首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Outputs from simulations performed with current atmosphere-ocean general circulation models for the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC AR4) are used to investigate the evolution of sea ice over the 20th and 21st centuries. We first use the results from the “Climate of the 20th Century Experiment” to assess the ability of these models to reproduce the observed sea ice cover changes over the periods 1981–2000 and 1951–2000. The projected sea ice changes over the 21st century in response to the IPCC Special Report on Emission Scenarios A1B are then examined. Overall, there is a large uncertainty in simulating the present-day sea ice coverage and thickness and in predicting sea ice changes in both hemispheres. Over the period 1981–2000, we find that the multimodel average sea ice extent agrees reasonably well with observations in both hemipsheres despite the wide differences between the models. The largest uncertainties appear in the Southern Hemisphere. The climate change projections over the 21st century reveal that the annual mean sea ice extent decreases at similar rates in both hemispheres, and that the reduction in annual mean sea ice volume is about twice that of sea ice extent reduction in the Northern Hemisphere, in agreement with earlier studies. We show that the amplitude of the seasonal cycle of sea ice extent increases in both hemispheres in a warming climate, with a larger magnitude in the Northern Hemisphere. Furthermore, it appears that the seasonal cycle of ice extent is more affected than the one of ice volume. By the end of the 21st century, half of the model population displays an ice-free Arctic Ocean in late summer.  相似文献   

2.
The shrinking of the area occupied by sea ice in the Northern Hemisphere accelerated at the end of the 1990s, when the record minima of the summer area were successively noted, and its absolute minimum was observed in September 2007. Such a radical decrease is ahead of the projections of global models and provokes interest in the reliability of model calculations of the future of Arctic sea ice. The results of an analysis of the relation between the warming in the Arctic and the ice extent shrinkage from data of observations and modeling by an ensemble of global climate models are presented.  相似文献   

3.
The climate model of intermediate complexity developed at the Oboukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), has been supplemented by a zero-dimensional carbon cycle model. With the carbon dioxide emissions prescribed for the second half of the 19th century and for the 20th century, the model satisfactorily reproduces characteristics of the carbon cycle over this period. However, with continued anthropogenic CO2 emissions (SRES scenarios A1B, A2, B1, and B2), the climate-carbon cycle feedback in the model leads to an additional atmospheric CO2 increase (in comparison with the case where the influence of climate changes on the carbon exchange between the atmosphere and the underlying surface is disregarded). This additional increase is varied in the range 67–90 ppmv depending on the scenario and is mainly due to the dynamics of soil carbon storage. The climate-carbon cycle feedback parameter varies nonmonotonically with time. Positions of its extremes separate characteristic periods of the change in the intensity of anthropogenic emissions and of climate variations. By the end of the 21st century, depending on the emission scenario, the carbon dioxide concentration is expected to increase to 615–875 ppmv and the global temperature will rise by 2.4–3.4 K relative to the preindustrial value. In the 20th–21st centuries, a general growth of the buildup of carbon dioxide in the atmosphere and ocean and its reduction in terrestrial ecosystems can be expected. In general, by the end of the 21st century, the more aggressive emission scenarios are characterized by a smaller climate-carbon cycle feedback parameter, a lower sensitivity of climate to a single increase in the atmospheric concentration of carbon dioxide, a larger fraction of anthropogenic emissions stored in the atmosphere and the ocean, and a smaller fraction of emissions in terrestrial ecosystems.  相似文献   

4.
The first empirical orthogonal functions (EOF1s) of surface-air temperature fluctuations for Russia and its neighboring states within the period 1950–2005 are analyzed. The spatial distribution of the EOF1, the first principal components (PC1s) of the observed air temperature (averaged over the summer, July, December–March, and individual winter months), and their time variations (including trend parameters, some spectral characteristics, and the quantitative indices of relation to circulation indices (on the basis of multiple step-by-step regression)) are considered. Significant seasonal differences have been revealed: the winter air-temperature fluctuations are characterized by a higher (when compared to summer) spatial coherence, especially in the latitudinal direction. The EOF1 of the winter air temperature (averaged over December–March) describes its fluctuations for almost all of Russia; in this case, no less than 70% of the PC1 variability is due to variations in several circulation indices; the main contribution (60%) is made by both the North Atlantic Oscillation (NAO) and Scandinavian (SCAND) indices. On the whole, over the periods 1951–2005 and 1971–2005, the NAO contribution exceeds the SCAND contribution to the winter temperature variability; the NAO is associated with a more rapid increase in air temperature in 1968–1997 and with the 1971–2005 trend. In 1951–1970 the main contribution to air temperature fluctuations was made by SCAND; the SCAND contribution exceeds the NAO contribution in the periods 1951–2005 and 1971–2005. The 1971–2005 and 1968–1997 temperature trends are completely described by variations in the NAO (70%) and SCAND (30%) indices for January and February.  相似文献   

5.
In the region of the Ladoga Lake catchment basin, we perform data analysis on a set of different modern climate models with different Intergovernmental Panel on Climate Change (IPCC) scenarios in the 20th and 21st centuries; this set includes global models such as ECHAM4/OPYC3 (Max Planck Institute for Meteorology, Germany), HadCM3 (Hadley Centre Coupled Model, England), and RCAO (Rossby Centre Regional Atmosphere-Ocean) models. Two variants of the boundary conditions for these climate models (Rossby Center of Swedish Meteorological and Hydrological Institute, SMHI) are used. We present the results of a diagnosis of the model-predicted near-surface temperature (T), precipitation (P), evaporation (E), and water budget (P-E) in the Ladoga Lake catchment based on their comparison with empirical data in twentieth century. We obtain scenario estimates of the variations of temperature and hydrologic regimes of Ladoga Lake catchment when IPCC IS92a, A2, and B2 scenarios are fulfilled, describing the prognostic growth of anthropogenic emissions of greenhouse gases and aerosol to the atmosphere, and discuss the recommendations for their use.  相似文献   

