首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent evaluations of the global nitrogen budget include greatly increased estimates of N2-fixation in oceanic waters. Low stable N isotope ratios in planktonic food webs of tropical and subtropical oceans have been used as one indication of the importance of N2-fixation. Interpretation of bulk stable N isotope ratios can, however, be confounded when the source and process information that they contain cannot be separated clearly. In this paper, we use stable N isotope ratios of amino acids to help separate source and trophic effects associated with changes in bulk stable N isotope ratios of zooplankton across the tropical North Atlantic. Patterns in stable N isotope ratios of amino acids along a transect from the Cape Verde Islands to Barbados identify a change in N source supporting zooplankton production, and virtually no change in the trophic position of zooplankton size classes from the eastern to the western side of the tropical North Atlantic. Furthermore, comparison of stable N isotope ratios of amino acids in zooplankton with those in Trichodesmium suggests that diazotrophs are the source of the low stable N isotope ratios at the western end of the transect. The evidence provided by stable N isotope ratios of amino acids supports the interpretation of large-scale patterns in bulk stable N isotope ratios that N2-fixation indeed makes a major contribution to the global N budget.  相似文献   

2.
Fixed nitrogen is a key nutrient involved in regulating global marine productivity and hence the global oceanic carbon cycle. Oceanic nitrogen (N2) fixation is estimated to supply 8×1012 moles N y?1 to the ocean, approximately equal to current riverine and the atmospheric inputs of fixed N, and between 50 and 100% of current estimates of oceanic denitrification. However, the spatial and temporal variability of N2 fixation remains uncertain, mostly because of the normal low resolution sampling for diazotroph distribution and fixation rates. It is well established that N2 fixation, mediated by the enzyme nitrogenase, is a source of hydrogen (H2), but the extent to which it leads to supersaturation of H2 in oceanic waters is unresolved. Here, we present simultaneous measurements of upper ocean dissolved H2 concentration (nmol L?1), and rates of N2 fixation (μmol N m?3 d?1), determined using 15N2 tracer techniques (at 7 or 15 m), on a transect from Fiji to Hawaii. We find a significant correlation (r=0.98) between dissolved H2 and rates of N2 fixation, with the greatest supersaturation of H2 and highest rates of N2 fixation being observed in the subtropical gyres at the southern (~18°S) and northern (18°N) reaches of the transect. The lowest H2 saturation and N2 fixation were observed in the equatorial region between 8°S and 14°N. We propose that an empirical relationship between H2 supersaturations and N2 fixation measurements could be used to guide sampling for 15N fixation measurements or to aid the spatial interpolation of such measurements.  相似文献   

3.
We used the nitrogen isotope ratio of algae, suspended particles and nitrate in the water column to track spatial variations in the marine nitrogen cycle in the Mediterranean Sea. Surface PON (5–74 m) was more depleted in 15N in the eastern basin (−0.3±0.5‰) than in the western basin (+2.4±1.4‰), suggesting that nitrogen supplied by biological N2 fixation may be an important source of new nitrogen in the eastern basin, where preformed nitrate from the Atlantic Ocean could have been depleted during its transit eastward. The δ15N of nitrate in the deep Mediterranean (∼3‰ in the western-most Mediterranean and decreasing toward the east) is significantly lower than nitrate at similar depths from the North Atlantic (4.8–5‰), also suggesting an important role for N2 fixation. The eastward decrease in the δ15N of surface PON is greater than the eastward decrease in the δ15N of the subsurface nitrate, implying that the amount of N2 fixation in the eastern Mediterranean is great enough to cause a major divergence in the δ15N of phytoplankton biomass from the δ15N of the nitrate upwelled from below. Variations in productivity associated with frontal processes, including shoaling of the nitracline, did not lead to detectable variations in the δ15N of PON. This indicates that no differential fertilization or productivity gradient occurred in the Almerian/Oran area. Our results are consistent with a lack of gradient in chlorophyll-a (chl-a) and nitrate concentration in the Alboran Sea. 15N enrichment in particles below 500 m depth was detected in the Alboran Sea with respect to surface PON, reaching an average value of +7.4±0.7‰. The δ15N in sinking particles caught at 100 m depth (4.9–5.6‰) was intermediate between suspended surface and suspended deep particles. We found a consistent difference in the isotopic composition of nitrogen in PON compared with that of chlorophyll (Δδ15N[PON-chlorin]=+6.4±1.4‰) in the surface, similar to the offset reported earlier in cultures for cellular N and chl-a. This indicates that δ15N of phytoplankton biomass was retained in surface PON, and that alteration of the isotopic signal of PON at depth was due to heterotrophic activity.  相似文献   

