where k (M− 2 s− 1) can be determined from the
in the pH range 2 to 5, from 5 to 40 °C and 0.01 to 1 M.The effect of pH and ionic strength on the reaction suggest that the rates are due to
where H2A = H2CrO4, HA = HCrO4, H2B = H2SO3 and HB = HSO3. The overall rate expression over the investigated pH range can be determined from
k=kH2A–H2B(αH2A)(αH2B)2+kHA–H2B(αHA)(αH2B)2+kH2A–HB(αH2A)(αHB)2
with kH2A−H2B = 5.0 × 107, kHA–H2B = 1.5 × 106 and kH2A–HB = 6.7 × 107.Fe(III) in the range 1.5 to 20 μM exerts a small catalytic effect on the reaction and significantly lowers the initial concentration of Cr(VI) compared to the nominal value. Contrary to Fe(III), formaldehyde (20 to 200 μM) reacts with S(IV) to form the hydroxymethanesulfonate adduct (CH2OHSO3), which does not react with Cr(VI). Major cations Mg2+ and some minor elements such as Ba2+ and Cu2+ did not affect the rates. The application of this rate law to environmental conditions suggest that this reaction may have a role in acidic solutions (aerosols and fog droplets). This reaction becomes more important in the presence of high Fe(III) and low HMS concentrations, contributing to affect the atmospheric transport of chromium species and the distribution of redox species of chromium, which reach surface water from atmospheric depositions.  相似文献   

4.
Heat budget in the Japan Sea     
Naoki Hirose  Cheol-Ho Kim  Jong-Hwan Yoon 《Journal of Oceanography》1996,52(5):553-574
The long-term mean (31-year mean) surface heat fluxes over the Japan Sea are estimated by the bulk method using the most of the available vessel data with the resolution of 1o×1o. The long-term annual mean net heat flux is about –53 W m–2 (negative sign means upward heat flux) with the annual range from 133 W m–2 in May to –296 W m–2 in December. The small gain of heat in the area near Vladivostok seems to indicate the existence of cold water flowing from the north. In that area in winter, the mean loss of heat attains about 200 W m–2, and the Bowen's ratio is over the unity. The largest insolation occurs in May in the Japan Sea, and the upward latent heat flux becomes the largest in November in this area. The heat flux of Haney type is also calculated, and the result, shows that the constantQ 1 has the remarkable seasonal and spatial variation, while the coefficientQ 2 has relatively small variation throughout all seasons. Under the assumption of constant volume transport of 1.35×106 m3s–1 through the Tsugaru Strait, the long-term averages of the volume transport through the Tsushima and Soya Straits are estimated to be about 2.20 and 0.85×106 m3s–1 from the result of the mean surface heat flux, respectively.  相似文献   

5.
Sediment trap experiments in the water column off southwestern Taiwan:234Th fluxes     
Wei  Ching-Ling  Jen  Kwung-Lung  Chu  Kenson 《Journal of Oceanography》1994,50(4):403-414
The activity of234Th (t 1/2=24.1 days) in dissolved, particulate and sediment trap samples was determined in the water column off southwestern Taiwan during 2–4 October, 1993. Vertical234Th fluxes measured by the free-floating sediment traps ranged from 363 to 2290 dpm m–2 d–1 in the upper 450 m. Th-234 fluxes predicted from the irreversible scavenging model concur with those measured by the sediment traps. Comparison of the residence times of particulate234Th and particulate organic carbon showed that their respective values differ by a factor of approximately 23, which suggests organic carbon is preferentially recycled relative to234Th in the euphotic zone.  相似文献   

6.
Tidal energy balance in the Seto Inland Sea     
Tetsuo Yanagi  Hidetaka Takeoka  Hideshi Tsukamoto 《Journal of Oceanography》1982,38(5):293-299
The tidal volume transport in the Seto Inland Sea is calculated. The cross-section where the volume transport of the M2 tide is zero, is located around the western part of Bisan Strait. The tidal energy dissipation of the M2 tide by friction is 6.30×1016 ergs s–1 in the Seto Inland Sea. The quality factorQ for the M2 tide is 20.2. The total energy dissipation of the M2, S2, K1 and O1 tides is 7.99×1016 ergs s–1.  相似文献   

