首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the evolution of elemental abundances in an ensemble of Galactic planetary nebulae as a function of the masses of the central stars (M cs) and their progenitors (M ini). We derive the dependences of the C, N, Ne, Cl, Ar, and S abundances on M cs and M ini for a large sample of nebulae. We calculate the theoretical elemental abundances in nebulae under the assumption of complete mixing of the progenitor’s matter ejected at different stages of its evolution. The theoretical dependences of the C and N abundances on M ini have been found to correspond to the observed ones. At the same time, the observed mean O abundance is approximately half its theoretical value. The Ne, Cl, Ar, and S abundances monotonically increase with increasing mass of the progenitor star, which reflects an increase in the mean abundances of heavy elements during the chemical evolution of the Galaxy. We have derived the relation between the abundances of the elements under consideration in planetary nebulae and the masses of their central stars. This relation is used to construct the mass function for the nuclei of planetary nebulae.  相似文献   

2.
Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.  相似文献   

3.
The problem of the chemical evolution of the system of Galactic planetary nebulae, starting with the early stage of development of the Galaxy, is investigated. The radial and vertical gradients of C, N, O, Ne, Ar, Cl, and S abundances are determined for different ages of the precursor stars of the nebulae. A statistically significant age dependence of the gradients is derived.  相似文献   

4.
Dependencies of galactic planetary nebula chemical abundances and their central star masses on the distance from the galactic plane are discussed.Z-dependencies of He/H, N/H, N/O and Ar/H and dependencies of He/H, N/H, N/O, Ne/H and Ar/H on central star mass are found. Three galactic planetary nebula distance scale samples are used and it is shown that the distance scale system (where distances of each planetary nebula mass class are determined with the separate scale) is the most reliable. The correlations obtained for the Magellanic Cloud planetary nebulae are used for comparison.  相似文献   

5.
Six stars out of a sample of ∼2300 carbon stars in the Magellanic Clouds have been identified as having strong C2 bands but CN bands that are very weak or absent. It is argued that five of these are likely to be R Coronae Borealis (RCB) stars on the basis of their spectral characteristics and peculiar colours. Most are variables and the Large Magellanic Cloud (LMC) members have extreme radial velocities that are more like the planetary nebula population than the carbon stars. This sample consists of four LMC members (only one of them previously recognized as an RCB star), one Small Magellanic Cloud (SMC) member (the first RCB star reported in the SMC) and one foreground Galactic star.  相似文献   

6.
Some planetary nebulae in the galactic thick disk display extremely low abundances of heavy elements such as O, Ne, S, and Ar, compared with normal or type II nebulae. Their central stars are generally relatively cool and underluminous, indicating that the progenitor stars had very low masses. It is suggested that strong stellar winds have had an important role in the formation of these objects, which is supported by the large mass loss rates now observed.  相似文献   

7.
A number of late [WC] stars have unique infrared properties, not foundamong the non-[WC] planetary nebulae, and together define a class of IR-[WC]stars. They have unusual IRAS colours, resembling stars in theearliest post-AGB evolution and possibly related to PAH formation.Most or all show a double chemistry, with both a neutral (molecular)oxygen-rich and an inner carbon-rich region. Their dense nebulae indicaterecent evolution from the AGB, suggesting a fatal-thermal-pulse (FTP)scenario. Although both the colours and the stellar characteristicspredict fast evolution, it is shown that this phase must last for104 yr. The morphologies of the nebulae are discussed. Forone object in Sgr, the progenitor mass (1.3 M) is known.The stellar temperatures of the IR-[WC] stars appear much higher inlow metallicity systems (LMC, Sgr). This may be indicative of anextended `pseudo' photosphere. It is proposed that re-accretion ofejected gas may slow down the post-AGB evolution and so extend the lifetime of the IR-[WC] stars.  相似文献   