4.
The food-web structure of the epibenthic and infaunal invertebrates on the continental slope of the Catalan Sea (Balearic basin, NW Mediterranean) was investigated using carbon and nitrogen stable isotopes on a total of 34 species, and HPLC pigment analyses for three key species. Samples were collected close to Barcelona (NE Iberian Peninsula), between 650 and 800 m depth and between February 2007 and February 2008. Mean ??13C values ranged from −21.0‰ (small Calocaris macandreae and Amphipholis squamata) to −14.5‰ (Sipunculus norvegicus). Values of ??15N ranged from 4.0‰ (A. squamata) to 12.1‰ (Molpadia musculus). The stable isotope ratios of benthic fauna displayed a continuum of values (e.g. ??15N range of 8‰), confirming a wide spectrum of feeding strategies (from active suspension feeders to predators) and complex food webs. According to the available information on diets of benthic fauna, the lowest values were found for surface deposit feeders (small C. macandrae and the two ophiuroids A. squamata and Amphiura chiajei) and active suspension feeders (Abra longicallus and Scalpellum scalpellum) feeding on different sizes of particulate organic matter (POM), among which small particles may exhibit lower ??15N. High annual mean ??15N values were found among sub-surface deposit feeders, exploiting refractory or frequently recycled organic matter that is enriched in ??15N. Carnivorous polychaetes (Nephtys spp., Oenonidae and Polynoidae) and large decapods (Geryon longipes and Paromola cuvieri) also displayed high ??15N values. ??13C ranges were particularly wide among surface deposit feeders (ranging from −21.0‰ to −16.4‰), suggesting exploitation of POM of both terrigenous and oceanic origins. Correlation between ??13C and ??15N was generally weak, indicating multiple carbon sources, likely due to the consumption of different kinds of sinking particles (e.g. marine snow, phytodetritus, etc.), sedimented and frequently recycled POM, together with macrophyte remains. The stronger ??13C-??15N correlations found in February and April suggest that during the period of water column homogeneization (winter-spring), the benthic community was sustained by phytodetritus inputs originating from the peak of surface primary production in February. Conversely, weaker ??13C-??15N correlations were observed during the period of water column stratification (beginning in June-July), suggesting that the benthic community in this period was sustained, with a delay of ca. 2/3 months, by multiple carbon sources including continental inputs from river discharge (with the maxima in April-May). Thus both advective and vertical fluxes seem to be food sources for benthos on the Catalonian slope. Pigments in the guts of key species were generally degraded, and only the active suspension feeder A. longicallus ingested fresh chlorophyll during periods of high primary production at the surface (February and April 2007).  相似文献   

5.
In September 1993 (M26) and June/July 1996 (M36), a total of 239 surface samples (7 m depth) were collected on two transects across the open Atlantic Ocean (224 samples) and northwest European shelf edge area. We present an overview of the horizontal variability of dissolved Cd, Co, Zn, and Pb in between the northwest and northeast Atlantic Ocean in relation to salinity and the nutrients. Our data show a preferential incorporation of Cd relative to P in the particulate material of the surface ocean when related to previously published parallel measurements on suspended particulate matter from the same cruise. There is a good agreement with results recently estimated from a model by Elderfield and Rickaby (Nature 405 (2000) 305), who predict for the North Atlantic Ocean a best fit for αCd/P=[Cd/P]POM/[Cd/P]SW of 2.5, whereas the approach of our transect shows a αCd/P value of 2.6. The Co concentrations of our transects varied from <5 to 131 pmol kg−1, with the lowest values in the subtropical gyre. There were pronounced elevations in the low-salinity ranges of the northwest Atlantic and towards the European shelf. The Co data are decoupled from the Mn distribution and support the hypothesis of marginal inputs as the dominant source. Zinc varied from a minimum of <0.07 nmol kg−1 to a maximum of 1.2 and 4.8 nmol kg−1 in regions influenced by Labrador shelf or European coastal waters, respectively. In subtropical and northeast Atlantic waters, the average Zn concentration was 0.16 nmol kg−1. Zinc concentrations at nearly three quarters of the stations between 40°N and 60°N were <0.1 nmol kg−1. This suggests that biological factors control Zn concentrations in large areas of the North Atlantic surface waters. The Pb data indicated that significant differences in concentration between the northwest and northeast Atlantic surface waters presently (1996) do not exist for this metal. The transects in 1993 and 1996 exhibited Pb concentrations in the northeast Atlantic surface waters of 30 to 40 pmol kg−1, about a fifth to a quarter of the concentrations observed in 1981. This decline is supported by our particle flux measurements in deep waters of the same region.  相似文献   