7.
Carbon dioxide in surface seawaters of the Seto Inland Sea,Japan     
Eiji Ohtaki  Eiji Yamashita  Fukuichi Fujiwara 《Journal of Oceanography》1993,49(3):295-303
Observations were made of time variations of carbon dioxide in seawater, pCO2, and in the atmosphere, PCO2, in the Seto Inland Sea of Japan. The pCO2 data showed well defined diurnal variation; high values at nighttime and low values during daylight hours. The pCO2 correlated negatively with dissolved oxygen. These results denote that the diurnal variation of pCO2 is associated with effects of photoplankton's activity in seawater. The pCO2 measured in the Seto Inland Sea showed higher values than the PCO2 during June to November, denoting transport of carbon dioxide from the sea surface to the atmosphere, and lower values during December to May, denoting transport of carbon dioxide from the atmosphere to the sea surface. The exchange rates of carbon dioxide were calculated using working formula given by Andriéet al. (1986). The results showed that the Seto Inland Sea gained carbon dioxide of 1.0 m-mol m–2 d–1 from the atmosphere in March and lost 1.7 m-mol m–2 d–1 to the atmosphere in August.  相似文献   

8.
Sea-bed Mixing and Particle Residence Times in Biologically and Physically Dominated Estuarine Systems: a Comparison of Lower Chesapeake Bay and the York River Subestuary     
T.M. Dellapenna  S.A. Kuehl  L.C. Schaffner 《Estuarine, Coastal and Shelf Science》1998,46(6):777-795
Biologically dominated lower Chesapeake Bay and the physically dominated York River subestuary are contrasted in terms of the dynamics of sediment mixing, strata formation and sea-bed particle residence times. Two lower bay sites were examined; both are located within the bay stem plains and are characterized by muddy sand and an abundance of large, deep-dwelling organisms. X-radiographs indicate extensive biological reworking of sediments, with no long-term preservation of physical stratification.210Pb profiles reveal low sediment accumulation rates at both lower bay sites (<0·1 cm year−1), but significant differences in biological mixing depths (25vs40 cm) and biodiffusivity (>80vs6–30 cm2year−1). In contrast, the York River site, located within a partially-filled palaeochannel, is predominantly mud with a depauperate benthic community dominated by small, short-lived, shallow-dwelling organisms. Although210Pb accumulation rates at the York River site (<0·2 cm year−1) are similar to those measured in the lower bay, there is little bioturbation. In addition, transient bed forms at the York River site form laterally persistent, linear ridges and furrows sub-parallel to the channel, spaced 10–20 m apart. These observations, coupled with evidence of episodic erosion and deposition from radioisotope and porosity profiles, and X-radiographs, suggest that the upper 60–120 cm of the sea-bed are dominated by physical mixing. Deep mixing and low accumulation rates result in long residence times of particles in the mixed upper portion of the sea-bed (102year) at both locations, despite different mixing controls [i.e. biological (diffusive)vsphysical (advective)].  相似文献   

9.
Sulfur diagenesis and burial on the Amazon shelf: Major control by physical sedimentation processes     
Robert C. Aller  Neal E. Blair 《Geo-Marine Letters》1996,16(1):3-10
Early diagenetic properties of Amazon shelf muds are dominated by nonsulfidic Fe and Mn cycling, resulting in relatively little S deposition compared to previously studied marine margin environments. Despite abundant potential reactants typical of sulfidic deposits, authigenic sulfides represent only ~ 10% of diagenetically reduced Fe, and DOP (degree of pyritization) is only ~0.02. The average C/S (wt wt–1) ratio of buried sediment below the zone of SO4 2- reduction is ~ 7.4, ~ 2.6 times more than the commonly assumed modern shelf average of ~ 2.8. The deltaic burial rate forS is ~ 0.65 × 106 tons yr–1. Relatively lowS deposition is promoted by terrestrial weathering that delivers reactive oxide debris, but apparently depends most strongly on reoxidation and rapid burial by intense physical reworking and fluid-mud formation. Diagenetic models of S distributions demonstrate rapid sediment reworking (~ 10–100 cm yr–1 as apparent advection), substantialS reoxidation (84–98%), and in one case, massive sediment deposition of up to ~ 5 m of sediment in ~ 1 year. Extremely low DOP coupled with dominance by nonsulfidic reduced-Fe minerals and lack of biogenic sedimentary structures may be an indicator in marine organic-rich muds of intense physical reworking under oxygenated waters.  相似文献   

10.
Radiocarbon-derived sedimentation rates in the Gulf of Mexico     
Peter H. Santschi  Gilbert T. Rowe   《Deep Sea Research Part II: Topical Studies in Oceanography》2008,55(24-26):2572
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

