首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper summarizes the results of investigations carried out in the northern section of the Tommot-Yakutsk Railroad in eastern Siberia, underlain by ice-rich permafrost. The ongoing permafrost and geotechnical research program in support of railroad construction includes assessment of the ground thermal state on the right-of-way and adjacent areas based on long-term field observations using the method of terrain thermal physics. These studies focus on the upper permafrost within the depth of annual temperature variation. In undisturbed areas, inter-annual variability of the ground thermal state shows little response to recent climatic variations. However, forest clearing and surface disturbance during right-of-way construction cause an increase in permafrost temperature, deepening of the active layer, thaw settlement, and water accumulation along the embankment. The active layer is thickest along the sun-exposed left berm and is thinnest along the more shaded right berm. Measures to prevent thaw-related embankment problems are recommended.  相似文献   

2.
《Polar Science》2014,8(2):114-128
In the last two decades, climatic change has resulted in increased cryogenic activity in northeastern Eurasia, with adverse consequences for landscapes and socio-economic systems in the permafrost zone.The main purpose of this study was to assess the recent phases of warming, starting with Arctic warming. We performed a spatiotemporal analysis of climatic conditions during phases of maximum warming (i.e., 1935–1945, 1988–1995, and 2005–2009) in northeastern Eurasia and compared the magnitude of warming and its effect on permafrost among these critical periods. Our observations of permafrost landscape dynamics confirmed that the last two warming phases have played major roles in changing the environment.Data analysis has revealed regional patterns in the intensity of warming. Areas south of 60–62° latitude experienced no rise in air temperature during the Arctic warming period (1935–1945), whereas during 1988–1995, the center of warming shifted to the south of northeastern Eurasia. The last phase of warming (2005–2009) was characterized by maximum values of mean annual air temperature and the thawing index, and a decrease in the freezing index throughout northeastern Eurasia.  相似文献   

3.
We examine some issues related to a classification of climates. A climatic regionalization has been carried out, and a brief characteristic given to the identified types of climate. It has been found that the relationship of the sums of mean daily ground air temperatures above 10 °C and the dryness index show a clearly pronounced zonal distribution. The combination of sums of mean daily air temperatures below ?10 °C and the depth of snow in the northern part of the plain is characterized by a horizontal distribution, and only in the middle and southern parts of the plain do these indices acquire zonal regularities. An analysis is made of the long-term dynamics of air temperature to reveal that some climate warming during 1981–2010 was mainly caused by a rise in winter air temperature.  相似文献   

4.
Ground temperatures from four of the seven extensively studied highway cross-sections near Gulkana/Glennallen,Alaska during 1954~1962,were chosen to better understand the impacts of highway construction on warm permafrost.Both the thawing of permafrost and seasonal frost action impacted on road surface stability for about 6 years until the maximum summer thaw reached about 3 m in depth.Seasonal frost action caused most of the ensuing stability problems.Unusually warm summers and the lengths of time required to re-freeze the active layer were far more important than the average annual air temperatures in determining the temperatures of the underlying shallow permafrost,or the development of taliks.The hypothesized climate warming would slightly and gradually deepen the active layer and the developed under-lying talik,but its effect would be obscured by unusually warm summers,by warmer than usual winters,and by the vari-able lengths of time of the zero curtains.At least one period of climate mini-cooling in the deeper permafrost during the early 20th century was noted.  相似文献   

5.
根据河西走廊地区深层地温观测时间最长、资料完整的酒泉、张掖及武威3个地面气象站1980年1月~2011年2月的逐月80、160、320 cm地温资料,运用线性拟合、滑动平均和Mann-Kendall方法进行趋势和突变分析。研究表明:近31 a来河西走廊地区80、160、320 cm深层地温均呈显著的波动上升趋势,其中各深层地温夏季增温速率最大,春季次之,冬季最小,各季各深层地温均发生了暖突变。各深层地温年时间序列中存在3 a波动周期,且表现为前期冷,后期暖的演变趋势,线性增温速率显著,80 cm地温增温速率0.55 ℃/10 a,暖突变出现在1994年;160 cm地温增温速率0.59 ℃/10 a,暖突变出现在1995年;320 cm地温增温速率0.60 ℃/10 a,暖突变出现在1996年。说明年深层地温随着深度的增加,暖突变出现时间存在滞后现象。气温对深层地温的影响作用明显,深层地温受气温升高的影响也呈升高趋势。但随着深度的增加气温与地温的相关性略有降低,这是由于深层地温的变化存在滞后性所致。  相似文献   