6.
We discuss nitrous oxide (N2O) and methane (CH4) distributions in 49 vertical profiles covering the upper ∼300 m of the water column along two ∼13,500 km transects between ∼50°N and ∼52°S during the Atlantic Meridional Transect (AMT) programme (AMT cruises 12 and 13). Vertical N2O profiles were amenable to analysis on the basis of common features coincident with Longhurst provinces. In contrast, CH4 showed no such pattern. The most striking feature of the latitudinal depth distributions was a well-defined “plume” of exceptionally high N2O concentrations coincident with very low levels of CH4, located between ∼23.5°N and ∼23.5°S; this feature reflects the upwelling of deep waters containing N2O derived from nitrification, as identified by an analysis of N2O, apparent oxygen utilization (AOU) and NO3, and presumably depleted in CH4 by bacterial oxidation. Sea-to-air emissions fluxes for a region equivalent to ∼42% of the Atlantic Ocean surface area were in the range 0.40–0.68 Tg N2O yr−1 and 0.81–1.43 Tg CH4 yr−1. Based on contemporary estimates of the global ocean source strengths of atmospheric N2O and CH4, the Atlantic Ocean could account for ∼6–15% and 4–13%, respectively, of these source totals. Given that the Atlantic Ocean accounts for around 20% of the global ocean surface, on unit area basis it appears that the Atlantic may be a slightly weaker source of atmospheric N2O than other ocean regions but it could make a somewhat larger contribution to marine-derived atmospheric CH4 than previously thought.  相似文献   

7.
N2 fixation is an important biological process that adds new nitrogen to oceans and plays a key role in modulating the oceanic nitrate inventory. However, it is not known how, when, and where N2 fixation rates have varied in response to past climate changes. This study presents a new record of nitrogen isotopic composition (δ15N) over the last 83 kyr from a sediment core (KH02-4 SUP8) taken in the Sulu Sea in the western equatorial Pacific region; data allow the N2 fixation variability in the sea to be reconstructed. Sediments, sinking, and suspended particulate organic matter (POM) all have lighter isotopic values compared to the δ15N values of substrate nitrate (av. 5.8‰) in North Pacific Intermediate Water. These lighter δ15N values are regarded as reflecting N2 fixation in the Sulu Sea surface water. A δ15N mass balance model shows that N2 fixation rates were significantly enhanced during 54–34 kyr in MIS-3 and MIS-2. It has been speculated that higher interglacial denitrification rates in the Arabian Sea and the eastern tropical Pacific would have markedly decreased the global oceanic N inventory and contributed to the increase in N2 fixation in oligotrophic regions, but such a model was not revealed by our study. It is possible that changes in N2 fixation rates in the Sulu Sea were regional response, and accumulation of phosphate in the surface waters due to enhanced monsoon-driven mixing is thought to have stimulated enhancements of N2 fixation during MIS-3 and MIS-2.  相似文献   