8.
Using the classification scheme for planetary nebulae in the Magellanic Clouds using four criteria proposed in Paper I, all nebulae are divided into three classes on the basis of the mass of their central stars. The features of individual chemical abundances in the Magellanic Cloud planetary nebulae and the way in which these differ from the galactic planetary nebulae are investigated separately for each class of nebulae. The role of CN and ON cycling in intermediate mass star evolution is discussed.  相似文献   

9.
We analyse an N -body simulation of the Small Magellanic Cloud (SMC), that of Gardiner & Noguchi, to determine its microlensing statistics. We find that the optical depth owing to self-lensing in the simulation is low, 0.4×10−7, but still consistent (at the 90 per cent level) with that observed by the EROS and MACHO collaborations. This low optical depth is due to the relatively small line-of-sight thickness of the SMC produced in the simulation. The proper motions and time-scales of the simulation are consistent with those observed assuming a standard mass function for stars in the SMC. The time-scale distribution from the standard mass function generates a significant fraction of short time-scale events: future self-lensing events towards the SMC may have the same time-scales as events observed towards the Large Magellanic Cloud (LMC). Although some debris was stripped from the SMC during its collision with the LMC about 2×108 yr ago, the optical depth of the LMC owing to this debris is low, a few ×10−9, and thus cannot explain the measured optical depth towards the LMC.  相似文献   

10.
We report the extragalactic radio-continuum detection of 15 planetary nebulae (PNe) in the Magellanic Clouds (MCs) from recent Australia Telescope Compact Array+Parkes mosaic surveys. These detections were supplemented by new and high-resolution radio, optical and infrared observations which helped to resolve the true nature of the objects. Four of the PNe are located in the Small Magellanic Cloud (SMC) and 11 are located in the Large Magellanic Cloud (LMC). Based on Galactic PNe the expected radio flux densities at the distance of the LMC/SMC are up to ∼2.5 and ∼2.0 mJy at 1.4 GHz, respectively. We find that one of our new radio PNe in the SMC has a flux density of 5.1 mJy at 1.4 GHz, several times higher than expected. We suggest that the most luminous radio PN in the SMC (N S68) may represent the upper limit to radio-peak luminosity because it is approximately three times more luminous than NGC 7027, the most luminous known Galactic PN. We note that the optical diameters of these 15 Magellanic Clouds (MCs) PNe vary from very small (∼0.08 pc or 0.32 arcsec; SMP L47) to very large (∼1 pc or 4 arcsec; SMP L83). Their flux densities peak at different frequencies, suggesting that they may be in different stages of evolution. We briefly discuss mechanisms that may explain their unusually high radio-continuum flux densities. We argue that these detections may help solve the 'missing mass problem' in PNe whose central stars were originally  1–8 M  . We explore the possible link between ionized haloes ejected by the central stars in their late evolution and extended radio emission. Because of their higher than expected flux densities, we tentatively call this PNe (sub)sample –'Super PNe'.  相似文献   

11.
Spectroscopic observations of four planetary nebulae (PNe) with emission-line central stars of different spectral types are presented: Cn 1-5, Pe 1-1, NGC 5873, and M1-19. The interstellar extinction, physical conditions (n e , T e ), and abundances of several elements (He, N, O, Ne, S, Ar, Cl) have been determined for all nebulae. The nebula Cn 1–5 with fairly high abundances of helium and nitrogen is shown to belong to type I PNe. Possible variability of the intensities of low-excitation emission lines in NGC 5873 has been found; it can be related to variations of the stellar wind from the central star. The measured α-element abundance ratios (S/O, Ne/O, Ar/O, Cl/O) are in good agreement with those typical of HII regions.  相似文献   

