首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 997 毫秒
1.
Coupled Model Inter-comparison Project Phase 5 (CMIP5) model outputs of the South and East Asian summer monsoon variability and their tele-connections are investigated using historical simulations (1861-2005) and future projections under the RCP4.5 scenario (2006-2100). Detailed analyses are performed using nine models having better representation of the recent monsoon teleconnections for the interactive Asian monsoon sub-systems. However, these models underestimate rainfall mainly over South Asia and Korea-Japan sector, the regions of heavy rainfall, along with a bias in location of rainfall maxima. Indeed, the simulation biases, underestimations of monsoon variability and teleconnections suggest further improvements for better representation of Asian monsoon in the climate models. Interestingly, the performance of Australian Community Climate and Earth System Simulator version 1.0 (ACCESS1.0) in simulating the annual cycle, spatial pattern of rainfall and multi-decadal variations of summer monsoon rainfall over South and East Asia appears to more realistic. In spite of large spread among the CMIP5 models, historical simulations as well as future projections of summer monsoon rainfall indicate multi-decadal variability. These rainfall variations, displaying certain epochs of more rainfall over South Asia than over East Asia and vice versa, suggest an oscillatory behaviour. Teleconnections between South and East Asian monsoon rainfall also exhibit a multi-decadal variation with alternate epochs of strengthening and weakening relationship. Furthermore, large-scale circulation features such as South Asian monsoon trough and north Pacific subtropical high depict zonal oscillatory behaviour with east-west-east shifts. Periods with eastward or westward extension of the Mascarene High, intensification and expansion of the upper tropospheric South Asian High are also projected by the CMIP5 models.  相似文献   

2.
通用地球系统模式对亚洲夏季风降水的模拟能力评估   总被引:3,自引:1,他引:2  
韩春凤  刘健  王志远 《气象科学》2017,37(2):151-160
通过与观测/再分析资料和参加第五次耦合模式比较计划(CMIP5)的模式模拟结果进行对比,评估了通用地球系统模式(CESM,1.0.3版本)对亚洲夏季风降水的模拟能力。结果表明:CESM能够合理地模拟出亚洲夏季风降水的气候平均态,但与其他CMIP5模式模拟结果类似,对中国东南地区降水模拟偏少,而对中国西部高原地区降水模拟偏多;CESM可以再现亚洲季风区降水冬弱夏强、雨带北进南退的季节变化特征,其模拟偏差具有区域性和季节性差异;从EOF分析结果来看,CESM能够模拟出亚洲夏季风降水的时空变化特征,且能较好地抓住亚洲夏季风降水与厄尔尼诺-南方涛动(El Ni?o-Southern Oscillation,简称ENSO)的相关关系。总的说来,CESM对亚洲夏季风降水的模拟是合理的,模拟水平与4个最好的CMIP5模式相当。  相似文献   

3.
Since the early or late arrival of monsoon rainfall can be devastating to agriculture and economy, the prediction of the onset of monsoon is a very important issue. The Asian monsoon is characterized by a strong annual cycle with rainy summer and dry winter. Nevertheless, most of monsoon studies have focused on the seasonal-mean of temperature and precipitation. The present study aims to evaluate a total of 27 coupled models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) for projection of the time evolution and the intensity of Asian monsoon on the basis of the annual cycle of temperature and precipitation. And future changes of onset, retreat, and intensity of monsoon are analyzed. Four models for good seasonal-mean (GSM) and good harmonic (GH) groups, respectively, are selected. GSM is based on the seasonal-mean of temperature and precipitation in summer and winter, and GH is based on the annual cycle of temperature and precipitation which represents a characteristic of the monsoon. To compare how well the time evolution of the monsoon is simulated in each group, the onset, retreat, and duration of Asian monsoon are examined. The highest pattern correlation coefficient (PCC) of onset, retreat, and duration between the reanalysis data and model outputs demonstrates that GH models’ MME predicts time evolution of monsoon most precisely, with PCC values of 0.80, 0.52, and 0.63, respectively. To predict future changes of the monsoon, the representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2073-2099 are compared with historical simulations for the period of 1979-2005 from CMIP5 using GH models’ MME. The Asian monsoon domain is expanded by 22.6% in the future projection. The onset date in the future is advanced over most parts of Asian monsoon region. The duration of summer Asian monsoon in the future projection will be lengthened by up to 2 pentads over the Asian monsoon region, as a result of advanced onset. The Asian monsoon intensity becomes stronger with the passage of time. This study has important implication for assessment of CMIP5 models in terms of the prediction of time evolution and intensity of Asian monsoon based on the annual cycle of temperature and precipitation.  相似文献   

