首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eastern Mediterranean Sea is a remnant of a deep Mesozoic oceanic basin, now almost totally consumed as a result of long-term plate convergence between Eurasia and Africa. The present-day surface morphology of the Eastern Mediterranean relates both to the early history of formation of the deep basins and the recent geodynamic interactions between interfering microplates. Among the most conspicuous morphologic features of the basin is an arc-shape, elongated and wide, bathymetric swell bisecting the entire basin from the Ionian to Levantine areas, known as the Mediterranean Ridge. During the last decade this tectono-sedimentary accretionary prism, which results from the Hellenic subduction, has been intensively surveyed by swath mapping, multichannel seismic profiling and deep dives. We present here, and briefly discuss, the main morphological characteristics of this feature as derived from swath bathymetric data that considerably help to better assess the lateral and north–south morphostructural variability of the Mediterranean Ridge. This study reveals that the characteristics and morphostructural variability of the Mediterranean Ridge are related to: (1) a specific incipient collision geodynamic setting south of Crete, where the African and Aegean continental margins are nearly in contact, (2) a unique regional kinematics, controlled by frontal convergence south of Crete (central Mediterranean Ridge) and oblique subduction with opposite sense of shear for the western (Ionian) and eastern (Levantine) domains of the Mediterranean Ridge, that explain the lateral variations of deformation and (3) particularities of its sedimentary cover, which includes massive salt layers within the outer Mediterranean Ridge and local salt deposits within the inner domains, that control the north–south morphostructural variability of the sedimentary wedge.  相似文献   

2.
Here we report the first optical, sensor-based profiles of nitrate from the central Makarov and Amundsen and southern Canada Basins of the Arctic Ocean. These profiles were obtained as part of the International Polar Year program during spring 2007 and 2008 field seasons of the North Pole Environmental Observatory (NPEO) and Beaufort Gyre Exploration Program (BGEP). These nitrate data were combined with in-situ, sensor-based profiles of dissolved oxygen to derive the first high-resolution vertical NO profiles to be reported for the Arctic Ocean. The focus of this paper is on the halocline layer that insulates sea ice from Atlantic water heat and is an important source of nutrients for marine ecosystems within and downstream of the Arctic. Previous reports based on bottle data have identified a distinct lower halocline layer associated with an NO minimum at about S=34.2 that was proposed to be formed initially in the Nansen Basin and then advected downstream. Greater resolution afforded by our data reveal an even more pronounced NO minimum within the upper, cold halocline of the Makarov Basin. Thus a distinct lower salinity source ventilated the Makarov and not the Amundsen Basin. In addition, a larger Eurasian River water influence overlies this halocline source in the Makarov. Observations in the southern Canada Basin corroborate previous studies confirming multiple lower halocline influences including diapycnal mixing between Pacific winter waters and Atlantic-derived lower halocline waters, ventilation via brine formation induced in persistent openings in the ice, and cold, O2-rich lower halocline waters originating in the Eurasian Basin. These findings demonstrate that continuous sensing of chemical properties promises to significantly advance understanding of the maintenance and circulation of the halocline.  相似文献   

3.
This geochemical survey defines the typical features of representative oils from the major Colombian basins, and proposes a classification scheme useful for hydrocarbon exploration. This work is based on properties of whole oils such as API gravity, sulfur, vanadium and nickel concentrations, and gas chromatography fingerprints. The framework is completed by inclusion of biomarker parameters derived from GCMS and GCMSMS analysis.Oils from the basins of the Middle Magdalena Valley, Upper Magdalena Valley, Sinú - San Jacinto, Putumayo-Caguan, Lower Magdalena Valley and Catatumbo were assessed. Conclusions were drawn regarding possible sources of origin, oil families, degree of thermal evolution, biodegradation, mixing and refreshing, and inferences regarding exploration implications.The oils from the Middle Magdalena Valley and Upper Magdalena Valley (intermontane basins) and Putumayo (foreland basin), except those from the Caguan area, are oils with similar characteristics. In these three cases the oils are probably coming from source rocks intervals deposited in a marine Cretaceous platform, with variable carbonate/siliciclastic features. In these basins there are no oils derived from Tertiary source rocks.In Sinú-San Jacinto and Lower Magdalena Valley basins the main proportions of oils comes from very proximal environments, probably deltaic type, of Tertiary age with a minor proportion of oils coming from Cretaceous source rocks of marine anoxic environment (the only marine Cretaceous oils discovered so far in the Sinú-San Jacinto and Lower Magdalena Valley basins).The oils from Eastern Foothills of the Eastern Cordillera, look to be derived mainly from proximal Cretaceous source rocks with some mixing of oils derived from Tertiary strata. In the Catatumbo basin there are oils derived mainly from Cretaceous source rocks and some from Tertiary source rocks.Regarding the processes after entrapment, in all of the basins, the biodegradation effects were observed in varying degrees. These processes are dominant toward more quiescent regions, beyond the areas with more tectonic activity, far from the foothills of the Eastern Cordillera. Instead, close to the Eastern Cordillera are more common the paleobiodegradation processes due to reburial of younger molasses. The effects of mixing or refreshing are remarkable close to the Eastern Cordillera foothills in Llanos, Middle Magdalena Valley, and Upper Magdalena Valley basins.  相似文献   