6.
The complete life cycle of a permafrost mound is reconstructed from its growth until its degradation. The study site is a lithalsa, which is the subject of a long-term monitoring that includes geocryological observations, measurements of permafrost properties on cores, ground temperature measurements, and observations of landform changes. The landform likely grew as a palsa under cold climatic conditions in the past. The peat cover was subsequently eroded. Early stages of degradation are witnessed since 2003 as a new thermokarst pond is starting to form though mound collapse. Settlement of the structure has been observed, and a rim ridge has begun to form. Ultimately, the lithalsa shall disappear and be replaced by a circular thermokarst pond surrounded by a rampart, similar to many other ones in the study area. The monitoring of the thermal regime of the lithalsa illustrates the pattern of internal warming and points to the causes of its degradation.  相似文献   

7.
Surface air temperature and precipitation records for the years 1958-1999 from ten meteorological stations located throughout West Siberia are used to identify climatic trends and determine to what extent these trends are potentially attributable to the Arctic Oscillation (AO). Although recent changes in atmospheric variability are associated with broad Arctic climate change, West Siberia appears particularly susceptible to warming. Furthermore, unlike most of the Arctic, moisture transport in the region is highly variable. The records show that West Siberia is experiencing significant warming and notable increases in precipitation, likely driven, in part, by large-scale Arctic atmospheric variability. Because this region contains a large percentage of the world's peatlands and contributes a significant portion of the total terrestrial freshwater flux to the Arctic Ocean, these recent climatic trends may have globally significant repercussions. The most robust patterns found are strong and prevalent springtime warming, winter precipitation increases, and strong association of non-summer air temperatures with the AO. Warming rates for both spring (0.5-0.8 °C/decade) and annual (0.3-0.5°C/decade) records are statistically significant for nine often stations. On average, the AO is linearly congruent with 96% (winter), 19% (spring), 0% (summer), 67% (autumn) and 53% (annual) of the warming found in this study. Significant trends in precipitation occur most commonly during winter, when four of ten stations exhibit significant increases (4-13 %/decade). The AO may play a lesser role in precipitation variability and is linearly congruent with only 17% (winter), 13% (spring), 12% (summer), 1% (autumn) and 26% (annual) of precipitation trends.  相似文献   

8.
Temperature–depth profiles measured in boreholes contain a record of temperature changes at the Earth's surface. The degree to which these profiles and surface air temperature records track each other is quantitatively assessed for the northern plains of the USA. Surface air temperature records are used as a forcing function to generate synthetic transient temperature profiles which are compared with transient temperatures derived from borehole temperature–depth data. These comparisons indicate that surface air and ground temperatures are correlated. Furthermore, these comparisons yield a long-term mean temperature tied to the meteorological record which provides a context for interpreting contemporary warming trends. Our results indicate that warming recorded in surface air temperature time series represents a positive departure above baseline temperature estimates.  相似文献   

9.
The spatial distribution patterns of climatic changes in Yakutia are considered. For 26 meteorological stations of Yakutia we calculated the linear trend coefficients of climatic characteristics: air temperature (mean annual, January and July temperatures) and the mean annual amount of atmospheric precipitation from 1966 to 2016. Maps of climate change trends were compiled from linear trend coefficients. A spatial analysis of the zonal (regional) peculiarities of the climate of Yakutia has been carried out. An increase in air temperature was established for the 50-year period under consideration. It was found that the annual values of the air temperature trend are positive and, on average, a characteristic trend change interval is 0.3 to 0.6 °C/10 yr. Most of the meteorological stations recorded trends of air temperature with maximum values in winter and minimum values in summer. It was determined that the values of the trends in annual precipitation show different directions, and positive trends occur on more than 70% of the territory of Yakutia. Their maximum corresponds to the mountain-taiga regions of Southern Yakutia. Negative trends in precipitation with values of up to–15 mm/10 yr. are observed in tundra landscapes. The findings show that different regions of Yakutia respond differently to climate change. The trend of an increase in mean annual temperature is largely due to the rise in temperatures during the winter months. The rise in air temperature in Yakutia may be part of global warming. Over the last 50 years there has been an increase in the amount of precipitation in Yakutia as a whole.  相似文献   

