. Therefore, calcareous foraminifera appear to require a fresher food input than agglutinated taxa. The foraminiferal species composition also varied with pigment content and nitrate penetration depth in the sediment, in line with the TROX concept. Phytopigment-rich (surficial CPE content >20 μg/cm3) sediments with a shallow nitrate penetration depth (∼1 cm depth) were inhabited by generally infaunal species such as Chilostomella oolina, Melonis barleeanus and Globobulimina spp. As the nitrate penetration increased to ∼2 cm depth in sediment and the pigment content remained relatively high (>15 μg/cm3), Uvigerina mediterranea and Uvigerina elongatastriata became dominant species. With declining CPE content and increasing nitrate penetration depth, the foraminiferal assemblages changed from the mesotrophic Cibicides kullenbergi-Uvigerina peregrina assemblage to the oligotrophic abyssal assemblage, mainly consisting of agglutinated taxa.  相似文献   

16.
Like most other deep basins in Southeast Asia, the deep Sulu Sea (SS) basin is isolated from the neighboring seas by surrounding topography. While the near-surface circulation is mainly governed by the seasonally reversing monsoon winds, below the warm and fresh surface layer, the core of the incoming Subtropical Lower Water from the West Philippine Sea (WPS), by way of the South China Sea (SCS), can be seen, at a depth of around 200 m, to have a distinct salinity maximum. It lies well above the sill depth (420 m) in the Mindoro Strait and thus, its spreading is not hampered by topography. The deep circulation is forced by an inflow of upper North Pacific Intermediate Water (NPIW) from the SCS through the Mindoro Str. Below 1000 m, the physico-chemical properties are remarkably homogeneous. The higher temperature, but lower salinity, oxygen and nutrients, of the deep SS waters, compared to those of the SCS, is indicative of the intrusion of NPIW above the sill depth. The excess, anthropogenic CO2 penetrates the entire water column, because of the over-spill of the excess CO2-laden water from the SCS.It has been reported that the bottom of the SS is CaCO3 rich, relative to the SCS. Previous investigators attribute this to the higher θ in the SS. Indeed, the aragonite does not become undersaturated in the SS until below 1400 m, compared to 600 m in both the WPS and SCS; and the calcite does not become undersaturated until below 3800 m in the SS, compared to 2500 m in the SCS and around 1600 m in the WPS. However, the temperature effect is relatively small. These large differences are, in fact, largely a result of higher CO32− concentrations in the SS, relative to the WPS and SCS. The higher CO32− concentration in the SS, in turn, is mainly caused by the smaller amounts of organic carbon decomposition.  相似文献   

17.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

18.
We examined the carbonate system, mainly the partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC) and total alkalinity (TAlk) in the Changjiang (Yangtze) River Estuary based on four field surveys conducted in Sep.–Oct. 2005, Dec. 2005, Jan. 2006 and Apr. 2006. Together with our reported pCO2 data collected in Aug.–Sep. 2003, this study provides, for the first time, a full seasonal coverage with regards to CO2 outgassing fluxes in this world major river–estuarine system. Surface pCO2 ranged 650–1440 μatm in the upper reach of the Changjiang River Estuary, 1000–4600 μatm in the Huangpujiang River, an urbanized and major tributary of the Changjiang downstream which was characterized by a very high respiration rate, and 200–1000 μatm in the estuarine mixing zone. Both DIC and TAlk overall behaved conservatively during the estuarine mixing, and the seasonal coverage of these carbonate parameters allowed us to estimate the annual DIC export flux from the Changjiang River as ∼ 1.54 × 1012 mol. The highly polluted Huangpujiang River appeared to have a significant impact on DIC, TAlk and pCO2 in the lower reaches of the inner estuary. CO2 emission flux from the main stream of the Changjiang Estuary was at a low level of 15.5–34.2 mol m− 2 yr− 1. Including the Huangpujiang River and the adjacent Shanghai inland waters, CO2 degassing flux from the Changjiang Estuary may have represented only 2.0%–4.6% of the DIC exported from the Changjiang River into the East China Sea.  相似文献   

19.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

20.
Nearly 2000 pockmarks with diameters ranging from a few tens of meters up to 700 m are present on the seafloor of the St. Lawrence Estuary in eastern Canada. Coring of some pockmarks resulted in the recovery of various-sized and shaped carbonate concretions in a predominantly silty mud matrix. Petrographic and geochemical data on four authigenic carbonate concretions are reported as well as data from shell material in the unconsolidated sediment. Video observations and echo-sounder images indicate that the sampled pockmarks are actively gas venting. The video images show significant look-alike microbial mats in areas where gas is venting. The carbonate concretions are primarily made up of carbonate cements with varying percentage of shell fragments, micrite particles and fine-grained clastics. Orthorhombic crystal morphology and diagenetic fabrics including isopachous layers and botryoids characterize the aragonite cement. Oxygen isotopes ratios for the cement crusts do not record any thermal anomaly at the site of precipitation with δ18OVPDB ratios (+3) in equilibrium with cold (5 °C) deep marine waters, whereas significant negative δ13CVPDB ratios (−9.9 to −33.5) for cement and shell material within concretions indicate that the carbonates largely derive from the microbial oxidation of methane. The δ13CVPDB ratios of aragonite shells (−2.7 to −5.6) taken from unconsolidated sediments at some distance from the concretions/vents show variable dilution of HCO3 with negative δ13CVPDB ratios derived from microbial oxidation of methane with isotopically normal (0) marine bicarbonate. These results are in agreement with other lines of evidence suggesting that pockmarks formed through the recent and still active release of gas from a reservoir within the Paleozoic sedimentary succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号