12.
Increasing evidence suggests that the Galactic halo is lumpy on kpc scales as a result of the accretion of at least a dozen small galaxies [Large and Small Magellanic Clouds (LMC/SMC), Sgr, Fornax, etc.]. Faint stars in such lumpy structures can significantly microlense a background star with an optical depth of 10−7–10−6, which is comparable to the observed value to the LMC. The observed microlensing events towards the LMC can be explained by a tidal debris tail from the progenitor of the Magellanic Clouds and Magellanic Stream. The LMC stars can either lense stars in the debris tail a few kpc behind the LMC, or be lensed by stars in the part of the debris tail in front of the LMC. The models are consistent with an elementary particle dominated Galactic halo without massive compact halo objects (MACHOs). They also differ from Sahu's LMC-self-lensing model by predicting a higher optical depth and event rate and lower concentration of events to the LMC centre.  相似文献   

13.
The stars that will be detectable in the Magellanic Clouds by the DENIS and 2MASS near infrared surveys are enumerated. All thermally-pulsing AGB stars will be observable in I, J, H and K, along with the top two magnitudes of both the early-AGB and the first giant branch. All carbon stars will be visible, and normal (N type) C stars will be easily distinguished by their large J-K colours. However, it will not be possible to separate faint, warm C stars from K and M stars using the photometry alone. Photometry of AGB stars in clusters will allow an accurate evaluation of the AGB tip luminosities as a function of initial mass. Random phase K magnitudes of LPVs and Cepheids should provide a better measure of the LMC tilt and distortions in the SMC. The K survey should turn up 100 to 150 objects undergoing superwind mass loss, these objects being OH/IR stars and the dust-enshrouded C star equivalents of OH/IR stars. It is shown that crowding should not be a problem even in the LMC bar.  相似文献   

14.
The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.  相似文献   

15.
《New Astronomy Reviews》2000,44(4-6):329-334
Heavy element abundances derived from high-quality ground-based and Hubble Space Telescope (HST) spectroscopic observations of low-metallicity blue compact galaxies (BCGs) with oxygen abundances 12+log O/H between 7.1 and 8.3 are discussed. None of the heavy element-to-oxygen abundance ratios studied here (C/O, N/O, Ne/O, Si/O, S/O, Ar/O, Fe/O) depend on oxygen abundance for BCGs with 12+log O/H≤7.6 (ZZ/20). This constancy implies that all these heavy elements have a primary origin and are produced by the same massive (M≥10 M) stars responsible for O production. The dispersion of the C/O and N/O ratios in these galaxies is found to be remarkably small, being only ±0.03 dex and ±0.02 dex respectively. This very small dispersion is strong evidence against any time-delayed production of C and primary N in the lowest-metallicity BCGs, and hence against production of these elements by intermediate-mass (3 MM≤9 M) stars at very low metallicities, as commonly thought.In higher metallicity BCGs (7.6<12+log O/H<8.2), the Ne/O, Si/O, S/O, Ar/O and Fe/O abundance ratios retain the same constant value they had at lower metallicities. By contrast, there is an increase of the C/O and N/O ratios along with their dispersions at a given O. We interpret this increase as due to the additional contribution of C and primary N production in intermediate-mass stars, on top of that by high-mass stars. BCGs show the same O/Fe overabundance with respect to the Sun (∼0.4 dex) as galactic halo stars, suggesting the same chemical enrichment history.  相似文献   

16.
《New Astronomy Reviews》2004,48(9):731-739
Extragalactic eclipsing binaries open a new perspective on the study of stellar structure and evolution. Stars in different galaxies have formed and evolved in environments with chemical histories that may differ from those of the solar neighborhood. For example, the LMC and SMC contain low-metallicity, young massive stars that are no longer found in our Galaxy. Eclipsing binaries, yielding accurate determinations of masses, radii and temperatures, allow for critical tests of, e.g., convective overshooting, mass loss, and internal structure. In addition, they provide an empirical calibration of the mass-luminosity relationship. In this paper, I present some results from ongoing programs on the determination of physical properties and distances to eclipsing binaries in the LMC, the SMC, and M31. In particular, I focus on aspects relevant to stellar astrophysics, and on the contributions of these eclipsing binaries to our understanding of the structure and chemical evolution of the host galaxies.  相似文献   