10.
Although maps of active-layer thickness have useful roles in geocryology, polar ecology, and hydrology, a lack of geographically distributed data at appropriate scales has prevented their widespread implementation. The n-factor (ratio of temperature at the soil surface to that in the air) has considerable potential as a tool for mapping active-layer thickness and other geocryological parameters by providing refinements to relatively simple analytic solutions for the depth of thaw. Although temperature data from the soil surface under representative land-cover units have rarely been collected historically, recent advancements in data-logger technology allow the variability of soil-surface temperature regimes to be assessed inexpensively over small temporal and spatial intervals. Temperature data collected in the air at 2 m height and at the soil surface within 10 representative land-cover units in the Kuparuk River region of north-central Alaska were used to compute seasonal n-factor values for specific vegetation-soil associations. The resulting values were used with degree-day sums, a digital elevation model, and a digital map of vegetation to compute a modified Stefan estimate of thaw depth over a 26,278 km2 area. Comparisons between maps based on the n-factor and an empirical, data-intensive method show similar performance. Given sufficient ancillary data, the n-factor provides a useful tool for mapping active-layer thickness over large areas without intensive in situ data collection. [Key words: Alaska, permafrost, active-layer thickness, frozen ground, mapping, temperature.]  相似文献   

11.
Human-induced climatic warming will have major impacts on permafrost, which presently underlies half of Canada's land mass. The adaptation of the northern environment and its physical processes to the altered climate may be contemporaneous or may lag behind climatic change. The extent of permafrost will diminish, accompanied by modifications of the land surface through thermokarst or mass wasting. Streamflow regimes, sediment transport, coastal flooding and erosion will be affected. The magnitude of most components of the water balance will be altered. More research is needed to understand how the permafrost environment behaves during the transient phase, and the problem of permafrost adaptation should be addressed holistically. [Key words: climatic change, frozen ground, ground ice, hydrology, permafrost, periglacial geomorphology, water balance.]  相似文献   

12.
Latitudinal permafrost in Northern Northeast(NNE)China is located in the southern margin of the Eurasian continent,and is very sensitive to climatic and environmental change.Numerical simulations indicate that air temperature in the permafrost regions of Northeast China has been on the rise since the 1950s,and will keep rising in the 21st century,leading to extensive degradation of permafrost.Permafrost degradation in NNE China has its own characteristics,such as northward shifts in the shape of a"W"for the permafrost southern boundary(SLP),discontinuous permafrost degradation into islandlike frozen soil,and gradually disappearing island permafrost.Permafrost degradation leads to deterioration of the ecological environment in cold regions.As a result,the belt of larch forests dominated by Larix gmelinii has shifted northwards and wetland areas with symbiotic relationships with permafrost have decreased significantly.With rapid retreat and thinning of permafrost and vegetation change,the CO2 and CH4 flux increases with mean air temperature from continuous to sporadic permafrost areas as a result of activity of methanogen enhancement,positively feeding back to climate warming.This paper reviews the features of permafrost degradation,the effects of permafrost degradation on wetland and forest ecosystem structure and function,and greenhouse gas emissions on latitudinal permafrost in NNE China.We also put forward critical questions about the aforementioned effects,including:(1)establish long-term permafrost observation systems to evaluate the distribution of permafrost and SLP change,in order to study the feedback of permafrost to climate change;(2)carry out research about the effects of permafrost degradation on the wetland ecosystem and the response of Xing'an larch to global change,and predict ecosystem dynamics in permafrost degradation based on long-term field observation;(3)focus intensively on the dynamics of greenhouse gas flux in permafrost degradation of Northeast China and the feedback of greenhouse gas emissions to climate change;(4)quantitative studies on the permafrost carbon feedback and vegetation carbon feedback due to permafrost change to climate multi-impact and estimate the balance of C in permafrost regions in the future.  相似文献   

13.
《Polar Science》2014,8(2):96-113
Understanding geocryological characteristics of frozen sediment, such as cryostratigraphy, ice content, and stable isotope ratio of ground ice, is essential to predicting consequences of projected permafrost thaw in response to global warming. These characteristics determine thermokarst extent and controls hydrological regime—and hence vegetation growth—especially in areas of high latitude; it also yields knowledge about the history of changes in the hydrological regime. To obtain these fundamental data, we sampled and analyzed unfrozen and frozen surficial sediments from 18 boreholes down to 1–2.3 m depth at five sites near Chokurdakh, Russia. Profiles of volumetric ice content in upper permafrost excluding wedge ice volume showed large variation, ranging from 40 to 96%, with an average of 75%. This large amount of ground ice was in the form of ice lenses or veins forming well-developed cryostructures, mainly due to freezing of frost-susceptible sediment under water-saturated condition. Our analysis of geocryological characteristics in frozen ground including ice content, cryostratigraphy, soil mechanical characteristics, organic matter content and components, and water stable isotope ratio provided information to reconstruct terrestrial paleo-environments and to estimate the influence of recent maximum thaw depth, microtopography, and flooding upon permafrost development in permafrost regions of NE Russia.  相似文献   