4.
利用耦合模式比较计划(CMIP3)提供的20世纪气候模拟试验(20C3M)及A1B情景预估试验,讨论了全球增暖情景下21世纪中期中国气候的可能变化。结果表明,A1B情景下,中国夏季降水变化在-0.1~1.1mm/d,冬季降水变化在-0.2~0.2mm/d。模式对降水变化的预估存在较大不确定性。无论冬夏,预估的全国表面气温都将升高,升温幅度在1.2~2.8℃;随纬度升高,增暖幅度相应增大。模式对表面气温变化的预估能力强于对降水变化的预估能力。在A1B情景下,东亚夏季风增强,而冬季风则略为减弱,东亚夏季风雨带到达最北后南撤的时间较之20C3M滞后约一个月。  相似文献   

5.
Future change of global monsoon in the CMIP5   总被引:5,自引:1,他引:4  
This study investigates future changes of Global Monsoon (GM) under anthropogenic global warming using 20 coupled models that participated in the phase five of Coupled Model Intercomparison Project (CMIP5) by comparing two runs: the historical run for 1850–2005 and the Representative Concentration Pathway (RCP) 4.5 run for 2006–2100. A metrics for evaluation of models’ performance on GM is designed to document performance for 1980–2005 and best four models are selected. The four best models’ multi-model ensemble (B4MME) projects the following changes in the twenty-first century under the RCP4.5 scenario. (1) Monsoon domain will not change appreciably but land monsoon domain over Asia tends to expand westward by 10.6 %. (2) The annual mean and range of GM precipitation and the percentage of local summer rainfall will all amplify at a significant level over most of the global region, both over land and over ocean. (3) There will be a more prominent northern-southern hemispheric asymmetry and eastern-western hemispheric asymmetry. (4) Northern Hemisphere (NH) monsoon onset will be advanced and withdrawal will be delayed. (5) Changes in monsoon precipitation exhibits huge differences between the NH and the Southern hemisphere (SH). The NH monsoon precipitation will increase significantly due to increase in temperature difference between the NH and SH, significant enhancement of the Hadley circulation, and atmospheric moistening, against stabilization of troposphere. There is a slight decrease of the Walker circulation but not significant against the inter-model spread. There are important differences between the CMIP 3 and CMIP5 results which are discussed in detail.  相似文献   

6.
CMIP5/AMIP GCM simulations of East Asian summer monsoon   总被引:1,自引:0,他引:1  
The East Asian summer monsoon (EASM) is a distinctive component of the Asian climate system and critically influences the economy and society of the region.To understand the ability of AGCMs in capturing the major features of EASM,10 models that participated in Coupled Model Intercomparison Project/Atmospheric Model Intercomparison Project (CMIP5/AMIP),which used observational SST and sea ice to drive AGCMs during the period 1979-2008,were evaluated by comparing with observations and AMIP Ⅱ simulations.The results indicated that the multi-model ensemble (MME) of CMIP5/AMIP captures the main characteristics of precipitation and monsoon circulation,and shows the best skill in EASM simulation,better than the AMIP Ⅱ MME.As for the Meiyu/Changma/Baiyu rainbelt,the intensity of rainfall is underestimated in all the models.The biases are caused by a weak western Pacific subtropical high (WPSH) and accompanying eastward southwesterly winds in group Ⅰ models,and by a too strong and west-extended WPSH as well as westerly winds in group Ⅱ models.Considerable systematic errors exist in the simulated seasonal migration of rainfall,and the notable northward jumps and rainfall persistence remain a challenge for all the models.However,the CMIP5/AMIP MME is skillful in simulating the western North Pacific monsoon index (WNPMI).  相似文献   

