首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a gridded Sea Beam bathymetric map of a 5100 km2 area between 9° and 10° N on the East Pacific Rise (included as a color separate accompanying this issue). The raw bathymetric data are renavigated using a technique for calculating smooth adjustments to navigation that incorporates absolute constraints from satellite fixes and acoustically-located explosive shots, and relative constraints from the misfit of bathymetric data at ship track crossovers. We describe a back-projection technique for gridding the bathymetric data that incorporates an approximation for the power distribution within a narrow-beam echo sounding system and accounts for the variable uncertainties associated with multi-beam data. The nodal separation of the resulting map is ~ 80 m in both latitude and longitude, and the sampling of grid points within a 60 × 85 km2 region is in excess of 99%. A formal analysis of variance is applied to the gridded bathymetric data. For each grid point, the difference between the variance of data from within a track versus data from between tracks provides an upper bound on the magnitude of bathymetric misfits arising from navigational errors. The renavigation results in an 88% reduction in this quantity. We also examine the effects of renavigation on the misfit of magnetic and gravity data at crossovers and compare our results with other bathymetric surveys. A striking feature of the final bathymetric map is the sinuous regional shape of the rise axis. In plan view, the local trend of morphology sometimes varies by up to 15° and the distances separating changes in morphological trend are about 10–20 km. In cross section the slopes of the rise flanks are notably asymmetric and show some correlation with the offset of the axial magmatic system as detected by seismic methods.  相似文献   

2.
Chemoautotrophic production in seafloor hydrothermal systems has the potential to provide an important source of organic carbon that is exported to the surrounding deep-ocean. While hydrothermal plumes may export carbon, entrained from chimney walls and biologically rich diffuse flow areas, away from sites of venting they also have the potential to provide an environment for in-situ carbon fixation. In this study, we have followed the fate of dissolved and particulate organic carbon (DOC and POC) as it is dispersed through and settles beneath a hydrothermal plume system at 9°50′N on the East Pacific Rise. Concentrations of both DOC and POC are elevated in buoyant plume samples that were collected directly above sites of active venting using both DSV Alvin and a CTD-rosette. Similar levels of POC enrichment are also observed in the dispersing non-buoyant plume, ∼500 m downstream from the vent-site. Further, sediment-trap samples collected beneath the same dispersing plume system, show evidence for a close coupling between organic carbon and Fe oxyhydroxide fluxes. We propose, therefore, a process that concentrates POC into hydrothermal plumes as they disperse through the deep-ocean. This is most probably the result of some combination of preferential adsorption of organic carbon onto Fe-oxyhydroxides and/or microbial activity that preferentially concentrates organic carbon in association with Fe-oxyhydroxides (e.g. through the microbial oxidation of Fe(II) and Fe sulfides). This potential for biological production and consumption within hydrothermal plumes highlights the importance of a multidisciplinary approach to understanding the role of the carbon cycle in deep-sea hydrothermal systems as well as the role that hydrothermal systems may play in regulating global deep-ocean carbon budgets.  相似文献   

3.
2003年中国海底热液硫化物调查航段在EPR西侧取得了E271与E272站位的小箱体柱状样品,通过对这些样品采用酸化和未酸化两种前处理方法的粒度分析,结果表明样品受热液活动影响不强烈;粒度分布曲线表现为多峰分布,为多种物源共同叠加沉积的结果,其中以生物源与火山源为主。因此该地区的沉积物源虽然有热液活动的贡献,但是较其它来源的沉积物所占的比例较小。  相似文献   

4.
This study reports the occurrence of anhydrite in hydrothermally altered pillow basalt (12°50.55′N, 103°57.62′W, water depth 2 480 m), which may have been produced in the basalt during seawater-basalt interaction in the laboratory. The existence of anhydrite in the altered basalt indicates extensive hightemperature hydrothermal alteration at the surface of seafloor pillow basalt. Microprobe analysis shows significant chemical zoning in the hydrothermally altered pillow basalt, in which Ca, Si and Al contents decrease and P, Fe, Mn, Cr and S contents increase from fresh basalt to altered basalt. The negative correlation between Rb-Sr and Li-Sr, and negative correlation between Li-Ca and Rb-Ca in the high-temperature vent fluids show that these fluids underwent anhydrite precipitation before fluid jetting due to mixing with seawater in the sub-seafloor. Based on these observations, we show that not all Ca in the anhydrite comes from basalt in the reaction zone, and that the basalts on the seafloor or in the upflow zone may also provide Ca for anhydrite.  相似文献   

