首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
经过近50年的发展,海洋卫星遥感日益成熟,各种反演算法和数据集应运而生,大大推动了海洋水文过程的研究。围绕与海洋水文相关的重要物理参数,简要回顾了海面高度、海水深度、海表洋流及海水质量变化的卫星遥感反演基本原理、主要算法以及存在的难点和前沿性研究问题,介绍了应用遥感反演算法制成的全球海洋水文参数主要数据集,并结合目前存在的问题探讨了卫星遥感反演海洋水文参数的发展趋势及所面临的挑战。研究发现,运用多卫星、多通道、多模式的联合反演方法可以显著地提升人们监测海洋水文参数时空动态变化的能力,必将成为未来全球海洋水文遥感的主要研究方向之一。  相似文献   

2.
Data capabilities of satellites remote sensor systems are briefly discussed. Monthly remotely sensored data of NIMBUS 3 meteorological satellite over parts of the Sudan, West of Lake Chad in Africa, using the HRIR — High Resolution Infra Red Radiometer (sensing between 0.7–1.3 u wavelength) are used to study the monthly shifts in the vegetation boundaries for this area. These shifts are shown to be caused by changes in soil moisture content which is controlled by the prevailing meteorological conditions in the area during the months.  相似文献   

3.
It has been almost four decades since the first launch of geostationary meteorological satellite by Japan Meteorological Agency (JMA). The specifications of the geostationary meteorological satellites have shown tremendous progresses along with the generations, which are now entering their third generation. The third-generation geostationary meteorological satellites not only yield basic data for weather monitoring, but also globally observe the Earth’s environment. The development of multi-band imagers with improved spatial resolution onboard the third-generation geostationary meteorological satellites brings us meteorological data in larger size than those of the second-generation ones. Thus, new techniques for domestic and world-wide dissemination of the observational big data are needed. In this paper, we develop a web-based data visualization for Himawari-8 satellite sensed images in real time and with full resolution. This data visualization is supported by the ecosystems, which uses a tiled pyramid representation and parallel processing technique for terrain on an academic cloud system. We evaluate the performance of our techniques for domestic and international users on laboratory experiments. The results show that our data visualization is suitable for practical use on a temporal preview of observation image data for the domestic users.  相似文献   

4.
用气象卫星遥感监测沙尘暴的方法和初步结果   总被引:38,自引:2,他引:38       下载免费PDF全文
本文在简要介绍气象卫星探测特点的基础上,着重讨论了利用NOAA卫星、FY-1C卫星和GMS-5及FY-2B卫星上的星载扫描辐射仪监测沙尘暴的原理和方法.最后以2000年4月6~7日发生在我国内蒙古地区至华北一带的强沙尘暴为例,说明用这种手段不仅能监测到沙尘暴的发生,还能有效地监测其发展和演变,是监测和预警沙尘暴的重要手段和依据.  相似文献   

5.
卫星遥感监测我国沿海水色环境的研究   总被引:11,自引:0,他引:11  
本文首先概要地介绍了国际上20世纪80年代以来卫星水色遥感器的发展,以及我国在90年代建立的海洋水色遥感应用技术系统,包括资料接收、处理、查询、分发、试应用和辐射验证等系统,重点论述了利用我国的FY-1C卫星以及美国的SeaWiFS和AVHRR卫星资料监测我国沿海的水色环境,包括沿海水体的叶绿素和悬浮泥砂浓度的时空分布,赤潮的监测以及沿海海区流场的研究。研究表明,卫星海洋水色遥感技术在海洋渔业资源的开发和保护、海岸带区牧化管理、河口港湾工程环境评价、海洋污染环境的监测和动力学研究等方面有广宽的应用前景。  相似文献   

6.
Abstract

Accurate soil-moisture monitoring is essential for water-resource management and agricultural applications, and is now widely undertaken using satellite remote sensing or terrestrial hydrological models’ products. While both methods have limitations, e.g. the limited soil depth resolution of space-borne data and data deficiencies in models, data-assimilation techniques can provide an alternative approach. Here, we use the recently developed data-driven Kalman–Takens approach to integrate satellite soil-moisture products with those of the Australian Water Resources Assessment system Landscape (AWRA-L) model. This is done to constrain the model’s soil-moisture simulations over Australia with those observed from the Advanced Microwave Scanning Radiometer-Earth Observing System and Soil-Moisture and Ocean Salinity between 2002 and 2017. The main objective is to investigate the ability of the integration framework to improve AWRA-L simulations of soil moisture. The improved estimates are then used to investigate spatiotemporal soil-moisture variations. The results show that the proposed model-satellite data integration approach improves the continental soil-moisture estimates by increasing their correlation to independent in situ measurements (~10% relative to the non-assimilation estimates).

