首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Gold–silver sulfoselenides of the series Ag3AuSexS2–x (x = 0.25; 0.5; 0.75; 1; 1.5) were synthesized from melts on heating stoichiometric mixtures of elementary substances in evacuated quartz ampoules. According to X-ray single-crystal analysis, compound Ag3Au1Se0.5S1.5 has the structure of gold–silver sulfide Ag3AuS2 (uytenbogaardtite) with space group R3c. The volume of this compound is 1.5% larger than that of the sulfide analog. According to powder X-ray diffraction, compounds Ag3AuSe0.25S1.75 and Ag3AuSe0.75S1.25 also show trigonal symmetry. Compounds Ag3AuSeS and Ag3AuSe1.5S0.5 are structurally similar to the low-temperature modification of gold–silver selenide Ag3AuSe2 (fischesserite) with space group I4132. These data suggest the existence of two solid solutions: petzite-type cubic Ag3AuSe2–Ag3AuSeS (space group I4132) and trigonal Ag3AuSe0.75S1.25–Ag3AuS2 (space group R3c).It was found that fischesserite from the Rodnikovoe deposit (southern Kamchatka) contains 3.5–4 wt.% S. At the Kupol deposit (Chukchi Peninsula), fischesserite contains up to 2.5 wt.% S and uytenbogaardtite contains up to 5.3 wt.% Se. At the Ol’cha and Svetloe (Okhotskoe) deposits (Magadan Region), uytenbogaardtite contains up to 0.5 and 1.8 wt.% Se, respectively. Literature data on the compositions of silver–gold selenides and sulfides from different deposits were summarized and analyzed. Analysis of available data on the S and Se contents of natural fischesserite and uytenbogaardtite confirms the miscibility gap near composition Ag3AuSeS.  相似文献   

2.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios.  相似文献   

3.
The forms of Au and Ag occurrence in the crystallization products of melts in the Fe–S–Ag–Au system depending on the proportions of Fe/S and Ag/Au have been studied at (Fe + S)/(Ag + Au) = 0.1. It is shown that the S-rich systems with S/Fe = 2 contain Au–Ag sulfides and Au–Ag alloys. The systems depleted in S with S/Fe = 1 contain only Au–Ag alloys. The results of XPS provide evidence for the sulfide and metallic components of Au and Ag among the crystallization products of melts in the system studied at S/Fe = 2 and a metallic component with S/Fe = 1. According to the data of electron microprobe analysis, the content of “invisible” forms of noble metals in pyrite and pyrrhotite is < 0.024 wt % for Au and <0.030 wt % for Ag; the contents of “invisible” Au and Ag in troilites are 0.040 ± 0.013 wt % Au and 0.079 ± 0.016 wt % Ag.  相似文献   

4.

New data on mercurial mineralization are presented, and a detailed characteristic is given for the first discovery of mercurous silver in ores of the Rogovik gold–silver deposit (the Omsukchan trough, Northeastern Russia). It was found that native silver in the examined ores occurs as finely-dispersed inclusions in quartz filling microcracks and interstitions. It also occurs in associations with kustelite, Ag sulfosalts and selenides, selenitic acanthite, and argyrodite. The mercury admixture varies from “not detected” in the central parts of grains to 0.22–1.70 wt % along the edges, or, in independent grains, to the appearance of Ag amalgams containing 10.20–24.61 wt % of Hg. The xenomorph form of grains of 50 μm or less in size prevails. It is assumed that the appearance of mercurial mineralization is caused by the superposition of products of the young Hg-bearing Dogda–Erikit belt upon the more ancient Ag-bearing Omsukchan trough.