5.
We report the results of a study of the magnetic properties of basalts recovered from the axis and from 0.7 m.y. old crust at 21° N and 19°30 S on the East Pacific Rise as well as from the 9°03 N overlapping spreading centers. The natural remanent magnetization of the samples from 21° N and 19°30 S decreases from the axis to 0.7 m.y. old crust as a result of low-temperature oxidation. In addition, the magnetic properties of the samples from the 21° N sites indicate that: (1) the magnetic susceptibility and the Koenigsberger ratio decrease with low-temperature alteration, (2) the Curie temperature, the median demagnetizing field and the remanent coercivity increase with maghemitization, (3) the saturation magnetization measured at room temperature does not change significantly with age. The magnetic properties of the basalt samples from the 9°03 N overlapping spreading centers indicate the presence of a high magnetization zone at the tip of the eastern spreading center. This high magnetization zone is the result of the high percentage of unaltered, fine-grained titanomagnetites present in the samples. These measurements are consistent with the results of the three-dimensional inversion of the magnetic field over the 9°03 N overlapping system [Sempere et al., 1984] as well as with detailed tectonic and geochemical investigations of overlapping spreading centers (Sempere and Macdonald, 1986a; Langmuir et al., 1986; Natland et al., 1986). The high magnetization zone appears to be the result of the eruption of highly fractionated basalts enriched in iron associated with the propagation of one of the limbs of the overlapping system into older lithosphere and not just to rapid decay, due to low-temperature oxidation, of the initially high magnetization of pillows extruded in the neovolcanic zone.  相似文献   

6.
In this study, 13 groups of silicon and oxygen isotopes and major elements of the basalts near the East Pacific Rise 13°N are used to study the fractionation of silicon and oxygen isotopes. Among these data, δ30Si values of basalts vary from -0.4%o to 0.2%o with a mean value of δ30Si of (-0.18±0.22)%o. The δ180 values range from 4.1%o to 6.4%o with a mean δ180 value of (+5.35±0.73) %0. Since the δ30Si values increase in the series of basalt-basaltic andesite- andesite, and δ180 values display a positive correlation with the SiO2 content, we propose that the fractionation of silicon and oxygen isotopes is influenced by the SiO2 content in igneous rocks. Compared with the igneous rocks from Manus Basin with clinopyroxene as their dominant mineral phase, MORBs in this study containing olivine and plagioclase as primary minerals have lower δ180 and δ30Si values, indicating that the fractionation of silicon and oxygen isotopes is also affected by different Si-O bridges in silicate minerals. Furthermore, our samples from the EPR are defined as E-MORB based on K/Ti ratios. Probably, the difference in δ30Si and δ30O between our samples and a normal MORB are cause by the enriched components in E-MORBs.  相似文献   

7.
In 1983 a combined SeaMARC I, Sea Beam swath mapping expedition traversed the East Pacific Rise from 13°20 N to 9°50 N, including most of the Clipperton Transform Fault at 10°15 N, and a chain of seamounts at 9°50 N which runs obliquely to both the ridge axis and transform fault trends. We collected temperature, salinity and magnetic data along the same track. These data, combined with Deep-Tow data and French hydrocasts, are used to construct a thermal section of the rise axis from 13°10 N to 8°20 N.Thermal data collected out to 25 km from the rise axis and along the Clipperton Transform Fault indicate that temperatures above the rise axis are uniformly warmer by 0.065°C than bottom water temperatures at equal depths off the axis. The rise axis thermal structure is punctuated by four distinct thermal fields with an average spacing of 155 km. All four of these fields are located on morphologic highs. Three fields are characterized by lenses of warmed water 20 km in length and 300 m thick. Additional clues to hydrothermal activity are provided in two cases by high concentrations of CH4, dissolved Mn and 3He in the water column and in another case by concentrations of benthic animals commonly associated with hydrothermal regions.We use three methods to estimate large-scale heat loss. Heat flow estimates range from 1250 MW to 5600 MW for one thermal field 25 km in length. Total convective heat loss for the four major fields is estimated to lie between 2100 MW and 9450 MW. If we add the amount of heat it takes to warm the rest of the rise axis (489 km in length) by 0.065.°C, then the calculated axial heat loss is from 12,275 to 38,525 MW (19–61% of the total heat theoretically emitted from crust between 0 and 1 m.y. in age).  相似文献   