7.
A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST warming patterns over both the tropical Pacific and Indian Oceans in affecting the modelling results. The increased atmospheric moisture content offsets some effects of the delayed onset and results in increased rainfall intensity during the active monsoon period. The deficiencies of using rainfall alone in assessing the potential changes of the monsoon system are also shown in this study.  相似文献   

8.
South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031–2050) and end of the twenty-first century (2081–2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space–time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation–wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño–Monsoon relationship, which is useful for predicting interannual variations of the monsoon.  相似文献   

9.
A large spread exists in both Indian and Australian average monsoon rainfall and in their interannual variations diagnosed from various observational and reanalysis products. While the multi model mean monsoon rainfall from 59 models taking part in the Coupled Model Intercomparison Project (CMIP3 and CMIP5) fall within the observational uncertainty, considerable model spread exists. Rainfall seasonality is consistent across observations and reanalyses, but most CMIP models produce either a too peaked or a too flat seasonal cycle, with CMIP5 models generally performing better than CMIP3. Considering all North-Australia rainfall, most models reproduce the observed Australian monsoon-El Niño Southern Oscillation (ENSO) teleconnection, with the strength of the relationship dependent on the strength of the simulated ENSO. However, over the Maritime Continent, the simulated monsoon-ENSO connection is generally weaker than observed, depending on the ability of each model to realistically reproduce the ENSO signature in the Warm Pool region. A large part of this bias comes from the contribution of Papua, where moisture convergence seems to be particularly affected by this SST bias. The Indian summer monsoon-ENSO relationship is affected by overly persistent ENSO events in many CMIP models. Despite significant wind anomalies in the Indian Ocean related to Indian Ocean Dipole (IOD) events, the monsoon-IOD relationship remains relatively weak both in the observations and in the CMIP models. Based on model fidelity in reproducing realistic monsoon characteristics and ENSO teleconnections, we objectively select 12 “best” models to analyze projections in the rcp8.5 scenario. Eleven of these models are from the CMIP5 ensemble. In India and Australia, most of these models produce 5–20 % more monsoon rainfall over the second half of the twentieth century than during the late nineteenth century. By contrast, there is no clear model consensus over the Maritime Continent.  相似文献   

10.
Future changes in East Asian summer monsoon precipitation climatology, frequency, and intensity are analyzed using historical climate simulations and future climate simulations under the RCP4.5 scenario using the World Climate Research Programme’s (WCRP) Coupled Model Intercomparison Project 5 (CMIP5) multi-model dataset. The model reproducibility is evaluated, and well performance in the present-day climate simulation can be obtained by most of the studied models. However, underestimation is obvious over the East Asian region for precipitation climatology and precipitation intensity, and overestimation is observed for precipitation frequency. The overestimation of precipitation frequency is mainly due to the large positive bias of the light precipitation (precipitation <10 mm/day) days, and the underestimation of precipitation intensity is mainly caused by the negative bias of the intense precipitation (precipitation >10 mm/day) intensity. For the future climate simulations, simple multi-model ensemble (MME) averages using all of the models show increases in precipitation and its intensity over almost all of East Asia, while the precipitation frequency is projected to decrease over eastern China and around Japan and increase in other regions. When the weighted MME is considered, no large difference can be observed compared with the simple MME. For the MME using the six best models that have good performance in simulating the present-day climate, the future climate changes over East Asia are very similar to those predicted using all of the models. Further analysis shows that the frequency and intensity of intense precipitation events are also projected to significantly increase over East Asia. Increases in precipitation frequency and intensity are the main contributors to increases in precipitation, and the contribution of frequency increases (contributed by 40.8 % in the near future and by 58.9 % by the end of the twenty-first century) is much larger than that of intensity increases (contributed by 29.9 % in the near future and by 30.1 % by the end of the twenty-first century). This finding also implies an increased risk of intense precipitation events over the East Asian region under global warming scenario. These results regarding future climate simulations show much greater reliability than those using CMIP3 simulations.  相似文献   