8.
9.
Atmospheric dry deposition of nitrogen (N) and dinitrogen (N2) fixation rates were assessed in 2004 at the time-series DYFAMED station (northwestern Mediterranean, 43°25′N, 7°52′E). The atmospheric input was monitored over the whole year. Dinitrogen fixation was measured during different seasonal trophic states (from mesotrophy to oligotrophy) sampled during nine cruises. The bioavailability of atmospherically deposited nutrients was estimated by apparent solubility after 96 h. The solubility of dry atmospheric N deposition was highly variable (from ∼18% to more than 96% of total N). New N supplied to surface waters by the dry atmospheric deposition was mainly nitrate (NO3) (∼57% of total N, compared to ∼6% released as ammonium (NH4+)). The mean bioavailable dry flux of total N was estimated to be ∼112 μmol m−2 d−1 over the whole year. The NO3 contribution (70 μmol NO3 m−2 d−1) was much higher than the NH4+ contribution (1.2 μmol NH4+ m−2 d−1). The N:P ratios in the bioavailable fraction of atmospheric inputs (122.5–1340) were always much higher than the Redfield N:P ratio (16). Insoluble N in atmospheric dry deposition (referred to as “organic” and believed to be strongly related to anthropogenic emissions) was ∼40 μmol m−2 d−1. N2 fixation rates ranged from 2 to 7.5 nmol L−1 d−1. The highest values were found in August, during the oligotrophic period (7.5 nmol L−1 at 10 m depth), and in April, during the productive period (4 nmol L−1 d−1 at 10 m depth). Daily integrated values of N2 fixation ranged from 22 to 100 μmol N m−2 d−1, with a maximum of 245 μmol N m−2 d−1 in August. No relationship was found between the availability of phosphorus or iron and the observed temporal variability of N2 fixation rates. The atmospheric dry deposition and N2 fixation represented 0.5–6% and 1–20% of the total biological nitrogen demand, respectively. Their contribution to new production was more significant: 1–28% and 2–55% for atmospheric dry deposition and N2 fixation, respectively. The dry atmospheric input was particularly significant in conditions of water column stratification (16–28% of new production), while N2 fixation reached its highest values in June (46% of new production) and in August (55%).  相似文献   

10.
Spatial distribution of the carbon and nitrogen content and their isotopic enrichment in suspended matter and sediments were measured in the Godavari estuary to identify the sources and transformation mechanism of organic matter. Significant variability in isotopic distribution was found over the entire length of the Godavari estuary, suggesting multiple sources of organic matter. The mean isotopic ratios (δ13Csed −25.1 ± 0.9, δ13Csus −24.9 ± 1, δ15Nsed 8.0 ± 2 and δ15Nsus 6.5 ± 0.9‰) and elemental concentrations (Csed 0.45 ± 0.2%, Csus 0.9 ± 0.7%, Nsed 0.07 ± 0.05% and Nsus 0.16 ± 0.1%) support a predominantly terrigenous source. Significant enrichment in the isotopic ratios of δ13C from the upper to lower estuary in both suspended (−27.5 and −24.3‰, respectively) and sedimentary (−26.2 and −24.9‰, respectively) phases indicates a decrease in the influence of terrigeneous material toward the mouth of the estuary. A significant positive relationship exists between the δ13C of suspended and sediment, which indicates that these two organic carbon pools are likely coupled in the form of a significant exchange between the two phases. A positive relationship exists between chlorophyll a and suspended organic matter, which may mean that a significant source of organic carbon is the in situ produced phytoplankton. But, applying a simple mixing model to our isotopes, data yielded about 46% as the contribution of the terrestrial source to suspended matter, which may support the excessive heterotrophic activity in the Godavari estuary reported earlier.  相似文献   

11.
The thickness of the mixed bottom boundary layer (BBL) has been analyzed based on the CTD data at transoceanic sections in abyssal waters of the Northern Atlantic. The measurements were carried out at two transoceanic sections approximately along 48° N (ASV-99) and 5° N (AI-2000) in 1999 and 2000. These data, and the WOCE data obtained at four zonal sections (AR7E and AR12 along 57° N, AR01 along 24.5° S, and A06 along 7.5° N), were used for the calculation of the statistical characteristics of the BBL??s thickness H B . The probability distribution function F(H B ) was close to lognormal. The mean value ??H B ?? at different latitudes was in the range from 30 to 60 m. The averaged BBL thickness = 46.1 m. The BBL??s thickness was about 1% of the ocean??s depth D; the ratio H B /D was the minimum (0.8%) near the equator and increased up to 1.6% in the polar latitudes.  相似文献   

12.
Ten years of monthly observations of the δ15N of sinking particulate nitrogen (δ15N–PN (in ‰ versus atmospheric N2)=[(15N/14N)sample/(15N/14N)standard)−1]1000) in the Cariaco Basin, Venezuela, confirm that the basin's bottom sediments store information about nitrogen dynamics related to seasonal and interannual variability in regional surface ocean processes. During the upwelling period of the southern Caribbean Sea (February–April), the δ15N–PN is similar to that of the thermocline nitrate (∼3.5‰). This nitrate is imported into the Cariaco Basin with Subtropical Underwater (SUW), which wells up near the coast. Thus, particles generated by phytoplankton photosynthesis during this productive period bear a sub-tropical North Atlantic isotopic imprint of N2 fixation (low compared to the global average of nitrate δ15N≈5‰). During the non-upwelling period when surface waters are stratified (September–November), the δ15N–PN is also 3.5–4.0‰, and reflects a mixture of local N2 fixation within the mixed layer, inputs of terrigenous organic matter and SUW nitrate consumption by phytoplankton below the mixed layer, which most likely exerts the strongest control on the δ15N–PN signal during this time. In the transition periods of May–July and December–January, the δ15N–PN increases to 4.5–6.5‰. This coincides with maxima of continental material fluxes (terrestrial PON δ15N is >6‰) into the Cariaco Basin. The δ15N signal in the sediments of the Cariaco Basin thus provides information about the relative strength of the local coastal upwelling, the relative input of continental material via river runoff, and local N2 fixation. The findings contribute to interpretations of the basin's paleoclimatic nitrogen cycle variations based on observations of the sedimentary δ15N record at this location.  相似文献   