4.
Basic information on the distribution and habitat preferences of ecologically important species is essential for their management and protection. In the Mediterranean Sea there is increasing concern over elasmobranch species because their biological (ecological) characteristics make them highly vulnerable to fishing pressure. Their removal could affect the structure and function of marine ecosystems, inducing changes in trophic interactions at the community level due to the selective elimination of predators or prey species, competitors and species replacement. In this study Bayesian hierarchical spatial models are used to map the sensitive habitats of the three most caught elasmobranch species (Galeus melastomus, Scyliorhinus canicula, Etmopterus spinax) in the western Mediterranean Sea, based on fishery-dependent bottom trawl data. Results show that habitats associated with hard substrata and sandy beds, mainly in deep waters and with a high seabed gradient, have a greater probability registering the presence of the studied species than those associated with muddy shallow waters. Temperature and chlorophyll-α concentration show a negative relationship with S. canicula occurrence. Our results identify some of the sensitive habitats for elasmobranchs in the western Mediterranean Sea (GSA06 South), providing essential and easy-to-use interpretation tools, such as predictive distribution maps, with the final aim of improving management and conservation of these vulnerable species.  相似文献   

5.
Dicopia antirrhinum C. Monniot, 1972 is a rare species of deep-sea ascidian belonging to the Family Octacnemidae, reported at depths of 1000–2500 m in European Atlantic waters. Adult individuals have never been reported before in the Mediterranean Sea, where only seven juvenile specimens were found in 1975 at 500 m water depth in the Central basin (Malta). The affinities of these specimens with D. antirrhinum were noted, but lack of some typical characters of the species in juveniles prevented a definite taxonomical identification. No other member of the Octacnemidae has ever been found in the Mediterranean. In this study we describe the sampling of an adult specimen of D. antirrhinum at around 1100 m water depth on the flank of the La Fonera (Palamós) canyon, Northwestern Mediterranean, confirming their presence in the Mediterranean Sea. We also observed 5 individuals of this species on their natural habitat with a Remotely Operated Vehicle (ROV). Our results highlight the potential occurrence of Octacnemidae, the presence of which has been largely overlooked, in several deep-sea canyon areas within the Western Mediterranean basin. These observations are important because they indicate the need for increased sampling effort with new technologies, such as ROVs, in ecologically relevant habitats such as canyons, in order to obtain a more accurate picture of deep-sea biodiversity in the Mediterranean Sea.  相似文献   

6.
The Excello Shale is one of the best exposed examples of Pennsylvanian cyclothemic organic-rich shales in the midcontinent region. This study aimed to describe detailed stratigraphy of the study interval along the outcrop belt and to relate the environments of depositon, and paleogeography of the study area during the glacial-related paleoclimatic episodes. Certain present-day shallow silled basins were used as a possible analogue of the Pennsylvanian cyclic epeiric seas. Eustatic changes in sea-level were closely related to cyclic glaciation, global tectonics, basin subsidence and sedimentation pattern.Because of paleobathymetric relief in the cyclic epeiric seas, some units disappear and new ones appear, commonly with a change of facies. In many cases, cyclic coal beds underlie black shales. This suggests that swamp environments were present intermittently due to minor regression preceding episodes of cyclic maximum transgression. The occurrence of the cyclic seas and swamps between 5° and 8° N paleo-latitude all suggest a tropical-wet climate with possible seasonally controlled rainfall.Thin laminae, fine particle size and high TOC content (up to 17 wt%) indicate stagnant conditions with bottom-water anoxia in the Excello Sea. Anaerobic sediments were deposited in more than 100 m depth of water, poor circulation, shallow mixing with atmosphere, and high organic productivity and/or better preservation was present during maximum transgressive episode. The establishment of a density-stratified water column or pycnocline was the most important factor in development of the anaerobic sediments. Perhaps a halocline between bottom normal marine salinnity waters and a surface fresh-water layer probably caused the water stratification and anoxia leading to better preservation of organic matter in the Excello Sea.  相似文献   