Highlights

  • Satellite soil-moisture measurements are used to improve model simulation.

  • A data-driven approach based on Kalman–Takens is applied.

  • The applied data-integration approach improves soil-moisture estimates.

  相似文献   

7.
Convection often produces severe weather which causes a great loss to human lives and properties. Precisely predicting the convection initiation process is crucial but challenging in operational convection nowcasting (0~2 h forecasting). Before the radar-defined CI occurring (e.g., the first occurrence of ≥35 dBZ echoes), observations at high spatial and temporal resolutions from weather radars and geostationary meteorological satellites can reveal precursor information such as the boundary-layer convergence lines and the rapid growth of newborn cumulus clouds. These radar- and satellite-observed precursor information are helpful for evaluating the pre-CI conditions and thus nowcasting the accurate CI timing and location. This paper reviewed the current status of radar- and satellite-based CI research and nowcasting techniques. The milestone works and the following studies in the last four decades were summarized to demonstrate how radar and satellite observations can be related to CI occurrence. The objectives and approaches of the CI research advance as the improvement in the capability of radars and were explained satellites. The research progress aids in the development of various CI nowcasting techniques. This paper introduced three well-established techniques that have been put into operational application, namely, ANC system, SATCAST algorithm, and UWCI algorithm. Some scientific issues with respect to radar- and satellite-based CI research and nowcasting were also presented.  相似文献   

8.
Measurement of volcanic surface movement is an operational technique at many volcano observatories to help understand internal processes and to aid in eruption forecasting. The potential of differential radar interferometry (DInSAR) to map patterns of surface deformation on volcanoes is well-proven. However, the technique has not yet become operational, partly because current spaceborne radars were not designed for the task. We discuss the limitations of the European Space Agency's ERS SARs for this purpose in terms of: radar system constraints, volcano surface characteristics, interpretational uncertainties and the operational context. We illustrate the drawbacks at typical stratovolcanoes in South America, chosen to represent a range of conditions. For non expert users of DInSAR, knowing how well DInSAR will work on a particular volcano is important. Freely-available global datasets of vegetation cover and atmospheric water vapour content can be used as proxy measures of coherence and path delay effects, which are the two main determinants of data quality. Operational volcano DInSAR is still years away, but many of the characteristics of such a system can be specified based on the experience learned from earlier radars.  相似文献   

9.
This paper briefly presents the research progress of the State Major Basic Research Project 2001CB309400, “Theory and Application for Retrieval and Fusion of Spatial and Temporal Quantitative Information from Complex Natural Environment”. Based on the rapid advancement of synthetic aperture radar (SAR) imagery technology, information theory of fully polarimetric scattering and applications in polarimetric SAR remote sensing are developed. To promote the modeling of passive microwave remote sensing, the vector (polarized) radiative transfer theory (VRT) of complex natural media such as inhomogeneous, multi-layered and 3-dimensional VRT is developed. With these theoretical progresses, data validation and retrieval algorithms for some typical events and characteristic parameters of earth terrain surfaces, atmosphere, and oceans from operational and experimental remote sensing satellites are studied. Employing remote sensing, radiative transfer simulation, geographic information systems (GIS), land hydrological process, and data assimilation, the Chinese land data assimilation system (CLDAS) is established. Towards the future development of China’s microwave meteorological satellites, employing remote sensing data of currently available SSM/I (special sensor microwave/imager), AMSU (advanced microwave sounding unit), MTI (microwave temperature imager), etc., with ground-based measurements, several operational algorithms and databases for atmospheric precipitation, water vapor and liquid water in clouds, and other hydrological/hydrological applications are developed. To advance China’s SAR and InSAR (interferometric SAR) technologies, the image processing and analysis of ERS (European remote sensing), Radarsat SAR, and Chinese SAR, etc., the software platforms are accomplished. Based on the researches of multi-information fusion, some simulations, identification, and information extractions of the targets from complex background clutter scenes are studied. Some experiments of radio wave propagation in anomalous atmospheric status are also carried out. Translated from Advances in Earth Science, 2007, 22(2): 111–125 [译自: 地球科学进展]  相似文献   