13.
To elucidate the sources and transformations of nitrogen in the South China Sea (SCS), the nitrogen isotopic composition of nitrate (\({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\)) was measured in seawater samples from the water column of this marginal sea and the adjacent western North Pacific Ocean (WNP). Comparison of the isotopic signatures from these two locations suggests that the main source of nitrogen into the SCS was nitrate that entered from the WNP through the Luzon Strait. Values of \({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\) were generally lower in the SCS than in the WNP, and the \({\updelta }^{ 1 5} {\text{N}}_{{{\text{NO}}_{ 3} }}\) maximum observed in the SCS intermediate water was lower than the corresponding WNP maximum. This pattern is attributed to mixing within the SCS in combination with the outflow of SCS intermediate water to the WNP. A mass balance model indicates that atmospherically derived N (a combined input of new nitrogen from marine N2 fixation and atmospheric deposition) supplied approximately 6% of the particulate nitrogen exported from the euphotic zone to the deep SCS. This supply of isotopically light nitrogen cannot, however, explain the low and downward-decreasing δ15N that has been previously observed in sinking particles of the deep SCS. We propose that an alternative explanation might be a downward-increasing ratio of isotopically light NH4 +-N to organic N due to the degradation of organic N within the sinking particles (i.e., relative enrichment of the NH4 +) and also particle incorporation of excreted ammonium from zooplankton.  相似文献   

14.
The distribution of structural and functional characteristics of virioplankton in the north of the Ob River estuary and the adjacent Kara Sea shelf (between latitudes 71°44′44″ N and 73°45′24″ N) was studied with consideration of the spatial variations in the number (N B) and productivity (P B) of bacteria and water properties (temperature, salinity, density) by analyzing samples taken in September 2013. The number of plankton viruses (N V), the occurrence of visible infected bacteria cells, virus-induced mortality of bacteria, and virioplankton production in the studied region varied within (214?2917) × 103 particles/mL, 0.3?5.6% of NB, 2.2?64.4% of P B, and (6?17248) × 103 particles/(mL day), respectively. These parameters were the highest in water layers with a temperature of +7.3–7.5°C, salinity of 3.75?5.41 psu, and conventional density (στ) of 2.846?4.144. The number of bacterioplankton was (614?822) × 103 cells/mL, and the N V/N B ratio was 1.1?4.5. A large amount of virus particles were attached to bacterial cells and suspended matter. The data testify to the considerable role of viruses in controlling the number and production of heterotrophic bacterioplankton in the interaction zone of river and sea waters.  相似文献   

15.
In January and February 1998, when an unprecedented fourth repetition of the zonal hydrographic transect at 24.5°N in the Atlantic was undertaken, carbon measurements were obtained for the second time in less than a decade. The field of total carbon along this section is compared to that provided by 1992 cruise which followed a similar path (albeit in a different season). Consistent with the increase in atmospheric carbon levels, an increase in anthropogenic carbon concentrations of 8±3 μmolkg−1 was found in the surface layers. Using an inverse analysis to determine estimates of absolute velocity, the flux of inorganic carbon across 24.5° is estimated to be −0.74±0.91 and −1.31±0.99 PgCyr−1 southward in 1998 and 1992, respectively. Estimates of total inorganic carbon flux depend strongly upon the estimated mass transport, particularly of the Deep Western Boundary Current. The 1998 estimate reduces the large regional divergence in the meridional carbon transport suggested by previous studies and brings into question the idea that the tropical Atlantic constantly outgasses carbon, while the subpolar Atlantic sequesters it. Uncertainty in the carbon transports themselves, dominated by the uncertainty in the total mass transport estimates, are a hindrance to determining the “true” picture.The flux of anthropogenic carbon (CANTH) across the two transects is estimated as northward at 0.20±0.08 and 0.17±0.06 PgCyr−1 for the 1998 and 1992 sections, respectively. The net transport of CANTH across 24.5°N is strongly affected by the difference in concentrations between the northward flowing shallow Florida Current and the mass balancing, interior return flow. The net northward transport of CANTH is opposite the net flow of total carbon and suggests, as has been found by others, that the pre-industrial southward transport of carbon within the Atlantic was stronger than it is today. Combining these flux results with estimates of atmospheric and riverine inorganic carbon input, it is determined that today's oceanic carbon system differs from the pre-industrial system in that today there is an uptake of anthropogenic carbon to the south that is advected northward and stored within the North Atlantic basin.  相似文献   