7.
The spread of the invasive alga Caulerpa racemosa var. cylindracea in shallow-water habitats can present different faunal assemblage composition. We compared the amphipod assemblages associated with C. racemosa and natural habitats found on shallow-water Mediterranean soft substrata. Four vegetated habitats were compared: C. racemosa, Caulerpa prolifera, Cymodocea nodosa and Posidonia oceanica with unvegetated substrata. Samples were collected during two sampling periods (September 2004 and March 2005). A total of 63 amphipod species were recorded. The results showed that the vegetated habitats sampled, including C. racemosa stands, supported a higher abundance and species richness of amphipods. Furthermore, the assemblage structure differed between the different habitats, while the abundance of some species was significantly different, depending on habitat. For example, Microdeutopus obtusatus was favoured by C. racemosa habitat; Ampelisca diadema was associated with C. prolifera beds; and Hyale schmidti was more abundant in P. oceanica meadows. Habitat invasion by C. racemosa can exert an important influence on biotic assemblages, modifying habitat structure and associated fauna.  相似文献   

8.
The Bajo Segura basin (eastern Betic Cordillera) has one of the most complete late Miocene–early Pliocene marine records of the western Mediterranean. An updated planktonic foraminifer zonal scheme based on recent astronomically tuned biozones is presented for this interval, documenting a complete succession of biostratigraphic markers, from biozone MMi9 (earliest Tortonian) to MPl3 (latest early Pliocene), of likely significance for regional-scale correlation throughout the Mediterranean. The findings reveal a series of intrazonal events (some unreported until now in the Mediterranean Neogene basin), including the particularly interesting two influxes of the Globorotalia miotumida group during the Tortonian. These biostratigraphic findings are the basis for a framework of the major allostratigraphic units in the basin based on planktonic foraminifer event-stratigraphy: synthems Tortonian I, Tortonian II, Tortonian-Messinian I, Messinian II, and Pliocene. In addition, the timing of the main tectono-sedimentary and palaeogeographic events throughout the basin's evolution has been further constrained. Our results suggest that, at least in the Bajo Segura basin, the late-Messinian barren interval (non-distinctive zone) can be considered an ecobiostratigraphic zone (cenozone) characterized by dwarf fauna of planktonic foraminifera. Consequently, the Bajo Segura composite section can be regarded as a biostratigraphic reference section for Neogene basins in the Betic Cordillera and hence also in the Western Mediterranean.  相似文献   

9.
High-resolution seismic reflection profiles and multibeam bathymetry data collected in 2006 and 2008 around Pantelleria Island show the widespread occurrence of contourite drifts and erosional elements ~30?km from the narrowest part (~145?km) of the Sicily Channel, where water masses from the Eastern Mediterranean flow towards the Western Mediterranean. The contourite drifts are rather small (up to 10?km long and 3.3?km wide), at water depths of ~250?C750?m. Most are elongated separated drifts with quite well-developed moats and crests, aligned roughly parallel to the regional bathymetric contours. Erosional elements include abraded surfaces, moats, scours and sub-circular depressions. In addition, a wide sector of the seafloor adjacent to a seamount located SW of Pantelleria Island is characterized by numerous biogenic build-ups colonized by deep-water corals (Madrepora oculata). The spatial distribution of sediment drifts, erosional features and biogenic build-ups suggests an origin from a north-westward-flowing bottom current, in this case the outflow of Levantine Intermediate Water and transitional Eastern Mediterranean Deep Water via the Sicily Channel. These findings for the Pantelleria offshore sector demonstrate that contourite processes are able to concentrate a high variety of closely spaced depositional and erosional features even in small areas (in this case, about 2,000?km2). This Pantelleria focusing can plausibly be related to a particular configuration of the prevailing bottom-current regime in complex interaction with an uneven bathymetry shaped mainly by tectonic and volcanic activity. The distribution of bottom currents seems to be strongly influenced by morphological features ranging from major seabed obstacles, such as the Pantelleria volcanic complex and the so-called southwest seamount, to smaller-scale escarpments and banks. This is consistent with previous findings for Mediterranean and other settings characterized by neotectonics and large topographic features.  相似文献   