  相似文献   

5.
During supergene alteration of auriferous carbonate ore, the weathering fluids formed are likely to be alkaline and therefore unsuitable as a medium for gold transport as a chloride complex. Secondary gold remobilization in such deposits can often be attributed instead to gold complexing by sulphur-bearing ligands. Gold and silver solubility in the systems AuSO2H2O and AgSO2H2O respectively, from the thermodynamic data available, is due to complex formation with thiosulphate and bisulphide ligands. The most stable gold complexes, Au(S2O3)23− (at φO2 > 10−60) and Au(HS)2 (atφO2 < 10−60), exist in neutral or alkaline solutions. Like gold, silver forms a stable thiosulphate complex, Ag(S2O3)3−2 in moderately oxidizing, and bisulphide complexes, AgHS0 and Ag(HS)2 in reducing, alkaline media. Silver solubility in highly oxidized, neutral or acid solutions is increased by formation of AgS2O3, Ag+ and AgSO4 complexes.Colloidal, crystalline and alloyed gold and silver reacted with 0.1 M Na2S2O3 do not, however, demonstrate independent solubility. The rate of gold solubility in 0.1 M Na2S2O3, for example, is increased both by the presence of silver-thiosulphate complexes and alloyed silver. It is possible that such behaviour is due to the formation a mixed metal complex of the type (Au, Ag)(S2O3)23−.The nature and mineral association of secondary gold in the oxidized zone of carbonate ore at Wau. in Papua New Guinea, is consistent with prior remobilization as a thiosulphate complex. Here the secondary gold is coarsely crystalline, alloyed with 50–75 at% Ag and enriched at the watertable and with manganese dioxide in the oxidized zone.  相似文献   

6.
The 7.1 Ma Broken Hills adularia-sericite Au–Ag deposit is currently the only producing rhyolite-hosted epithermal deposit in the Hauraki Goldfield of New Zealand. The opaque minerals include pyrite, electrum, acanthite (Ag2S), sphalerite, and galena, which are common in other adularia-sericite epithermal deposits in the Hauraki Goldfield and elsewhere worldwide. Broken Hills ores also contain the less common minerals aguilarite (Ag4SeS), naumannite (Ag2Se), petrovskaite (AuAgS), uytenbogaardtite (Ag3AuS2), fischesserite (Ag3AuSe2), an unnamed silver chloride (Ag2Cl), and unnamed Ag?±?Au minerals. Uytenbogaardtite and petrovskaite occur with high-fineness electrum. Broken Hills is the only deposit in the Hauraki Goldfield where uytenbogaardtite and petrovskaite have been identified, and these phases appear to have formed predominantly from unmixing of a precursor high-temperature phase under hypogene conditions. Supergene minerals include covellite, chalcocite, Au-rich electrum, barite, and a variety of iron oxyhydroxide minerals. Uytenbogaardtite can form under supergene and hypogene conditions, and textural relationships between uytenbogaardtite and associated high-fineness electrum may be similar in both conditions. Distinguishing the likely environment of formation rests principally on identification of other supergene minerals and documenting their relationships with uytenbogaardtite. The presence of aguilarite, naumannite, petrovskaite, and fischesserite at Broken Hills reflects a Se-rich mineral assemblage. In the Hauraki Goldfield and the western Great Basin, USA, Se-rich minerals are more abundant in provinces that are characterized by bimodal rhyolite–andesite volcanism, but in other epithermal provinces worldwide, the controls on the occurrences of Se-bearing minerals remain poorly constrained, in spite of the unusually high grades associated with many Se-rich epithermal deposits.  相似文献   

7.
The first data on native silver from the Rogovik Au–Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk–Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold–silver (Au–Ag), silver–base metal (Ag–Pb), and gold–silver–base metal (Au–Ag–Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au–Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag–Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au–Ag–Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au–Ag mineralization not only in the Omsukchan Trough, but also in OCVB as a whole, is caused by superposition of the younger Dogda–Erikit Hg-bearing belt on the older Ag-bearing Omsukchan Trough. In practice, the results can be used to determine the general line of prospecting and geological exploration at objects of this type.  相似文献   

8.
9.
Doklady Earth Sciences - Quaternary chalcogenides of AuX (AuTe0.7Se0.2S0.1), Au3X10 (Au3Te6Se3S, Au3Te6Se2.5S1.5), and AuX2 (AuTe1.8Se0.2, AuTe1.8Se0.1S0.1) composition were synthesized for the...  相似文献   