17.
The lithium abundances of planet-harbouring stars have been compared with the lithium abundances of open clusters and field stars. Young (chromospherically active) and subgiant stars have been eliminated from the comparison because they are at different stages of evolution and Li processing than the planet-harbouring stars, and hence have systematically higher Li abundances. The analysis showed that the Li abundances of the planet-harbouring stars are indistinguishable from those of non-planet-harbouring stars of the same age, temperature and composition. This conclusion is opposite to that arrived at by Gonzalez & Laws; it is believed that the field-star sample used by them contained too wide a range of ages, evolutionary types and temperatures to be accommodated by the model that they adopted to describe the dependence of Li on the parameters. The Li abundance does not appear set to provide key insights into the formation and evolution of planetary systems.  相似文献   

18.
We present a catalogue with coordinates and photometric data of 2446 Be star candidates in the Large Magellanic Cloud (LMC), based on a search of the OGLE II data base. The I -band light curves of these stars show outbursts in 24 per cent of the sample (Type-1 stars), high and low states in 10 per cent, periodic variations in 6 per cent (Type-3 stars), and stochastic variations in 60 per cent of the cases. We report on the result of the statistical study of light curves of Type-1 and Type-3 stars in the LMC, and the comparison with the previously reported results of the Small Magellanic Cloud (SMC) sample. We find a statistically significant difference between amplitude, duration and asymmetry distributions of outbursts in both galaxies. Outbursts of SMC Type-1 stars are usually brighter, longer and with a slower decline. We find a bimodal distribution of periods of Type-3 stars in both galaxies, probably related to the recently discovered double periodic blue variables. We find also period and amplitude distributions of Type-3 LMC stars statistically different from those of the SMC stars. Our findings above suggest that the mechanisms causing the observed photometric variability of Type-1 and Type-3 stars could depend on metallicity. Moreover, they suggest that the outbursts are not primarily caused by stellar winds.  相似文献   

19.
In this paper we present the first individual distance to the Galactic planetary nebula (PN) M1-79 determined using the reddening–distance method. Our result is 2.7 ± 0.9 pc (i.e. an accuracy of ≈ 30 per cent). By means of optical low-resolution spectroscopy spanning a usable range of ≈ 3650–7100 Å, the chemical composition of this PN is studied. Elemental abundances are given for O, N, and Ne, along with ionic abundances for several ions for three different regions within the nebula. The ionic abundances can be attributed to the effects of ionization stratification. There is no evidence for internal variations of O and N. From its chemical composition, morphology and kinematics, M1-79 is most probably a type I PN.  相似文献   

20.
The He, C, N, and O abundances in more than 120 planetary nebulae (PNe) of our Galaxy and the Magellanic Clouds have been redetermined by analyzing new PNe observations. The characteristics of PNe obtained by modeling their spectra have been used to compile a new catalog of parameters for Galactic and extragalactic PNe, which is accessible at http://www.astro.spbu.ru/staff/afk/GalChemEvol.html. The errors in the parameters of PNe and their elemental abundances related to inaccuracies in the observational data have been analyzed. The He abundance is determined with an accuracy of 0.06 dex, while the errors in the C, N, and O abundances are 0.1–0.2 dex. Taking into account the inaccuracies in the corrections for the ionization stages of the elements whose lines are absent in the PNe spectra increases the errors in the He abundance to 0.1 dex and in the C, N, and O abundances to 0.2–0.3 dex. The elemental abundances in PNe of various Galactic subsystems and the Magellanic Clouds have been analyzed. This analysis suggests that the Galactic bulge objects are similar to type II PNe in Peimbert’s classification, whose progenitor stars belong to the thin-disk population with ages of at least 4–6 Gyr. A similarity between the elemental abundances in PNe of the Magellanic Clouds and the Galactic halo has been established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号