16.
A 1-D coupled physical-biogeochemical model is used to study the seasonal cycles of silicon and nitrogen in two High Nutrient Low Chlorophyll (HNLC) systems, the Antarctic Circumpolar Current (ACC) and the North Pacific Ocean, and a mesotrophic system, the North Atlantic Ocean. The biological model consists of nine compartments (diatoms, nano-flagellates, microzooplankton, mesozooplankton, two types of detritus, nitrate, ammonium and silicic acid) forced by irradiance, temperature, mixing and deep nitrate and silicic acid concentrations. At all sites, nanophytoplankton standing crop variations are low, in spite of variations in primary production, because of a “top–down” control by microzooplankton. Although nanophytoplankton sustain more than 60% of the annual primary production in these areas, their contribution to the export production does not exceed 1% of the total. The differences in the seasonal plankton cycle among these regions come mainly from differences in the dynamics of large phytoplankton (here diatoms). In the ACC, the chlorophyll maximum remains <1.5 mg m−3, as an unfavourable light/mixing regime and a likely trace-metal limitation keep diatoms from blooming. In the northeast Pacific, trace-metal limitation seems to keep diatoms from blooming throughout the year. In both these systems, light or iron limitations induce high Si/N uptake ratios. Incidentally these high Si/N uptake ratios lead to a net excess of silicic acid utilization over nitrate, and to a subsequent silicic acid limitation during the summertime. In the North Atlantic, under favourable light/mixing regime and nutrient-replete conditions at the onset of the growing period, diatoms outburst and sustain a bloom >3.5 mg Chl-a m−3. Thereafter, mesozooplankton grazing pressure and silicic acid limitation induce the collapse of the chlorophyll maximum and the persistence of lower chlorophyll concentrations in summer. Although the ACC and the North Pacific show HNLC features, they support a high biogenic silica production (1.9 and 1.07 mol Si m−2 yr−1) and export flux (0.79 and 0.61 mol Si m−2 yr−1), compared to the North Atlantic (production: 0.23 mol Si m−2 yr−1, export: 0.12 mol Si m−2 yr−1). The differences in Si production and export between the HNLC systems and the mesotrophic North Atlantic come from both higher Si concentrations and Si/N uptake ratios in the HNLC areas compared to the North Atlantic. Also, the low dissolution rate of biogenic silica compared to nitrogen degradation rate, and the inhibition of nitrate uptake by ammonium, reinforce the net excess of silicic acid utilization over nitrate. As a result, the model also illustrates the efficiency of the silica pump for the three sites: about 50% of the biogenic silica synthesized in the euphotic layer is exported out of the first 100 m, while only 4–11% of the particulate organic nitrogen escapes recycling in the surface layer.  相似文献   

17.
Intensive observations using hydrographical cruises and moored sediment trap deployments during 2010 and 2012 at station K2 in the North Pacific Western Subarctic Gyre (WSG) revealed seasonal changes in δ 15N of both suspended and settling particles. Suspended particles (SUS) were collected from depths between the surface and 200 m; settling particles by drifting sediment traps (DST; 100–200 m) and moored sediment traps (MST; 200 and 500 m). All particles showed higher δ 15N values in winter and lower in summer, contrary to the expected by isotopic fractionation during phytoplankton nitrate consumption. We suggest that these observed isotopic patterns are due to ammonium consumption via light-controlled nitrification, which could induce variations in δ 15N(SUS) of 0.4–3.1 ‰ in the euphotic zone (EZ). The δ 15N(SUS) signature was reflected by δ 15N(DST) despite modifications during biogenic transformation from suspended particles in the EZ. δ 15N enrichment (average: 3.6 ‰) and the increase in C:N ratio (by 1.6) in settling particles suggests year-round contributions of metabolites from herbivorous zooplankton as well as TEPs produced by diatoms. Accordingly, seasonal δ 15N(DST) variations of 2.4–7.0 ‰ showed a significant correlation with primary productivity (PP) at K2. By applying the observed δ 15N(DST) vs. PP regression to δ 15N(MST) of 1.9–8.0 ‰, we constructed the first annual time-series of PP changes in the WSG. This new approach to estimate productivity can be a powerful tool for further understanding of the biological pump in the WSG, even though its validity needs to be examined carefully.  相似文献   