10.
The paper reports the mineralogical and geochemical features of the Kysylga gold deposit located in the hornfelsed Norian sedimentary rocks and classified with low-sulfide gold–quartz type of deposits typical of the Verkhoyansk–Kolyma metallogenic province. Detailed typomorphic study of the major minerals (quartz, arsenopyrite, and gold) of the ore veins shows that the deposit is assigned to the gold–silver type. Mineralogical and geochemical data substantiate this conclusion.  相似文献   

11.
Summary Integrated X-ray powder diffraction, scanning electron microscopy, electron probe, and transmission electron microscopy studies have identified the rare contact assemblage calaverite–sylvanite–hessite in a sample of gold ore from the Golden Mile deposit, Kalgoorlie, Australia. The presence of coexisting calaverite–hessite at Kalgoorlie is a non-equilibrium assemblage whereby the stable hessite-bearing assemblage is hessite–sylvanite, which formed from the breakdown of the -phase or -phase below 120°C, stützite+-phase, or sylvanite+stützite+-phase, as predicted by Cabri (1965).  相似文献   

12.
Wang  Jian  Sun  Fengyue  Li  Bile  Tian  Lihui 《中国地球化学学报》2020,39(4):574-586
Acta Geochimica - We report U–Pb dating of zircon, as well as geochemical and Hf isotope data, in order to constrain the formation time, magma source, and tectonic setting of granite porphyry...  相似文献   

13.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

14.
Doklady Earth Sciences - In the Pd–Bi–Se system, the only known mineral containing all three elements is padmaite PdBiSe. Three compounds with different element ratios have been found...  相似文献   

15.
Previous prospectivity modelling for epithermal Au–Ag deposits in the Deseado Massif, southern Argentina, provided regional-scale prospectivity maps that were of limited help in guiding exploration activities within districts or smaller areas, because of their low level of detail. Because several districts in the Deseado Massif still need to be explored, prospectivity maps produced with higher detail would be more helpful for exploration in this region.We mapped prospectivity for low- and intermediate-sulfidation epithermal deposits (LISEDs) in the Deseado Massif at both regional and district scales, producing two different prospectivity models, one at regional scale and the other at district-scale. The models were obtained from two datasets of geological evidence layers by the weights-of-evidence (WofE) method. We used more deposits than in previous studies, and we applied the leave-one-out cross validation (LOOCV) method, which allowed using all deposits for training and validating the models. To ensure statistical robustness, the regional and district-scale models were selected amongst six combinations of geological evidence layers based on results from conditional independence tests.The regional-scale model (1000 m spatial resolution), was generated with readily available data, including a lithological layer with limited detail and accuracy, a clay alteration layer derived from a Landsat 5/7 band ratio, and a map of proximity to regional-scale structures. The district-scale model (100 m spatial resolution) was generated from evidence layers that were more detailed, accurate and diverse than the regional-scale layers. They were also more cumbersome to process and combine to cover large areas. The evidence layers included clay alteration and silica abundance derived from ASTER data, and a map of lineament densities. The use of these evidence layers was restricted to areas of favourable lithologies, which were derived from a geological map of higher detail and accuracy than the one used for the regional-scale prospectivity mapping.The two prospectivity models were compared and their suitability for prediction of the prospectivity in the district-scale area was determined. During the modelling process, the spatial association of the different types of evidence and the mineral deposits were calculated. Based on these results the relative importance of the different evidence layers could be determined. It could be inferred which type of geological evidence could potentially improve the modelling results by additional investigation and better representation.We conclude that prospectivity mapping for LISEDs at regional and district-scales were successfully carried out by using WofE and LOOCV methods. Our regional-scale prospectivity model was better than previous prospectivity models of the Deseado Massif. Our district-scale prospectivity model showed to be more effective, reliable and useful than the regional-scale model for mapping at district level. This resulted from the use of higher resolution evidential layers, higher detail and accuracy of the geological maps, and the application of ASTER data instead of Landsat ETM + data. District-scale prospectivity mapping could be further improved by: a) a more accurate determination of the age of mineralization relative to that of lithological units in the districts; b) more accurate and detailed mapping of the favourable units than what is currently available; c) a better understanding of the relationships between LISEDs and the geological evidence used in this research, in particular the relationship with hydrothermal clay alteration, and the method of detection of the clay minerals; and d) inclusion of other data layers, such as geochemistry and geophysics, that have not been used in this study.  相似文献   