14.
Arctic tundra surfaces are dominated by a variety of patterned ground forms. Whereas a large number of studies have described morphology, structure and processes of patterned ground, few have monitored detailed patterned ground dynamics and subsurface environments continuously. We applied electrical resistivity tomography (ERT) to understand near‐surface conditions of two types of patterned ground, ice‐wedge polygons and mudboils in Svalbard, where periglacial processes associated with permafrost are intensively monitored. Automated monitoring shows surface movement characterized by annual cycles of frost heave and thaw settlement, the amounts and rates of which are influenced by the intensity of ice segregation. A time series of ERT shows (1) a distinct resistivity boundary delimiting the active‐layer depth, (2) seasonal variation in resistivity controlled by thermo‐hydrological dynamics and (3) spatial variation in resistivity reflecting desiccation in summer and intensive ice segregation in winter. These results demonstrate ERT as a useful complementary technique for monitoring active‐layer depths and near‐surface hydrological conditions at periglacial patterned ground sites, where automated soil thermal and moisture measurements are limited.  相似文献   

15.
Long-term temperature data on a soil layer 3.2 m in thickness have been used in the differentiation of a topographically highly complicated permafrost on the territory of Transbaikalia. It was found that the geographical ranges are most clearly identified from mean annual temperature values. The schematic map displays the areas with the temperatures –4 to–1°C,–1 to 1°C and 1 to 4°C which are in good agreement with the permafrost distribution pattern (continuous and discontinuous permafrost, and permafrost islands). A classification of the thermal conditions of soils is carried out according to the highest mean monthly temperature at all depths. We identified four types which are characterized by the qualitative assessment as warm, moderately warm, cold and very cold. A relevant cartographic model shows the distribution of the thermal regime of soils for a warm season. The dot method was used to provide a clear display of available information on soil temperature, and it was possible to show the existence of small areas of the types of thermal regime and their fragmentation. Current changes in soil temperature were determined for August, which are in good agreement with regional changes in ground air temperature. In either case, we observed positive linear trends. Assessments of thermal resources of the soil layer and their geographical patterns belonging to the widespread depression-valley and valley natural systems as well as to the relatively planate surfaces of Transbaikalia can be used for scientific and practical purposes.  相似文献   

16.
Maps of shallow depth (down to −250 m) temperature distribution across Canada show large variability, related mainly to surface climatic forcing. Very small changes of temperature with depth in the upper 250 m are related to heat gained by the subsurface due to recent global warming. Temperature data compiled from precise temperature logs in equilibrium wells, and temperature time series from a network of meteorological stations, allow calculation of the available heat energy for heating in the cold period and for cooling in peak warm months. Utilization of this energy resource has the potential for significant CO2 reduction in Canada. The geothermal energy stored in the ground can be used, with the help of heat pumps, for heating, given very low winter temperatures. The amount of potential heat available is vast. In Canada, south of permafrost border, the integrated value of potentially available heat during the heating season down to −50 m is 1.1 E21 J (1100 quads).  相似文献   

17.
Long-term data from meteorological stations have been used in assessing the thermal state of the soil layer in large depressions of the Prebaikalia and Northern Transbaikalia. We examine the characteristics of temperature distribution in depth over an annual cycle for seasonally frozen and permafrost soils. For the Baikalian type depressions we carried out a spatial differentiation of the lowest and highest (having regard to the temperature lag) mean monthly soil temperatures. It is concluded that within a single depression the thermal regime of the soil fluctuates over a very broad range. On the other hand, an identical situation with the temperature regime can occur in different depressions.  相似文献   