8.
Fine-scale lava morphology has been classified on the ridge crest of the East Pacific Rise between 9°15′N and 10°02′N using an expert system classification method. This method establishes the means to classify complicated seafloor environments by integrating textural and geometric feature attributes from a high-resolution side-scan sonar dataset where ground-reference data are available from near-bottom visual observations. The classification in this study focuses upon mapping the lava morphology distribution of sheet, lobate, and pillow flows along the East Pacific Rise. The reliability of the classification has been evaluated using an accuracy assessment. The study region yields a coverage area of 37,814 m2 (44%) for lobate flows; 10,421 m2 (12%) for pillow flows; 15,096 m2 (18%) for sheet flows; 19,679 m2 (23%) for fissured areas; and 2,967 m2 (3%) for shadows or no data. The systematic distribution of lava morphology along the ridge found in this study supports the idea of using the regional distribution of surface morphology as an indicator of emplacement dynamics and supports an organization of the volcanic plumbing system at a third order segmentation scale beneath mid-ocean ridges.  相似文献   

9.
SeaMARC II and Sea Beam bathymetric data are combined to create a chart of the East Pacific Rise (EPR) from 8°N to 18°N reaching at least 1 Ma onto the rise flanks in most places. Based on these data as well as SeaMARC II side scan sonar mosaics we offer the following observations and conclusions. The EPR is segmented by ridge axis discontinuities such that the average segment lengths in the area are 360 km for first-order segments, 140 km for second-order segments, 52 km for third-order segments, and 13 km for fourth-order segments. All three first-order discontinuities are transform faults. Where the rise axis is a bathymetric high, second-order discontinuities are overlapping spreading centers (OSCs), usually with a distinctive 3:1 overlap to offset ratio. The off-axis discordant zones created by the OSCs are V-shaped in plan view indicating along axis migration at rates of 40–100 mm yr–1. The discordant zones consist of discrete abandoned ridge tips and overlap basins within a broad wake of anomalously deep bathymetry and high crustal magnetization. The discordant zones indicate that OSCs have commenced at different times and have migrated in different directions. This rules out any linkage between OSCs and a hot spot reference frame. The spacing of abandoned ridges indicates a recurrence interval for ridge abandonment of 20,000–200,000 yrs for OSCs with an average interval of approximately 100,000 yrs. Where the rise axis is a bathymetric low, the only second-order discontinuity mapped is a right-stepping jog in the axial rift valley. The discordant zone consists of a V-shaped wake of elongated deeps and interlocking ridges, similar to the wakes of second-order discontinuities on slow-spreading ridges. At the second-order segment level, long segments tend to lengthen at the expense of neighboring shorter segments. This can be understood if segments can be approximated by cracks, because the propagation force at a crack tip is directly proportional to crack length.There has been a counter-clockwise change in the direction of spreading on the EPR between 8 and 18° N during the last 1 Ma. The cumulative change has been 3°–6°, producing opening across the Orozco and Siqueiros transform faults and closing across the Clipperton transform. The instantaneous present-day Cocos-Pacific pole is located at approximately 38.4° N, 109.5° W with an angular rotation rate of 2.10° m.y.–1 This change in spreading direction explains the predominance of right-stepping discontinuities of orders 2–4 along the Siqueiros-Clipperton and Orozco-Rivera segments, but does not explain other aspects of segmentation which are thought to be linked to patterns of melt supply to the ridge axis.There are 23 significant seamount chains in the mapped area and most are created very near the spreading axis. Nearly all of the seamount chains have trends which fall between the absolute and relative plate motion vectors.  相似文献   