16.
Mineralogy and Petrology - Monohydrocalcite, CaCO3·H2O, forms a P31 structure composed of composite rods in which a spiral arrangement of Ca ions is accompanied by spiral arrangements of CO3...  相似文献   

17.
The breccia-hosted epithermal gold–silver deposit of Chah Zard is located within a high-K, calc-alkaline andesitic to rhyolitic volcanic complex in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA), west central Iran. The total measured resource for Chah Zard is ∼2.5 million tonnes of ore at 12.7 g/t Ag and 1.7 g/t Au (28.6 t Ag, 3.8 t Au), making it one of the largest epithermal gold deposits in Iran. Magmatic and hydrothermal activity was associated with local extensional tectonics in a strike-slip regime formed in transtensional structures of the Dehshir-Baft strike-slip fault system. The host rocks of the volcanic complex consist of Eocene sedimentary and volcanic rocks covered by Miocene sedimentary rocks. LA-ICP–MS U–Pb zircon geochronology yields a mean age of 6.2 ± 0.2 Ma for magmatic activity at Chah Zard. This age represents the maximum age of mineralization and may indicate a previously unrecognized mineralization event in the UDMA. Breccias and veins formed during and after the waning stages of explosive brecciation events due to shallow emplacement of rhyolite porphyry. Detailed systematic mapping leads to the recognition of three distinct breccia bodies: volcaniclastic breccia with a dominantly clastic matrix; gray polymict breccia with a greater proportion of hydrothermal cement; and mixed monomict to polymict breccia with clay matrix. The polymictic breccias generated bulk-mineable ore, whereas the volcaniclastic breccia is relatively impermeable and largely barren. Precious metals occur with sulfide and sulfosalt minerals as disseminations, as well as in the veins and breccia cements. There is a progression from pyrite-dominated (stage 1) to pyrite-base metal sulfide and sulfosalt-dominated (stages 2 and 3) to base metal sulfide-dominated (stage 4) breccias and veins. Hydrothermal alteration and deposition of gangue minerals progressed from illite-quartz to quartz-adularia, carbonate, and finally gypsum-dominated assemblages. Free gold occurs in stages 2 and 4, principally intergrown with pyrite, quartz, chalcopyrite, galena, sphalerite, and Ag-rich tennantite–tetrahedrite, and also as inclusions in pyrite. High Rb/Sr ratios in ore-grade zones are closely related to sericite and adularia alteration. Positive correlations of Au and Ag with Cu, As, Pb, Zn, Sb, and Cd in epithermal veins and breccias suggest that all these elements are related to the same mineralization event.  相似文献   

18.

This paper presents the results of thermodynamic calculations on the solubility of gold and silver in low‐temperature, moderately saline, oxygen‐saturated fluids. Based on the solubilities of gold and silver it is argued that the quantity of gold transported by the fluids depends on the concentration of silver in the primary ores. In ores where the silver/gold ratio is high (1 to > 10), the fluids become saturated in silver and can not dissolve geologically significant concentrations of gold. In ores where the silver/gold ratio is low (< 1), the fluids remain undersaturated with respect to silver and are able to dissolve geologically realistic concentrations of gold and silver. The oxidized fluids start depositing gold and silver as they move downwards and are reduced by the Fe+2‐bearing minerals of the primary ores. The occurrence of gold in lateritic profiles can be explained by a prolonged process of interaction between the fluid and primary ores, during which gold and silver precipitate and redissolve selectively at the gradually advancing oxidation‐reduction interface.  相似文献   

19.
New data are presented on the geology and composition of volcanic and intrusive rocks of the Orochenka caldera, which is located in the western part of the East Sikhote Alin volcanic belt. The SHRIMP and ICP MS age of zircons of volcanic and intrusive rocks, respectively, and the composition of the volcanic rocks allow comparison of these complexes with volcanic rocks of the eastern part of the volcanic structure. New data indicate the period of transition between subduction to transform regimes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号