11.
The present study is aimed at revisiting the possible influence of the winter/spring Eurasian snow cover on the subsequent Indian summer precipitation using several statistical tools including a maximum covariance analysis. The snow–monsoon relationship is explored using both satellite observations of snow cover and in situ measurements of snow depth, but also a subset of global coupled ocean–atmosphere simulations from the phase 3 of the Coupled Model Intercomparison Project (CMIP3) database. In keeping with former studies, the observations suggest a link between an east–west snow dipole over Eurasia and the Indian summer monsoon precipitation. However, our results indicate that this relationship is neither statistically significant nor stationary over the last 40 years. Moreover, the strongest signal appears over eastern Eurasia and is not consistent with the Blanford hypothesis whereby more snow should lead to a weaker monsoon. The twentieth century CMIP3 simulations provide longer timeseries to look for robust snow–monsoon relationships. The maximum covariance analysis indicates that some models do show an apparent influence of the Eurasian snow cover on the Indian summer monsoon precipitation, but the patterns are not the same as in the observations. Moreover, the apparent snow–monsoon relationship generally denotes a too strong El Niño-Southern Oscillation teleconnection with both winter snow cover and summer monsoon rainfall rather than a direct influence of the Eurasian snow cover on the Indian monsoon.  相似文献   

12.
Mathew Roxy 《Climate Dynamics》2014,43(5-6):1159-1169
Over the tropical oceans, higher sea surface temperatures (SST, above 26 °C) in summer are generally accompanied by increased precipitation. However, it has been argued for the last three decades that, any monotonic increase in precipitation with respect to SST is limited to an upper threshold of 28–29.5 °C, and beyond this, the relationship fails. Based on this assessment it has often been presumed that, since the mean SSTs over the Asian monsoon basins (Indian Ocean and north-west Pacific) are mostly above the threshold, SST does not play an active role on the summer monsoon variability. It also implies that increasing SSTs due to a changing climate need not result in increasing monsoon precipitation. The current study shows that the response of precipitation to SST has a time lag, that too with a spatial variability over the monsoon basins. Taking this lag into account, the results here show that enhanced convection occurs even up to the SST maxima of 31 °C averaged over these basins, challenging any claim of an upper threshold for the SST-convection variability. The study provides us with a novel method to quantify the SST-precipitation relationship. The rate of increase is similar across the basins, with precipitation increasing at ~2 mm day?1 for an increase of 1 °C in SST. This means that even the high SSTs over the monsoon basins do play an active role on the monsoon variability, challenging previous assumptions. Since the response of precipitation to SST variability is visible in a few days, it would also imply that including realistic ocean–atmosphere coupling is crucial even for short term monsoon weather forecasts. Though recent studies suggest a weakening of the monsoon circulation over the last few decades, results here suggest an increased precipitation over the tropical monsoon regions, in a global warming environment with increased SSTs. Thus the signature of SST is found to be significant for the Asian summer monsoon, in a quantifiable manner, seamlessly through all the timescales—from short-term intraseasonal to long-term climate scales.  相似文献   

13.
This study investigates the projected changes in interannual variability of South Asian summer monsoon and changes of ENSO-monsoon relationships in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) scenarios A1B and A2, respectively, by analyzing the simulated results of twelve Coupled Model Intercomparison Project Phase 3 (CMIP3) coupled models. The dynamical monsoon index (DMI) was adopted to describe the interannual variability of South Asian summer monsoon, and the standard dev...  相似文献   

14.
The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late twentieth Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space–time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.  相似文献   