10.
11.
《Marine Geology》1999,153(1-4):11-28
For 50 years the existence of sapropels (organic-carbon-rich sediments) deposited within Plio–Pleistocene sediments of the Mediterranean Sea has been known. Initially, research concentrated on material recovered in relatively short gravity/piston cores taken from the eastern basins where sequences were found to be well developed/preserved and had extensive spatial coverage. In the main, previous studies concentrated upon establishing a workable stratigraphy, spatial correlation of individual layers and determining the probable depositional mechanisms. However, despite a plethora of research papers, some issues still remain unresolved. This is in part due to a lack of agreement between investigators; sampling and analytical short comings, restricted sample size and the fact that, in many instances, like was not being compared with like. Recently, the limit of sapropels in the western basin has been further extended. As a result, the palaeoceanographic/palaeoclimate models which had previously been developed for deposition of sapropels in the eastern basin have been modified. Most recently, strong links have been established between astronomical cyclicity and sapropel formation. This review paper provides a summary of sapropel research to date, and ongoing sapropel research in the Mediterranean, some of which appears in this thematic issue of Marine Geology. It is fitting that this thematic issue of Marine Geology be dedicated to the memory of Colette Vergnaud-Grazzini and Rob Kidd who in many ways helped to initiate the resurgence in sapropel studies in the 1970s in the Mediterranean —perhaps in 50 more years we will know all of the answers!  相似文献   

12.
《Marine Geology》2001,172(3-4):181-195
In the reconstruction of bioproductivity in surface waters the extent to which a proxy has been diagenetically altered is often a matter of debate. Here we investigate how organic- and calcareous-walled dinoflagellate cysts can be used for separately estimating bioproductivity and oxygen related diagenesis. This is achieved by studying the cyst content of the most recent Eastern Mediterranean sapropel S1, that is thought to have been deposited under conditions of increased primary production in surface waters and possible anoxia in the bottom waters. Based on chemical evidence, it has been shown that the visible sapropelic layer represents only the residual lower part of what was initially a much thicker sapropel, as a result of post-depositional decay of organic matter related to oxygen penetration into the sediments. The effect of aerobic organic matter decay on the cyst associations is studied through the comparison of the unaffected, lower part of the initial sapropel and the ‘oxidised’ upper part. Comparing the unaffected sapropelic sediments with pre- and post-sapropelic material gives insight into the relationship between fossil cysts assemblages and palaeoproductivity.Impagidinium aculeatum, Impagidinium patulum, Operculodinium israelianum, Polysphaeridium zoharyi and probably Impagidinium spp., Impagidinium paradoxum and Nematosphaeropsis labyrinthus are very resistant against aerobic decay and their accumulation rates appear to be primarily related to productivity in surface waters. Protoperidinium and Echinidinium species, on the other hand, are shown to be very sensitive and can be used to recognise oxygen-related decay. The calcareous-walled dinoflagellate cysts seem to be unaffected by oxic organic matter decay in Mediterranean sediments.  相似文献   

13.
The number of alien species in the Mediterranean Sea is increasing rapidly, but few attempts have been made to evaluate impacts on specific habitat types. The present study investigated alien biodiversity in Mediterranean marine caves, both by contributing new records of Eastern Mediterranean cave aliens, and by reviewing the scattered existing literature; the main goals were to highlight potential impacts and investigate the importance of cave environments for the expansion of alien species. Seven new alien species were found in marine caves of the Aegean and Ionian seas, raising the total number of aliens reported from Mediterranean marine caves to 56 species, classified as molluscs, cnidarians, bryozoans, polychaetes, crustaceans, macroalgae, fishes and tunicates. Most cave aliens (66%) were recorded from the Southeastern Levantine coasts, specifically from Lebanese caves. Shipping and Lessepsian migration have been suggested as the main pathways of alien introduction into caves of the Mediterranean Sea. The comparison of alien cave biodiversity with the updated Mediterranean alien inventory (32 species added to the latest inventory) showed similar patterns and trends for species richness, biogeographical origin and major introduction pathways, corroborating previous findings on the high local representativeness of Mediterranean cave biodiversity. Alien species seem to have invaded mostly the entrance and semi‐dark zones of shallow and/or semi‐submerged caves and tunnels, whereas only a few have reached the dark inner sectors or caves of the anchialine type; thus, the unfavourable cave environment seems to be naturally protected from impacts related to opportunistic invasive species, at least to a certain point. Currently there is no research confirming any direct impacts of alien biota on the native cavernicolous one. However, some issues have emerged, implying potential threats that need to be further explored: (i) the presence of a considerable proportion of aliens in most studied marine caves of the Southeastern Mediterranean basin, (ii) the recently observed population explosion of alien cave‐dwelling fishes in the same area, (iii) several indications that alien diversity in marine caves is much higher than we know today. Quantitative surveys and monitoring schemes are needed in order to evaluate potential effects of alien diversity on cave community structure and the role of marine caves as stepping stones for its expansion in the Mediterranean.  相似文献   