11.
Characteristics of turbulent boundary layers over a rough bed under saw-tooth waves and its application to sediment transport   总被引:1,自引:0,他引:1  
Suntoyo  Hitoshi Tanaka  Ahmad Sana   《Coastal Engineering》2008,55(12):1102-1112
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

12.
Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain, NE Atlantic   总被引:2,自引:0,他引:2  
Jenny Brunnegrd  Sibylle Grandel  Henrik Sthl  Anders Tengberg  Per O.J. Hall 《Progress in Oceanography》2004,63(4):159-181
Rates of transformation, recycling and burial of nitrogen and their temporal and spatial variability were investigated in deep-sea sediments of the Porcupine Abyssal Plain (PAP), NE Atlantic during eight cruises from 1996 to 2000. Benthic fluxes of ammonium (NH4) and nitrate (NO3) were measured in situ using a benthic lander. Fluxes of dissolved organic nitrogen (DON) and denitrification rates were calculated from pore water profiles of DON and NO3, respectively. Burial of nitrogen was calculated from down core profiles of nitrogen in the solid phase together with 14C-based sediment accumulation rates and dry bulk density. Average NH4 and NO3-effluxes were 7.4 ± 19 μmol m−2 d−1 (n = 7) and 52 ± 30 μmol m−2 d−1 (n = 14), respectively, during the period 1996–2000. During the same period, the DON-flux was 11 ± 5.6 μmol m−2 d−1 (n = 5) and the denitrification rate was 5.1 ± 3.0 μmol m−2 d−1 (n = 22). Temporal and spatial variations were only found in the benthic NO3 fluxes. The average burial rate was 4.6 ± 0.9 μmol m−2 d−1. On average over the sampling period, the recycling efficiency of the PON input to the sediment was 94% and the burial efficiency hence 6%. The DON flux constituted 14% of the nitrogen recycled, and it was of similar magnitude as the sum of burial and denitrification. By assuming the PAP is representative of all deep-sea areas, rates of denitrification, burial and DON efflux were extrapolated to the total area of the deep-sea floor (>2000 m) and integrated values of denitrification and burial of 8 ± 5 and 7 ± 1 Tg N year−1, respectively, were obtained. This value of total deep-sea sediment denitrification corresponds to 3–12% of the global ocean benthic denitrification. Burial in deep-sea sediments makes up at least 25% of the global ocean nitrogen burial. The integrated DON flux from the deep-sea floor is comparable in magnitude to a reported global riverine input of DON suggesting that deep-sea sediments constitute an important source of DON to the world ocean.  相似文献   

13.
Accumulation rate and heavy metal pollution in Osaka Bay sediments     
Eiji Matsumoto  Setsuya Yokota 《Journal of Oceanography》1978,34(3):108-115
The accumulation rates of sediment cores in Osaka Bay have been determined by using210Pb dating technique. In the upper 10 cm210Pbex contents show a constant value with depth. The accumulation rates below the homogeneous layer of sediments ranging from 0.12 to 0.61cm y–1 (0.067–0.34 g cm–2 y–1) were obtained. The higher contents of Zn, Cu, Pb and Cr were observed in the upper 10 to 30 cm of sediments. Assuming that the increment of heavy metal content in sediments is due to anthropogenic origin, the amount of anthropogenic input of heavy metals into sediments were estimated to be 1,300–2,700g cm–2 for Zn, 150 – 480 for Cu, 360 – 410 for Pb and 320 – 480 for Cr. The increment appears to start about 100 years ago. In surfical sediments most of heavy metal contents exceeded the background content, and then most part of Osaka Bay is polluted by heavy metals.  相似文献   

14.
Stable carbon isotope ratios of plankton carbon and sinking organic matter from the Atlantic sector of the Southern Ocean   总被引:3,自引:0,他引:3  
Gerhard Fischer 《Marine Chemistry》1991,35(1-4)
The stable carbon isotope composition of particulate organic carbon (POC) from plankton, sediment trap material and surface sediments from the Atlantic sector of the Southern Ocean were determined. Despite low and constant water temperatures, large variations in the δ13C values of plankton were measured. 13C enrichments of up to 10‰ coincided with a change in the diatom assemblage and a two-fold increase in primary production. Increased CO2 consumption as a result of rapid carbon fixation may result in diffusion limitation reducing the magnitude of the isotope fractionation. The δ13C values of plankton from sea-ice cores display a relationship with the chlorophyll a content. High ‘ice-algae’ biomass, in combination with a limited exchange with the surrounding seawater, results in values of about − 18 to − 20‰. It is assumed that these values are related to a reduced CO2 availability in the sea-ice system. In comparison with plankton, sinking krill faeces sampled by traps can be enriched by 2–5‰ in 13C (e.g. central Bransfield Strait). In contrast, the transport of particles in other faeces, diatom aggregates or chains results in minor isotope changes (e.g. Drake Passage, Powell Basin, NW Weddell Sea). A comparison between the δ13C values of sinking matter and those of surface sediments reveals that 13C enrichments of up to 3–4‰ may occur at the sediment-water boundary layer. These isotopic changes are attributed to high benthic respiration rates.  相似文献   