10.
东太平洋海隆深海热液区沉积物古菌多样性分析   总被引:1,自引:0,他引:1  
采用PCR-RFLP方法对东太平洋海隆深海热液区3个站位沉积物中的古菌多样性进行了初步研究.结果显示,从古菌16S rRNA基因文库中随机挑取的296个阳性克隆分属奇古菌门(Thaumarchaeota,47.64%)、广古菌门(Euryarchaeota,44.93%)、泉古菌门(Crenarchaeota,6.77%)和未分类古菌(0.68%),其中优势菌群为奇古菌门的亚硝化侏儒菌属(Nitrosopumilus,35.47%)和广古菌门的热原体纲(Thermoplasmata,27.03%),DHVE3、DHVE5、DHVE6、MBGB和MBGE类群在沉积物样品中也均有发现.另外,3个站位沉积物中古菌类群组成存在差异,S5-TVG1站位样品文库的97个古菌克隆分属奇古菌门(49.48%)、广古菌门(49.48%)和泉古菌门(1.03%),S14-TVG10站位样品文库的103个古菌克隆由奇古菌门(84.47%)和广古菌门(15.53%)组成,S16-TVG12站位样品文库的96个古菌克隆包括广古菌门(71.88%)、泉古菌门(19.79%)、奇古菌门(6.25%)和未分类古菌(2.08%).研究结果表明,东太平洋海隆深海热液区沉积物中古菌多样性丰富,存在着许多新的古菌菌群;不同站位古菌菌群结构以及多样性存在差异,这与其所处环境的热液活动密切相关.  相似文献   

11.
Sea Beam and Deep-Tow were used in a tectonic investigation of the fast-spreading (151 mm yr-1) East Pacific Rise (EPR) at 19°30 S. Detailed surveys were conducted at the EPR axis and at the Brunhes/Matuyama magnetic reversal boundary, while four long traverses (the longest 96 km) surveyed the rise flanks. Faulting accounts for the vast majority of the relief. Both inward and outward facing fault scarps appear in almost equal numbers, and they form the horsts and grabens which compose the abyssal hills. This mechanism for abyssal hill formation differs from that observed at slow and intermediate spreading rates where abyssal hills are formed by back-tilted inward facing normal faults or by volcanic bow-forms. At 19°30 S, systematic back tilting of fault blocks is not observed, and volcanic constructional relief is a short wavelength signal (less than a few hundred meters) superimposed upon the dominant faulted structure (wavelength 2–8 km). Active faulting is confined to within approximately 5–8 km of the rise axis. In terms of frequency, more faulting occurs at fast spreading rates than at slow. The half extension rate due to faulting is 4.1 mm yr-1 at 19°30 S versus 1.6 mm yr-1 in the FAMOUS area on the Mid-Atlantic Ridge (MAR). Both spreading and horizontal extension are asymmetric at 19°30 S, and both are greater on the east flank of the rise axis. The fault density observed at 19°30 S is not constant, and zones with very high fault density follow zones with very little faulting. Three mechanisms are proposed which might account for these observations. In the first, faults are buried episodically by massive eruptions which flow more than 5–8 km from the spreading axis, beyond the outer boundary of the active fault zone. This is the least favored mechanism as there is no evidence that lavas which flow that far off axis are sufficiently thick to bury 50–150 m high fault scarps. In the second mechanism, the rate of faulting is reduced during major episodes of volcanism due to changes in the near axis thermal structure associated with swelling of the axial magma chamber. Thus the variation in fault spacing is caused by alternate episodes of faulting and volcanism. In the third mechanism, the rate of faulting may be constant (down to a time scale of decades), but the locus of faulting shifts relative to the axis. A master fault forms near the axis and takes up most of the strain release until the fault or fault set is transported into lithosphere which is sufficiently thick so that the faults become locked. At this point, the locus of faulting shifts to the thinnest, weakest lithosphere near the axis, and the cycle repeats.  相似文献   

12.
Habitat created or modified by the physical architecture of large or spatially dominant species plays an important role in structuring communities in a variety of terrestrial, aquatic, and marine habitats. At hydrothermal vents, the giant tubeworm Riftia pachyptila forms large and dense aggregations in a spatially and temporally variable environment. The density and diversity of smaller invertebrates is higher in association with aggregations of R. pachyptila than on the surrounding basalt rock seafloor. Artificial substrata designed to mimic R. pachyptila aggregations were deployed along a gradient of productivity to test the hypothesis that high local species diversity is maintained by the provision of complex physical structure in areas of diffuse hydrothermal flow. After 1 year, species assemblages were compared among artificial aggregations in low‐, intermediate‐, and high‐productivity zones and compared to natural aggregations of R. pachyptila from the same site. Hydrothermal vent fauna colonized every artificial aggregation, and both epifaunal density and species richness were highest in areas of high chemosynthetic primary production. The species richness was also similar between natural aggregations of R. pachyptila and artificial aggregations in intermediate‐ and high‐productivity zones, suggesting that complex physical structure alone can support local species diversity in areas of chemosynthetic primary production. Differences in the community composition between natural and artificial aggregations reflect the variability in microhabitat conditions and biological interactions associated with hydrothermal fluid flux at low‐temperature hydrothermal vents. Moreover, these local ecological factors may further contribute to the maintenance of regional species diversity in hydrothermal vent communities on the East Pacific Rise.  相似文献   