15.
The western North Pacific subtropical high (WNPSH) is a crucial component of the East Asian summer monsoon (EASM) system and significantly influences the precipitation in East Asia. In this study, distinguished role of WNPSH on the EASM and Indian Ocean monsoon (IOM) are investigated. Based on the boreal summer mean field of 850-hPa geopotential height and its interannual variability, the WNPSH index (WNPSHI) is defined by the areaaveraged geopotential height over the region [110°–150°E, 15°–30°N]. The WNPSHI is significantly related to the precipitation over the East Asian monsoon (EAM) region [105°–150°E, 30°–40°N] and IOM region [70°–105°E, 5°–15°N]. Rainfalls over these two regions have good correlation with WNPSH developments and the geopotential height fields at 850 hPa related to the EAM precipitation and IOM precipitation have remarkably different teleconnection patterns in boreal summer. These features exhibit that EAM and IOM precipitations have different type of development processes associated with different type of WNPSH each other. Focusing on the relationships among the EAM precipitation, IOM precipitation, and the WNPSH variabilities, we assume that WNPSH and EAM precipitation are usually fluctuated simultaneously through the sea surface temperature (SST)-subtropical ridge-monsoon rainfall feedback, whereas the IOM precipitation varies through the different process. To clarify the relationships among WNPSH, EAM, and IOM, two cases are selected. The first one is the case that all of WNPSH, EAM, and IOM are in phase (WE(+)I(+)), and the second one is the case that WNPSH and EAM are in phase and WNPSH/EAM and IOM is out of phase (WE(+)I(?)). These two cases are connected to the thermal forcing associated with SST anomalies over the eastern Pacific and Indian Ocean. This different thermal forcing induces the change in circulation fields, and then anomalous circulation fields influence the moisture convergence over Asian monsoon regions interactively. Therefore, the monsoon rainfall may be changed according to the thermal conditions over the tropics.  相似文献   

16.
This paper investigates monthly and seasonal precipitation–temperature relationships (PTRs) over Northeast China using a method proposed in this study. The PTRs are influenced by clouds, latent and sensible heat conversion, precipitation type, etc. In summer, the influences of these factors on temperature decrease are different for various altitudes, latitudes, longitudes, and climate types. Stronger negative PTRs ranging from ?0.049 to ?0.075 °C/mm mostly occur in the semi-arid region, where the cold frontal-type precipitation dominates. In contrast, weaker negative PTRs ranging from ?0.004 to ?0.014 °C/mm mainly distribute in Liaoning Province, where rain is mainly orographic rain controlled by the warm and humid air of East Asian summer monsoon. In winter, surface temperature increases owing to the release of latent heat and sensible heat when precipitation occurs. The stronger positive PTRs ranging from 0.963 to 3.786 °C/mm mostly occur at high altitudes and latitudes due to more release of sensible heat. The enhanced atmospheric counter radiation by clouds is the major factor affecting increases of surface temperature in winter and decreases of surface temperature in summer when precipitation occurs.  相似文献   

17.
Future projections of the Indian summer monsoon rainfall (ISMR) and its large-scale thermodynamic driver are studied by using CMIP5 model outputs. While all models project an increasing precipitation in the future warming scenario, most of them project a weakening large-scale thermodynamic driver arising from a weakening of the upper tropospheric temperature (UTT) gradient over south Asian summer monsoon region. The weakening of the UTT gradient under global warming scenarios is related to the increase in sea surface temperature (SST) over the equatorial Indian Ocean (EIO) leading to a stronger increase of UTT over the EIO region relative to the northern Indian region, a hypothesis supported by a series of Atmospheric General Circulation Model (AGCM) experiments forced by projected SSTs. To diagnose the inconsistency between the model projections of precipitation and the large-scale thermodynamic driver, we have examined the rate of total precipitation explained by convective and stratiform precipitations in observations and in CMIP5 models. It is found that most models produce too much (little) convective (stratiform) precipitation compared to observations. In addition, we also find stronger precipitable water—precipitation relationship in most CMIP5 models as compared to observations. Hence, the atmospheric moisture content produced by the model immediately gets converted to precipitation even though the large-scale thermodynamics in models weaken. Therefore, under global warming scenarios, due to increased temperature and resultant increased atmospheric moisture supply, these models tend to produce unrealistic local convective precipitation often not in tune with other large-scale variables. Our results questions the reliability of the ISMR projections in CMIP5 models and highlight the need to improve the convective parameterization schemes in coupled models for the reliable projections of the ISMR.  相似文献   