14.
As a key structure to understand the role of the ocean on the sea ice mass balance, the Arctic Ocean halocline and its spatiotemporal variability require serious attention. In this paper, we are proposing a new definition of the halocline, which is based on the salinity gradient structure, taking into account both the salinity amplitude and the thickness of the halocline. The Brunt Vaisala frequency is used as the halocline stratification index. CTD data collected from 1997 to 2008 and coming from various sources (icebreaker cruises, drifting buoys, etc.) are used to determine the halocline, and its time and space variability during three time periods, with a special focus on three main regions of the Arctic Ocean: the Canada basin, the Makarov basin and the Amundsen basin. Observations reveal that the halocline in the Amundsen basin was always present and rather stable over the three time periods. In contrast, the Canada and Makarov basins' halocline became more stratified during the IPY than before, mainly because of surface water freshening. In addition, observations also confirmed the importance of the halocline thickness for controlling the stratification variability. Observations suggest that both large scale and small scale processes affect the halocline. Changes in surface salinity observed in the Makarov basin are more likely due to atmospheric variability (AO, Dipole Anomaly), as previously observed. More locally, some observations point out that salt/heat diffusion from the Atlantic water underneath and brine rejection during sea ice formation from above could be responsible for salt content variability within the halocline and, as a consequence, being influential for the variability of the halocline. In spite of the existence of interannual variability, the Arctic Ocean main stratification, characterized by a stable and robust halocline until now, suggested that the deep ocean had a limited impact on the mixed layer and on sea ice in actual conditions. The drastic changes observed in Arctic sea ice during this period (1997-2008) cannot be attributed to a weakening of the halocline that could trigger an enhanced vertical heat flux from the deep ocean.  相似文献   

15.
An investigation of trace metal distributions in the Western Mediterranean Sea was carried out during the RRS Discovery cruise (July 1993) in which a transect from the Strait of Gibraltar to the Strait of Sicily was conducted. Organically complexed dissolved trace metals and their total concentrations were measured to investigate the end-members and to predict the environmental capacity of the Mediterranean for potential toxic metals. The distribution of trace metals can be accounted for by the mixing of several end-members and by some atmospheric inputs to the surface water. For Pb and Fe, the effects of the atmospheric inputs are more pronounced than for the other metals. Due to the rapid exchange of water masses, the Western Mediterranean may have the ability to assimilate the increased external inputs for some trace metals such as Cu, Cd, Ni and Zn. But the external inputs for Pb and Fe exceed the removal capacity of the Western Mediterranean and these elements may accumulate in the water column of the western basin. The C18 Sep-Pak technique and direct determination by DPASV were used to determine the amount of trace metal–organic complexes. The C18 Sep-Pak column isolates only a small fraction of trace metals except for Cu. The maximum hydrophobic fractions for the studied trace metals, except for Cd and Pb, which are not detectable, were found in the subsurface layer at all stations. This maximum may well be linked to picoplankton activity and the picoplankton, prochlorophytes may have an important role in the speciation of dissolved Cu as well as Synechococcus. These organic ligands for Cu were produced at the maximum of biological activity in the Western Mediterranean basin and seem to be accumulated at halocline level by Mediterranean hydrodynamic characteristics. However, direct determination by DPASV showed that the major part of Cu, Cd and Pb, complexed by organic materials, was not isolated by C18 Sep-Pak technique.  相似文献   