13.
We conducted full-depth hydrographic observations in the southwestern region of the Northwest Pacific Basin in September 2004 and November 2005. Deep-circulation currents crossed the observation line between the East Mariana Ridge and the Shatsky Rise, carrying Lower Circumpolar Deep Water westward in the lower deep layer (θ<1.2 °C) and Upper Circumpolar Deep Water (UCDW) and North Pacific Deep Water (NPDW) eastward in the upper deep layer (1.3–2.2 °C). In the lower deep layer at depths greater than approximately 3500 m, the eastern branch current of the deep circulation was located south of the Shatsky Rise at 30°24′–30°59′N with volume transport of 3.9 Sv (1 Sv=106 m3 s−1) in 2004 and at 30°06′–31°15′N with 1.6 Sv in 2005. The western branch current of the deep circulation was located north of the Ogasawara Plateau at 26°27′–27°03′N with almost 2.1 Sv in 2004 and at 26°27′–26°45′N with 2.7 Sv in 2005. Integrating past and present results, volume transport southwest of the Shatsky Rise is concluded to be a little less than 4 Sv for the eastern branch current and a little more than 2 Sv for the western branch current. In the upper deep layer at depths of approximately 2000–3500 m, UCDW and NPDW, characterized by high and low dissolved oxygen, respectively, were carried eastward at the observation line by the return flow of the deep circulation composing meridional overturning circulation. UCDW was confined between the East Mariana Ridge and the Ogasawara Plateau (22°03′–25°33′N) in 2004, whereas it extended to 26°45′N north of the Ogasawara Plateau in 2005. NPDW existed over the foot and slope of the Shatsky Rise from 29°48′N in 2004 and 30°06′N in 2005 to at least 32°30′N at the top of the Shatsky Rise. Volume transport of UCDW was estimated to be 4.6 Sv in 2004, whereas that of NPDW was 1.4 Sv in 2004 and 2.6 Sv in 2005, although the values for NPDW may be slightly underestimated, because they do not include the component north of the top of the Shatsky Rise. Volume transport of UCDW and NPDW southwest of the Shatsky Rise is concluded to be approximately 5 and 3 Sv, respectively. The pathways of UCDW and NPDW are new findings and suggest a correction for the past view of the deep circulation in the Pacific Ocean.  相似文献   

14.
Seismicity in ocean ridge-transform systems reveals fundamental processes of mid-ocean ridges, while comparisons of seismicity in different oceans remain rare due to a lack of detection of small events. From 1996 to2003, the Pacific Marine Environmental Laboratory of the National Oceanic and Atmospheric Administration(NOAA/PMEL) deployed several hydrophones in the eastern Pacific Ocean and the northern Atlantic Ocean.These hydrophones recorded earthquakes with small magnitudes, providing us with...  相似文献   

15.
16.
A low-temperature diffuse flow site associated with abundant vent fauna was found by submersible observations on the southern East Pacific Rise at 17°25′ S in 1997. This site was characterized by thin sediment covered pillow and sheet lavas with collapsed pits up to ∼15 m in diameter. There were three warm water vents (temperature: 6.5 to 10.5 °C) within the site above which the vented fluids rise as plumes. To estimate heat flux of the warm water vents, a temperature logger array was deployed and the vertical temperature distribution in the water column up to 38 m above the seafloor was monitored. A stationary deep seafloor observatory system was also deployed to monitor hydrothermal activity in this site. The temperature logger array measured temperature anomalies, while the plumes from the vents passed through the array. Because the temperature anomalies were measured in only specific current directions, we identified one of the vents as the source. Heat flux from the vent was estimated by applying a plume model in crossflow in a density-stratified environment. The average heat flux from September 13 to October 18, 1997 was 39 MW. This heat flux is as same order as those of high-temperature black smokers, indicating that a large volume flux was discharged from the vent (1.9 m3/s). Previous observations found many similar warm water flow vents along the spreading axis between 17°20′ S–30′ S. The total heat flux was estimated to be at least a few hundred mega-watts. This venting style would contribute to form effluent hydrothermal plumes extended above the spreading axis.  相似文献   