10.
This paper describes the use of the Stable Point Network technique, a Persistent Scatterer Interferometry SAR technique, for the analysis of the Portalet landslide area (Central Pyrenees, Spain). For this purpose, different SAR datasets acquired by ERS-1, ERS-2, ENVISAT and TerraSAR-X satellites have been analysed. The use of different SAR images acquired by satellite radar sensors operating at different microwave lengths has allowed for a comparative assessment and illustration of the advantages and disadvantages of these satellites for landslide detection and monitoring. In the introduction, differential interferometry and the study area are briefly described. Then the specifics of the SPN processing and the results of the different datasets are described and compared. In Analysis of the results: the Portalet landslide area, the Portalet landslide area is introduced and the radar displacement measurements are analysed with available geo-information data. Additionally, X-band measurements are compared with those gathered by a ground-based SAR for a previous project. Finally, the most relevant conclusions of this work are discussed.  相似文献   

11.
12.
With the successful launch of the sixteen MEO satellites of the Beidou-3 global satellite navigation system and the broadcast of new signals, Beidou has officially entered the global construction stage while the international GNSS Monitoring and Assessment System (iGMAS) is also performing systematic testing and evaluation on various aspects of operational performance from satellite end to ground receiving end of Beidou-3 system. This paper analyzed and evaluated the observation quality of new signals B1C and B2a broadcasted by the twelve new Beidou-3 MEO satellites on the observation data integrity rate, multipath error, pseudorange noise and Carrier-to-Noise Ratio (CNR) compared with GPS and GALILEO. The results show that the observation data integrity rate of B1C signal is better than that of B2a signal in the Beidou-3 system. In the aspects of multipath error, pseudorange noise and CNR, B2a signal is better than that of B1C. The performances of the twelve MEO satellites of Beidou-3 are equivalent, that is, for Beidou-3, the consistency of satellites can be guaranteed. In terms of pseudo-range noise, Beidou-3 is slightly worse than GPS and GALILEO While the observation data integrity rate, multipath error and CNR of Beidou-3 are equivalent to those of GPS and GALILEO.  相似文献   

13.
Oil and gas transmission pipelines require monitoring for maintenance and safety, to prevent equipment failure and accidents. Unmanned aerial vehicles (UAVs) technology is emerging as an opportunity to supplement current monitoring systems. Small UAV technological solutions are flexible and adaptable and with a demonstrated capacity to obtain valuable data at small to medium spatial scales. Systematic surveys of extensive areas are better completed with fixed-wing platforms and automatic flight design, whilst multirotor platforms provide flexibility in shorter and localized inspection missions. The type of sensor carried by an aerial platform determines the sort of data acquired and the obtainable information; sensors also determine the need for specific mechanical designs and the provision of energy on-board required from the system. UAV systems prototyped to monitor pipelines are reviewed in this paper, and a number of monitoring scenarios are proposed and illustrated. Notwithstanding difficulties encountered in the generalization of use for civilian applications, small UAVs have demonstrated, through research and operational cases, the capacity to support the inspection and monitoring of oil and gas pipelines.  相似文献   

14.
吴建峰  林淑贞  李威  张凤太 《水文》2018,38(4):87-91
在下垫面相对复杂,位于高原地带的贵州,利用19个气象站点实测数据分别从年、季度、月和天时间尺度对TRMM 3B42卫星降水数据进行精度检验,并讨论TRMM 3B42卫星对不同降水强度的探测能力,以此来分析其在贵州的适用性。结果表明,TRMM 3B42降水数据在年尺度上拟合优度较好(R=0.82)。研究区内19个站点年均相对误差为-2.39%,其中将近70%的站点数据表现TRMM 3B42降水量低于地面气象站点。月尺度上整体相关系数很好,R达到0.89。但是TRMM 3B42卫星数据对不同季节的探测能力存在差异,其中,冬季相关系数最低。在日尺度上TRMM 3B42降水数据与实际降水偏差大,对降水强度过大或过小的降水情况均不能准确地探测。对于单个站点而言,海拔较低的站点TRMM卫星探测出的降水与实测降水偏差小。  相似文献   

15.
基于遥感的冰川信息提取方法研究进展   总被引:12,自引:6,他引:6  
彦立利  王建 《冰川冻土》2013,35(1):110-118
对冰川监测中常用的遥感卫星、 传感器及冰川信息提取方法等进行了综合评价, 常规方法中普遍认为比值法的精度最高, 新产生的面向对象分类和雷达干涉测量方法虽一定程度上提高了冰川提取精度, 但冰碛物仍是自动识别的难点. 针对表碛覆盖冰川虽发展了一些自动、 半自动的方法, 但这些方法还不够成熟、 不具有通用性. 积雪、 冰碛物和地面验证仍是冰川自动提取存在的重要问题, 发展更先进、 更成熟的方法是冰川研究的重要方向, 未来可以尝试采用粗糙集理论及ICESAT卫星波形提高冰川信息提取的精度.  相似文献   