16.
Existing knowledge on the distribution of mud volcanoes (MVs) and other significant fluid/free gas-venting features (mud cones, mud pies, mud-brine pools, mud carbonate cones, gas chimneys and, in some cases, pockmark fields) discovered on the seafloor of the Mediterranean Sea and in the nearby Gulf of Cadiz has been compiled using regional geophysical information (including multibeam coverage of most deepwater areas). The resulting dataset comprises both features proven from geological sampling, or in situ observations, and many previously unrecognized MVs inferred from geophysical evidence. The synthesis reveals that MVs clearly have non-random distributions that correspond to two main geodynamic settings: (1) the vast majority occur along the various tectono-sedimentary accretionary wedges of the Africa-Eurasia subduction zone, particularly in the central and eastern Mediterranean basins (external Calabrian Arc, Mediterranean Ridge, Florence Rise) but also along its westernmost boundary in the Gulf of Cadiz; (2) other MVs characterize thick depocentres along parts of the Mesozoic passive continental margins that border Africa from eastern Tunisia to the Levantine coasts, particularly off Egypt and, locally, within some areas of the western Mediterranean back-arc basins. Meaningfully accounting for MV distribution necessitates evidence of overpressured fluids and mud-rich layers. In addition, cross-correlations between MVs and other GIS-based data, such as maps of the Messinian evaporite basins and/or active (or recently active) tectonic trends, stress the importance of assessing geological control in terms of the presence, or not, of thick seals and potential conduits. It is contended that new MV discoveries may be expected in the study region, particularly along the southern Ionian Sea continental margins.  相似文献   

17.
A brief review of the geological knowledge on the anoxic basins of the eastern Mediterranean is presented. Anoxic basins have been discovered in two different geological settings in the eastern Mediterranean. Bannock Basin belongs to the compressional style of the Mediterranean Ridge, and Tyro and Poseidon Basins belong to the transcurrent tectonic style of the Strabo Trench. The origin of the basins is subsurface salt dissolution triggered by tectonic deformation of the sediments on the Mediterranean Ridge, and tectonic subsidence (pull-apart mechanism) in the Strabo Trench. The onset of a deep-sea brine lake is always related to the outcrop of Messinian salts on the side-walls of the basin. The rate of basin subsidence controls the evolution of the brine lakes, which can also be completely diluted by bottom water circulation.  相似文献   

18.
The sea urchin Paracentrotus lividus is common in the Mediterranean in shallow subtidal rocky habitats and in Posidonia oceanica beds. The aim of this study is to investigate whether protection has the same effect on the population structure of P. lividus occurring in rocky reef habitats and in P. oceanica beds. These results are important to generate hypotheses about the influence of human harvesting, predatory pressure and migration processes on P. lividus in the two habitats.  相似文献   

19.
Abstract. Ecology and morphology of Alcyonium (Parerythropodium) coralloides were studied in different sites of the Eastern Atlantic and the Mediterranean. The species is extremely variable in size, colony shape and colour. In the Mediterranean population, encrusting red colonies are mostly encountered, although lobate colonies also exist. White and pink colonies are considered mutants, which tolerate the stable environment of deeper habitats better than the conditions encountered in shallow biotopes. Mediterranean colonies are dioecious and reproduce sexually. In the Eastern Atlantic, lobate pink colonies are the most common form, and show little variability. These (at least partly) parthenogenic populations are considered offspring from stray larvae from more southern regions. This explains the rather patchy distribution of the Atlantic populations, as compared to the widespread distribution throughout the entire Western Basin of the Mediterranean and the Adriatic Sea. A study of the most important systematic characters of the species (growth form, sclerites and solenial network) leads to the conclusion that coralloides belongs to the genus Alcyonium. As a result, coralloides being its type-species, the genus Parerythropodium will have to be suppressed.  相似文献   

20.
We examined tintinnid (loricate ciliate microzooplankton) diversity using data from 11 stations between the Moroccan upwelling system and the oligotrophic Eastern Mediterranean. Taxonomic and morphological diversity of tintinnids was compared to phytoplankton distribution and size-structure, to the abundance of competitors in the form of oligotrich ciliates, and predators as copepods. Tintinnid taxonomic diversity was estimated as numbers of species and the Shannon Index, H′; morphological diversity was quantified by substituting size classes of lorica dimensions for species. Total chlorophyll was partitioned into micro-, nano- and pico-fractions using pigment data and a size-diversity was estimated by considering the 3 size classes as 3 species. Along a west-to-east gradient, average water column concentrations of most organism groups declined approximately an order of magnitude yielding tight correlations. However, tintinnid diversity, both taxonomic and morphological, increased from the Atlantic upwelling station into the western basin of the Mediterranean, and declined slightly towards the Eastern Mediterranean, paralleling shifts in the chlorophyll size-diversity estimate. Diversity varied with absolute or relative abundance of oligotrich or copepods, but different diversity metrics were significantly correlated only with phytoplankton size-diversity. We conclude that tintinnid diversity more closely reflects resource diversity than competitive interactions or predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号