18.
We compare the ability of coupled global climate models from the phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6, respectively) in simulating the temperature and precipitation climatology and interannual variability over China for the period 1961–2005 and the climatological East Asian monsoon for the period1979–2005. All 92 models are able to simulate the geographical distribution of the above variables reasonably well.Compared with earlier CMIP5 models, current CMIP6 models have nationally weaker cold biases, a similar nationwide overestimation of precipitation and a weaker underestimation of the southeast–northwest precipitation gradient, a comparable overestimation of the spatial variability of the interannual variability, and a similar underestimation of the strength of winter monsoon over northern Asia. Pairwise comparison indicates that models have improved from CMIP5 to CMIP6 for climatological temperature and precipitation and winter monsoon but display little improvement for the interannual temperature and precipitation variability and summer monsoon. The ability of models relates to their horizontal resolutions in certain aspects. Both the multi-model arithmetic mean and median display similar skills and outperform most of the individual models in all considered aspects.  相似文献   

19.
This study provides a detailed analysis of the mid-Holocene to present-day precipitation change in the Asian monsoon region. We compare for the first time results of high resolution climate model simulations with a standardised set of mid-Holocene moisture reconstructions. Changes in the simulated summer monsoon characteristics (onset, withdrawal, length and associated rainfall) and the mechanisms causing the Holocene precipitation changes are investigated. According to the model, most parts of the Indian subcontinent received more precipitation (up to 5 mm/day) at mid-Holocene than at present-day. This is related to a stronger Indian summer monsoon accompanied by an intensified vertically integrated moisture flux convergence. The East Asian monsoon region exhibits local inhomogeneities in the simulated annual precipitation signal. The sign of this signal depends on the balance of decreased pre-monsoon and increased monsoon precipitation at mid-Holocene compared to present-day. Hence, rainfall changes in the East Asian monsoon domain are not solely associated with modifications in the summer monsoon circulation but also depend on changes in the mid-latitudinal westerly wind system that dominates the circulation during the pre-monsoon season. The proxy-based climate reconstructions confirm the regional dissimilarities in the annual precipitation signal and agree well with the model results. Our results highlight the importance of including the pre-monsoon season in climate studies of the Asian monsoon system and point out the complex response of this system to the Holocene insolation forcing. The comparison with a coarse climate model simulation reveals that this complex response can only be resolved in high resolution simulations.  相似文献   

20.
Many climate models have problems simulating Indian summer monsoon rainfall and its variability, resulting in considerable uncertainty in future projections. Problems may relate to many factors, such as local effects of the formulation of physical parametrisation schemes, while common model biases that develop elsewhere within the climate system may also be important. Here we examine the extent and impact of cold sea surface temperature (SST) biases developing in the northern Arabian Sea in the CMIP5 multi-model ensemble, where such SST biases are shown to be common. Such biases have previously been shown to reduce monsoon rainfall in the Met Office Unified Model (MetUM) by weakening moisture fluxes incident upon India. The Arabian Sea SST biases in CMIP5 models consistently develop in winter, via strengthening of the winter monsoon circulation, and persist into spring and summer. A clear relationship exists between Arabian Sea cold SST bias and weak monsoon rainfall in CMIP5 models, similar to effects in the MetUM. Part of this effect may also relate to other factors, such as forcing of the early monsoon by spring-time excessive equatorial precipitation. Atmosphere-only future time-slice experiments show that Arabian Sea cold SST biases have potential to weaken future monsoon rainfall increases by limiting moisture flux acceleration through non-linearity of the Clausius–Clapeyron relationship. Analysis of CMIP5 model future scenario simulations suggests that such effects are small compared to other sources of uncertainty, although models with large Arabian Sea cold SST biases may suppress the range of potential outcomes for changes to future early monsoon rainfall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号