16.
The development of satellite technology is rapidly increasing the evolution of remote sensing. Satellite images give extensive useful information about the land structure that is easily manageable in the process of generating true, high-speed information which allows the forecasting of future environmental and urban planning. Remote sensing comprises active and passive systems. Passive sensors detect natural radiation that is emitted or reflected by the object or surrounding area being observed. Active systems which produce their own electromagnetic energy and their main properties are their ability of collecting data in nearly all atmospheric conditions, day or night. These systems are frequently used to generate a digital elevation model (DEM) because they cover large areas. DEM supplies essential data for applications that are concerned with the Earth’s surface and DEMs derived from survey data are accurate but very expensive and time consuming to create. However, the use of satellite remote sensing to provide images to generate a DEM is considered to be an efficient method of obtaining data. Interferometric Synthetic Aperture Radar (InSAR) is a new geodetic technique for determining earth topography. InSAR measurements are highly dense and they only give information in Line of Sight of Radar. In the study, interferograms were produced from the InSAR images taken by ERS satellites in 1992 and 2007 and we developed the methods to generate a DEM using the InSAR technique and present the results relating to Kayseri Province in Turkey. The accuracy of the DEM derived from the InSAR technique is evaluated in comparison with a reference DEM generated from contours in a topographical map.  相似文献   

17.
基于MODTRAN的ASTER通道星上光谱模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
由于轨传感器位置影响, 传感器接收的能量不完全来自地物的反射, 地面与传感器间大气辐射能量的作用同样不可忽略.通过中分辨率大气辐射传输模型(moderate resolution atmosphere transmittance and radiance code, MODTRAN)将辐射传输过程与传感器光谱响应函数进行耦合运算, 基于二长花岗岩、正长岩、石英正长岩及石英闪长岩的地面实测光谱数据及测量时大气和几何条件, 完成了4种岩性先进星载热发射和反射辐射仪(advanced spaceborne theemal emission and reflection radiometer, ASTER)通道星上光谱的模拟, 建立了实测光谱数据与星上光谱数据间的联系, 证明将地面与传感器间大气辐射影响耦合到传感器接收地面反射能量过程中的必要性, 从而为多光谱影像的形成和应用提供了支持.   相似文献   

18.
The use of the mid-infrared and thermal bands of sensors on board airborne platforms and satellites permits the detection of active fires on the Earths surface. This application has been available to the fire-fighting community for many years. However, limitations in the fire detection capabilities of the sensors and/or the lack of adequate re-visit frequency have prevented the use of these systems for operational forest fire-fighting. In addition to mobile systems, remote sensors positioned on fixed fire-watch towers have also been used for active fire detection. These instruments are often positioned in strategic look-out places to provide continuous monitoring of the surrounding areas. They locate fires through the detection of either hot spots (areas of increased temperature in comparison to the background) or smoke plumes produced by the fires. This article evaluates the use of existing remote sensing systems for active fire detection, with emphasis on the applicability of these systems for fire emergency management and fire-fighting. Long-range remote sensing devices on board satellites are considered, airborne systems are assessed, and short-range fire detection instruments on fixed ground platforms are reviewed. A short introduction to forthcoming satellite systems, which will be based on the combined use of several small satellites, is presented. The advantages and drawbacks of the different systems are evaluated from a fire management perspective.  相似文献   

19.
In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites’ thermal infrared channels, China Radiometric Calibration Sites (CRCS) were established and the accuracy of the CRCS in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.0K (@ 300K) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese meteorological satellites was with favorable calibration accuracy: for 10.5~11.5 μm channel was better than 0.747 K and for 11.5~12.5 μm channel was better than 0.851 K.  相似文献   

20.
Water vapour tracers can provide useful information on winds at ≈ 500mb by observing the 6·7μ radiances. This fills the data gap in the cloud motion winds provided by conventional meteorological geostationary satellites. There is no geostationary satellite at present over the Indian Ocean with 6·7μ imaging capability to provide mid-tropospheric winds. The potentials of 6·7μ radiances, available from polar orbiting satellites, for mid-tropospheric circulation features have been examined in this study. Tiros-N satellite data of May 1979 and ECMWF level-IIIb wind data were analysed to relate the radiances with the streamlines. We find that the radiances of 6·7μ from orbiting satellites agree well with the wind field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号