18.
黄河源区多年冻土空间分布变化特征数值模拟   总被引:3,自引:1,他引:2  
马帅  盛煜  曹伟  吴吉春  胡晓莹  王生廷 《地理学报》2017,72(9):1621-1633
基于IPCC第五次评估报告预估的气温变化情景,采用数值模拟的方法对黄河源区典型冻土类型开展模拟,推算过去及预测未来黄河源区冻土分布空间变化过程和发展趋势。结果表明:1972-2012年源区多年冻土只有少部分发生退化,退化的冻土面积为833 km2,季节冻土主要集中在源区东南部的热曲谷地、小野马岭以及两湖流域南部的汤岔玛地带;RCP 2.6、RCP 6.0、RCP 8.5情景下,2050年多年冻土退化为季节冻土的面积差别不大,分别为2224 km2、2347 km2、2559 km2,占源区面积的7.5%、7.9%、8.6%;勒那曲、多曲、白马曲零星出现季节冻土,野牛沟、野马滩以及鄂陵湖东部的玛多四湖所在黄河低谷大片为季节冻土;2100年多年冻土退化为季节冻土的面积分别为5636 km2、9769 km2、15548 km2,占源区面积的19%、32.9%、52.3%;星宿海、尕玛勒滩、多格茸的多年冻土发生退化,低温冻土变为高温冻土,各类年平均地温出现了不同程度的升高。到2100年,RCP 2.6情景下源区多年冻土全部退化为季节冻土主要发生在目前年平均地温高于-0.15 oC的区域,而-0.15~-0.44 oC的区域部分发生退化;RCP 6.0、RCP 8.5情景下目前年平均地温分别为高于-0.21 oC以及-0.38o C的区域多年冻土全部发生退化,而-0.21~-0.69 oC以及-0.38~-0.88 oC的区域部分发生退化。  相似文献   

19.
Due to a series of linear projects built along National Highway 214, the second "Permafrost Engineering Corridor" on the Qinghai-Tibet Plateau has formed. In this paper, by overcoming the problems of data decentralization and standard inconsistency, permafrost characteristics and changes along the engineering corridor are systematically summarized based on the survey and monitoring data. The results show that: 1) Being controlled by elevation, the permafrost is distributed in flake discontinuity with mountains as the center along the line. The total length of the road section in permafrost regions is 365 km, of which the total length of the permafrost section of National Highway 214 is 216.7 km, and the total length of the permafrost section of Gong-Yu Expressway is 197.3 km. The mean annual ground temperature (MAGT) is higher than -1.5 °C, and permafrost with MAGT lower than -1.5 °C is only distributed in the sections at Bayan Har Mountain and E'la Mountain. There are obvious differences in the distribution of ground ice in the different sections along the engineering corridor. The sections with high ice content are mainly located in Zuimatan, Duogerong Plain and the top of north and south slope of Bayan Har Mountain. The permafrost thickness is controlled by the ground temperature, and permafrost thickness increases with the decrease of the ground temperature, with the change rate of about 37 m/°C. 2) Local factors (topography, landform, vegetation and lithology) affect the degradation process of permafrost, and then affect the distribution, ground temperature, thickness and ice content of permafrost. Asphalt pavement has greatly changed the heat exchange balance of the original ground, resulting in serious degradation of the permafrost. Due to the influence of roadbed direction trend, the phenomenon of shady-sunny slope is very significant in most sections along the line. The warming range of permafrost under the roadbed is gradually smaller with the increase of depth, so the thawing settlement of the shallow section with high ice-content permafrost is more significant.  相似文献   

20.
Declining water quality in reservoirs is of growing concern in many regions, yet there is still little understanding of long-term water quality trends in these systems. Across the landscape, reservoirs have diverse origins, functions, and operational strategies. In temperate environments, winter water-level drawdown is a common operational practice in reservoirs but the long-term impacts of this hydrological modification has not been extensively studied. We paired a comparative, pre-dam-to-contemporary study (i.e. a top–bottom design) of 12 reservoirs with a detailed paleolimnological study of a focal lake to generate quantitative insights into the relative effect of hydrological changes vs. landscape and climatic drivers on water quality. The focal reservoir, Grand Lac Saint-François, is of relatively similar morphometry, geography, and limnology to our other sites, and has experienced annual winter water-level drawdown of?~?5 m since it was dammed approximately 100 years ago. Based on our top–bottom analysis, we did not find strong correlations between long-term changes in water quality (i.e. diatom-inferred TP estimates) and winter water-level drawdown amplitudes. Instead, reservoir morphometry and watershed characteristics (i.e. geography, maximum depth, and cropland areas) appeared to be stronger drivers of trends across the region. From the detailed paleolimnological analysis, we found that sedimentary pigments and DI-TP concentrations significantly increased over the last century based on Mann–Kendall trend analyses. Breakpoint analyses showed that changes in biological-proxy trends, as well as the sedimentology (i.e. lithology and accumulations rates), coincided with dam construction and the onset of water level regulation. However, given the high variability in metrics and the extent of water level monitoring records, we were unable to quantitatively associate the impacts of drawdown with water quality trends at Grand Lac Saint-François. Conversely, we did find that watershed nutrient surpluses from livestock farming, and warming temperatures were significant explanatory variables of water quality metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号