15.
Process-based model for nearshore hydrodynamics, sediment transport and morphological evolution in the surf and swash zones     
R. Bakhtyar  A. Ghaheri  A. Yeganeh-Bakhtiary  D.A. Barry 《Applied Ocean Research》2009,31(1):44-56
Hydrodynamics and sediment transport in the nearshore zone were modeled numerically taking into account turbulent unsteady flow. The flow field was computed using the Reynolds Averaged Navier–Stokes equations with a kε turbulence closure model, while the free surface was tracked using the Volume-Of-Fluid technique. This hydrodynamical model was supplemented with a cross-shore sediment transport formula to calculate profile changes and sediment transport in the surf and swash zones. Based on the numerical solutions, flow characteristics and the effects of breaking waves on sediment transport were studied. The main characteristic of breaking waves, i.e. the instantaneous sediment transport rate, was investigated numerically, as was the spatial distribution of time-averaged sediment transport rates for different grain sizes. The analysis included an evaluation of different values of the wave friction factor and an empirical constant characterizing the uprush and backwash. It was found that the uprush induces a larger instantaneous transport rate than the backwash, indicating that the uprush is more important for sediment transport than the backwash. The results of the present model are in reasonable agreement with other numerical and physical models of nearshore hydrodynamics. The model was found to predict well cross-shore sediment transport and thus it provides a tool for predicting beach morphology change.  相似文献   

16.
Species and concentrations of selenium and nutrients in Tanabe Bay during red tide due toGymnodinium nagasakiense     
Yuichi Koike  Yuzuru Nakaguchi  Keizo Hiraki  Terufumi Takeuchi  Tomoyoshi Kokubo  Takashi Ishimaru 《Journal of Oceanography》1993,49(6):641-656
A red tide due toGymnodinium nagasakiense was observed in August 1988 in Tanabe Bay, Wakayama Prefecture, Japan. The maximum cell concentration ofG. nagasakiense reached 1×105 cells ml–1 at the surface water. From May to September 1988, the following were monitored: water temperature, salinity, chlorophylla, D.O., dissolved nutrients (NO2–N, NO3–N, NH4–N, PO4–P DON, DOP), particulate nutrients (PON, POP) and three dissolved selenium species [Se(IV), Se(VI), Organic Se]. Dissolved inorganic nitrogen (NO3–N, NH4–N) decreased but PON, POP, DON, DOP and inorganic phosphate increased at the peak of the bloom. The concentration of organic selenium increased up to the bloom initiation period which started on 5 July, and then the concentration of Se(IV) increased as the concentration of organic selenium decreased at the peak of the bloom (3 August). The strong relationship was found between the concentration of Se(IV) and the cell concentration ofG. nagasakiense (r 2=0.98). The Se(IV) requirement ofG. nagasakiense was 2.89×10–17 moles cell–1, which was agreed well with 4.4×10–17 moles cell–1 found in a laboratory experiment onG. nagasakiense using selenium spiked artificial sea water medium. The average ratio of Se(IV) to dissolved inorganic nitrogen (DIN) during the red tide bloom was 11441, the ratio of Se(IV) to DIN at the surface with the maximum cell concentration ofG. nagasakiense of 1×105 cells ml–1 was 1137. These results suggested that selenium may play an important role in red tide outbreak ofG. nagasakiense.  相似文献   