17.
Observations from 17 ALVIN dives and 14 ANGUS runs plus laboratory study of basalt samples collected with ALVIN help to constrain the morphologic, volcanic and petrologic evolution of four seamounts near the East Pacific Rise (EPR). Comparison among the four volcanoes provides evidence for a general pattern of near-EPR seamount evolution and shows the importance of sedimentation, mass wasting, hydrothermal activity and other geologic processes that occur on submerged oceanic volcanoes. Seamount 5, closest to the EPR (1.0 Ma) is the youngest seamount and may still be active. Its summit is covered by fresh lavas, recent faults and hydrothermal deposits. Seamount D is on crust 1.55 Ma and is inactive; like seamount 5, it has a breached caldera and is composed exclusively of N-MORB. Seamounts 5 and D represent the last stages of growth of typical N-MORB-only seamounts near the EPR axis. Seamounts 6 and 7 have bumpy, flattish summits composed of transitional and alkalic lavas. These lavas probably represent caldera fillings and caps overlying an edifice composed of N-MORB. Evolution from N-MORB-only cratered edifices to the alkalic stage does not occur on all near-EPR seamounts and may be favored by location on structures with relative-motion-parallel orientation.  相似文献   

18.
Four large-scale bathymetric maps of the Southern East Pacific Rise and its flanks between 15° S and 19° S display many of the unique features of this superfast spreading environment including abundant seamounts (the Rano Rahi Field), axial discontinuities, discontinuity migration, and abyssal hill variation. Along with a summary of the regional geology, these maps will provide a valuable reference for other sea-going programs on-and off-axis in this area, including the Mantle ELectromagnetic and Tomography (MELT) experiment.  相似文献   

19.
A 43 cm long E271 sediment core collected near the East Pacific Rise(EPR) at 13°N were studied to investigate the origin of smectite for understanding better the geochemical behavior of hydrothermal material after deposition.E271 sediments are typical metalliferous sediments. After removal of organic matter, carbonate, biogenic opal,and Fe-Mn oxide by a series of chemical procedures, clay minerals(2 μm) were investigated by X-ray diffraction,chemical analysis and Si isotope analysis. Due to the influence of seafloor hydrothermal activity and close to continent, the sources of clay minerals are complex. Illite, chlorite and kaolinite are suggested to be transported from either North or Central America by rivers or winds, but smectite is authigenic. It is enriched in iron, and its contents are highest in clay minerals. Data show that smectite is most likely formed by the reaction of hydrothermal Fe-oxyhydroxide with silica and seawater in metalliferous sediments. The Si that participates in this reaction may be derived from siliceous microfossils(diatoms or radiolarians), hydrothermal fluids, or detrital mineral phases. And their δ30 Si values are higher than those of authigenic smectites, which implies that a Si isotope fractionation occurs during the formation because of the selective absorption of light Si isotopes onto Feoxyhydroxides. Sm/Fe mass ratios(a proxy for overall REE/Fe ratio) in E271 clay minerals are lower than those in metalliferous sediments, as well as distal hydrothermal plume particles and terrigenous clay minerals. This result suggests that some REE are lost during the smectite formation, perhaps because their large ionic radii of REE scavenged by Fe-oxyhydroxides preclude substitution in either tetrahedral or octahedral lattice sites of this mineral structure, which decreases the value of metalliferous sediments as a potential resource for REE.  相似文献   

20.
2003年中国海底热泷硫化物调查航段在EPR西侧取得了E271与E272站住的小箱体柱状样品,通过对这些样品采用酸化和未酸化两种前处理方法的粒度分析,结果表明样品受热液活动影响不强烈;粒度分布曲线表现为多峰分布,为多种物源共同叠加沉积的结果,其中以生物源与火山源为主.因此谈地区的沉积物源虽然有热液活动的贡献,但是较其它来源的沉积物所占的比例较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号