18.
Dissolved organic carbon (DOC) data are presented from three meridional transects conducted in the North Atlantic as part of the US Climate Variability (CLIVAR) Repeat Hydrography program in 2003. The hydrographic sections covered a latitudinal range of 6°S to 63°N along longitudes 20°W (CLIVAR line A16), 52°W (A20) and 66°W (A22). Over 3700 individual measurements reveal unprecedented detail in the DOC distribution and systematic variations in the mesopelagic and bathypelagic zones of the North Atlantic basin. Latitudinal gradients in DOC concentrations combined with published estimates of ventilation rates for the main thermocline and North Atlantic Deep Water (NADW) indicate a net DOC export rate of 0.081 Pg C yr−1 from the epipelagic zone into the mesopelagic and bathypelagic zones. Model II regression and multiple linear regression models applied to pairwise measures of DOC and chlorofluorocarbon (CFC-12) ventilation age, retrieved from major water masses within the main thermocline and NADW, indicate decay rates for exported DOC ranging from 0.13 to 0.94 μmol kg−1 yr−1, with higher DOC concentrations driving higher rates. The contribution of DOC oxidation to oxygen consumption ranged from 5 to 29% while mineralization of sinking biogenic particles drove the balance of the apparent oxygen utilization.  相似文献   

19.
The C/N and stable C and N isotope ratios (δ13C, δ15N) of sedimentary and suspended particulate matter were determined in the Schelde Estuary. Suspended matter was divided into 2 to 5 size fractions by centrifugation. Four major pools of organic matter were recognized: riverine, estuarine, marine and terrestrial materials. Terrestrial organic matter (δ13C≈−26‰, δ15N≈3.5‰, C/N≈21) is important for the sedimentary pool, but suspended matter is dominated by the marine (δ13C≈−18‰, δ15N≈9‰, C/N≈8), riverine (δ13C≈−30‰, δ15N≈9‰, C/N≈7.5) and estuarine (δ13C≈−29‰, δ15N≈15‰, C/N≈8) end-members. In the upper estuary, the suspended matter size fractions vary systematically in their carbon and nitrogen biogeochemistry, with the small particles having low C/N ratios, depleted δ13C and enriched δ15N values relative to large particles. Moreover, sedimentary and suspended matter differ significantly in terms of C/N ratios (17 vs. 8.9), δ13C (−26.3 vs. −28.9‰) and δ15N (+6.9 vs. 12.0‰). In the lower estuary, suspended matter fractions are similar and sedimentary and suspended organic matter differ only in terms of δ13C (−23.5 vs. −20.1‰). Our data indicate that autochthonous organic matter contributes significantly to the total suspended matter and that the suspended organic matter composition cannot be explained in terms of conservative mixing of riverine and terrestrial sources on the one hand and marine sources on the other hand.  相似文献   

20.
A new gas chromatographic method was developed for the measurement of nitrous oxide (N2O) in seawater. It takes 15 min for the analysis in a sample of 640 ml seawater.By this method, more than 1000 samples taken over various depths and areas in the sea were analyzed. In the western North Atlantic, the N2O concentration over a range of oceanic depths gave characteristic profiles that were negatively correlated with oxygen profiles, reaching its maximum (c.a. 1 μg/l) in the oxygen-minimum layer at mid-depths. In the Caribbean, the N2O maximum reached higher concentrations than in the North Atlantic. N2O was near equilibrium with that in the atmosphere in Atlantic surface waters, but supersaturation of N2O was observed in surface waters of the Gulf of St. Lawrence in early June and in most surface samples from the Caribbean Sea in March.The estimated rate of N2O production in the sea may be significant in terms of geochemical cycling of combined nitrogen to the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号