17.
Seasonal deposition and reworking at the sediment-water interface on the northwestern Iberian margin     
S. Schmidt  Tj. C. E. van Weering  J. -L. Reyss  P. van Beek 《Progress in Oceanography》2002,52(2-4)
Seabed distributions of 234Th excess (Thxs) were determined in the upper centimetres of 38 sediment cores from the north-western Iberian Margin, sampled from 41–44°N and from 9–12°E during five OMEX II cruises. Three main areas, a northern, and at 42°38 and 42°N, were investigated during representative seasons (winter, spring and summer). Low 234Thxs activities in summer 1998 (18–252 Bq per kg) were similar to those measured in summer 1997. In winter 234Th also showed moderate excess. The highest values were observed in spring with surface 234Thxs values up to 402 Bq kg−1. Maximum penetration depths of 234Thxs ranged from a few mm to 3 cm. 234Thxs activities always showed a smooth decrease with depth, without any evidence of non-local mixing. Thus particle mixing on a short time scale can be described as an eddy diffusive process, and bioturbation rates, calculated on this basis, range from 0.02 to 3.07 cm2 per year. Data (activities, inventories, bioturbation rates) are discussed in order to relate the observed surface and down-core variations to spatial and seasonal trends. Using 234Thxs data in sediment as a substitute for sediment trap estimates, particle fluxes were calculated from 234Thxs inventories. The range of 234Th-derived particle fluxes for the north-western Iberian Margin is 16–1418 mg.m−2.d−1. Mean values indicate a gradual decrease of mass fluxes from the shelf to the open ocean. On a 100-day scale, the northern area (43–44°N) represents a low sedimentation regime. Further south, around 42°–43°N, particle inputs are more important. On the middle slope, around 1000 to 2000 m depth, high inventories and bioturbation rates indicate enhanced, and probably organic-rich, particle fluxes to the seafloor, particularly in spring.  相似文献   

18.
Benthic remineralization and burial of biogenic SiO2, CaCO3, organic carbon, and detrital material in the Southern Ocean along a transect at 170° West     
F. L. Sayles  W. R. Martin  Zanna Chase  R. F. Anderson 《Deep Sea Research Part II: Topical Studies in Oceanography》2001,48(19-20)
We investigated the composition, recycling, and mass accumulation rates of sediments along a transect in the Southern Ocean located from 66°S to 57°S at 170°W. This transect also corresponds to the location of a sediment trap mooring line. The sediments at the seven sites studied range from largely terrigenous material to nearly pure (>90%) biogenic silica. CaCO3 is a minor but persistent component at most sites. Mass accumulation rates have been determined on the basis of excess 230Th in the sediments, i.e., 230Th-normalized accumulation rates. The influence of redistribution of sediments on the sea floor has been estimated from 14C analyses. The recycling of material delivered to the sediments has been characterized on the basis of pore water studies that make extensive use of both in situ sampling and shipboard extractions. The influence of the highly variable rates of input of particulate matter that characterize much of the Southern Ocean upon pore water gradients and fluxes across the sediment water interface has been considered.We find only poor correspondence between BSiO2 burial fraction (=burial/particulate flux), a quantifiable measure of preservation efficiency, and BSiO2 particulate rain along the transect. However, preservation does appear to be closely linked to a combination of sedimentation rate and particulate rain.The burial fraction of BSiO2 is small relative to benthic rain (5–19%). Despite the small fraction buried, burial flux normalized to (sedimentation rate)1/2 appears to provide a very consistent means of predicting benthic particulate rain over a large range of rain rates, including data from a number of different studies and environments. At sites with BSiO2 rain 250 mmol m−2 yr−1 the average difference between predicted and observed rain is 25–30%. Such rain rates occur in many marine areas, particularly the Southern Ocean, with the result that this relationship potentially provides a means of estimating BSiO2 benthic rain over prolonged periods in the past on the basis of readily measured sediment parameters.At the southern-most deep ocean station, the particulate flux was characterized by an extremely high Corg/CaCO3 ratio (>10), but this high ratio does not appear to have a substantial influence on CaCO3 burial. CaCO3 is preserved in the sediments at this site despite a particulate flux with a 10-fold excess of Corg above that required for complete dissolution in the sediments. The unexpectedly high preservation of CaCO3 is due largely to the very steep Corg oxidation rate profile at this site. As a result, a large fraction of the organic matter oxidized in the sediments does so in close proximity to the sediment–water interface where most of the metabolic CO2 is neutralized by CO32− from the overlying water, rather than by the dissolution of sedimentary CaCO3.Diagenetic modeling indicates that at several of the stations, the remineralization fluxes of carbonate species across the sediment–water interface may not have been at steady state as a result of the highly pulsed nature of particulate rain in this environment. We estimate that at the time of our sampling it is possible that near-interface fluxes could have been a factor of 1.6–2 times the annual average.At every site on the transect, the burial fluxes of detrital material are substantially greater than the detrital particulate rain measured in the sediment traps, by as much as a factor of 40. Detrital burial is bimodal, being greatest at the southern and northern extremes of the transect. We postulate that the excess of burial over particulate rain in the south reflects the contribution of ice rafted debris at these high latitudes. Increases in the supply at the northern stations must have a different source. We believe that the excess at these stations is material eroded from the sea floor to the west, possibly on the Campbell Plateau, and advected by currents to the northern portion of the transect at depths below the shallow traps.  相似文献   

19.
Observed relationship between the drag coefficient,Cd, and stability parameter, (−z/L)     
Tatsuo Konishi  Tosio Nan-niti 《Journal of Oceanography》1979,35(5):209-214
Momentum and heat flux were measured with a sonic anemometer at the Marine Observation Tower in the port of ItÔ. Under unstable conditions (T w -T a =3C4C), using the eddy correlation method, results show thatCd=(1.2±0.3)×10–3 andCh=(1.5±0.3)×10–3 at 5.5 m above mean sea level except for the case of weak winds.An unexpected relationship betweenCd and (–z/L) was observed, that is,Cd decreases as (–z/L) increases. If roughness variation over the sea is taken into account, we can explain the decrease in the range of (–z/L) less than 1, but not in the range greater than 1. This is due to a strong instability effect and the change of roughness class, from moderately rough to smooth.  相似文献   

20.
Response of early Ruppia cirrhosa litter breakdown to nutrient addition in a coastal lagoon affected by agricultural runoff     
Margarita Menndez 《Estuarine, Coastal and Shelf Science》2009,82(4):608-614
The response of early Ruppia cirrhosa Petagna (Grande) litter decomposition to external nitrogen and phosphorus availability in La Tancada (Ebro River, NE Spain), a coastal lagoon that receives agricultural freshwater runoff from rice fields has been examined. Recently abscised dead R. cirrhosa stems were collected and 25 g of fresh weight was placed in litter bags with a mesh size of 100 μm and 1 mm. These bags were fertilised by adding nitrogen (N), a mixture of nitrogen plus phosphorus (N + P), or phosphorus (P), or were left untreated (CT). Macroinvertebrates were retrieved from the bags and the ash-free dry weight, and carbon, and N and P content of the remaining plant material were measured after 0, 3, 7, 14, 22 and 32 days. Litter decomposition rates, k (day−1), were estimated using a simple exponential model. Litter decay was clearly accelerated by the addition of P in the fine (100 μm) litter bags (0.042), but when N was added alone (0.0099) the decomposition rate was lower than in the CT treatments (0.022). No significant difference was observed between the N (0.0099–0.018) and N + P (0.0091–0.015) treatments in either the fine or the coarse (1 mm) litter bags. These results could be attributed to the relatively high availability of external (environmental) and internal (detritus contents) N. No significant effect of macro invertebrates was observed in the CT treatment or under N or P or N + P addition. The ratio between the decomposition rates in coarse and fine litter bags (kc/kf) was lower in disturbed Tancada lagoon (0.82) than in Cesine lagoon (2.11), a similar Mediterranean coastal water body with almost pristine conditions. These results indicate that, in addition to data on macroinvertebrate community structure, decomposition rates could also be used to assess water quality in coastal lagoons.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vertical distributions of suspended particles in Osaka Bay were measured by using anin situ beam attenuation meter. The concentration of suspended particles near the bottom increases rapidly toward the bottom where size of sediment is in a range of silt. The settling velocity of suspended particles near the bottom was measured with the use of a settling tower in the laboratory. The settling velocity of the suspended particles with diameter from 10 to 100m is 2×10–3cm s–1 to 5×10–2cm s–1. The density of the particles ranges from 2.0 to 1.1 and decreases with increasing particle diameter.  相似文献   

2.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

3.
The rates of the reduction of Cr(VI) with S(IV) were measured in deaerated NaCl solution as a function of pH, temperature and ionic strength. The rates of the reaction were found to be first order with respect to Cr(VI) and second order with respect to S(IV), in agreement with previous results obtained at concentrations two order higher than the present study. The reaction also showed a first-order dependence of the rates on the concentration of the proton and a small influence of temperature with an apparent energy of activation ΔHapp of 22.8 ± 3.4 kJ/mol. The rates were independent of ionic strength from 0.01 to 1 M. The rate of Cr(VI) reduction is described by the general expression
−d[Cr(VI)]/dt=k[Cr(VI)][S(IV)]2
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号