6.
A numerical 1‐dimensional fine grid sea ice thermodynamic model is constructed accounting specially for: (1) slush formation via flooding and percolation of rain‐ and snow meltwater, (2) the consequent snow ice formation via slush freezing, and (3) the effects of snow compaction on heat diffusion in snow cover. The model simulations from ice winter period 1979–90 are viewed against corresponding observations at the Kemi fast ice station (65 °39.8' N, 24° 31.4' E). The 11‐year averaged model results show good overall consistency with corresponding total ice thickness observations. The model slightly overestimates the snow ice thickness and underestimates the snow thickness in February and March, which is mainly addressed to the model assumption of isostatic balance (i.e., slush formation via flooding), which was probably not fully satisfied at the coastal Kemi fast ice station. Supposing that this assumption is nevertheless generally valid away from the very coastal fast ice zone, an estimate for sea ice sensitivity to changes in winter precipitation rate is produced. Increased precipitation leads to an increase only in snow ice thickness with little change in total ice thickness, while a reduction in precipitation of more than {213}50% causes a significant increase in total ice thickness. The difference in modeled total ice thickness for the case of artificially neglecting snow ice physics is about 25%, which indicates the importance of including snow ice physics in a sea ice model dealing with the seasonal sea ice zone.  相似文献   

7.
21世纪初海洋预报系统发展现状和趋势   总被引:1,自引:0,他引:1  
方长芳  张翔  尹建平 《海洋预报》2013,30(4):93-102
海洋预报是一切海上活动的基础,人类社会需求驱动着海洋预报的发展。海洋观测、数据同化、数值模拟和高性能计算机等技术的进步推动着全球海洋业务预报的发展。国际先进的海洋数值模式有NLOM、NCOM、HYCOM、NEMO、MOM、POM和ROMS等。在GODAE和GODAEOceanView项目期间,通过国际合作和交流,全球海洋业务预报系统得到快速发展。21世纪初,全球海洋预报系统水平分辨率最高达到1/32°,预报时效一般为一周,部分海洋预报系统能够预报诊断海洋涡旋和海洋锋等。未来海洋预报系统的分辨率和预报精度将继续提高,预报要素扩展到海洋生态和生物地球化学等学科。海洋数据同化技术、海洋物理过程参数化方案和模式耦合技术是推动海洋预报发展的重要研究方向。  相似文献   

8.
Changes in the ventilation rate of the global ocean during the 20th and 21st centuries, as indicated by changes in the distribution of ideal age, are examined in a series of integrations of the Community Climate System Model version 3. The global mean age changes little in the 20th Century relative to pre-industrial conditions, but increases in the 21st Century, by an amount that is independent of the range of climate forcings considered. The increase is primarily due to a decrease in the ventilation rate of Antarctic Bottom Water (AABW), and to a lesser degree, North Atlantic Deep Water (NADW). Changes in a regional volumetric census of age indicate that the changes in AABW are predominantly for waters that are already older than 100 years, so will likely have a moderate direct feedback on oceanic uptake of CO2 and other tracers. On the other hand, the changes in NADW occur most strongly in waters that are a few decades old, so are more likely to have a feedback on the climate system. While the global mean age increases, the age does not increase everywhere in the ocean. Regions newly exposed to strong atmospheric forcing as sea ice retreats experience an increase in convection and decreasing age. Age also decreases over a large volume of the lower thermocline as the rate of upwelling of old deep water decreases with the weakening of the thermohaline circulation.  相似文献   

9.
21世纪初我国海洋科学的展望   总被引:3,自引:0,他引:3  
大气、海洋和陆地对自然变异和人类活动的响应速率和规模,具有明显的区别:大气的响应速率快、规模大,全球效应突出;陆地的响应则较缓,且局域效应明显;海洋的响应速率和规模居于大气和陆地之间,但其具体表现则甚为复杂。海洋的板块构造保存了海底地壳的发展历史、而海底沉积物也  相似文献   

10.
Latitudinal position and wind speed of the Southern Hemisphere subtropical jet stream have been investigated on the basis of ERA-Interim, JRA-55, and NCEP–NCAR reanalysis data for 1948–2013. The analysis covers different time intervals in summer and winter seasons, as well as different spatial domains. It has been shown that the variability of the southern jet stream parameters in both winter and summer seasons is predominantly characterized by wind-speed weakening on the jet-stream axis and its poleward shift. The winter seasons of 2000–2013 identified a shift in the jet-stream axis toward the equator in the Atlantic (60°–0° W) and African (0°–60° E) sectors; the wind-speed increase in the Atlantic sector was statistically significant. The wind speed on the jet-stream axis in both winter and summer is closely related to the temperature difference in the upper tropospheric layer of 200–400 hPa between the latitudinal zones of 0°–30° S and 30°–60° S. A significant negative correlation (r = ?0.78) between wind speed and temperature difference has been revealed for the winter season in the upper tropospheric layer between the latitudinal zones of 30°–60° S and 60°–90° S, which can be explained by the Southern Annular Mode variability in this season. No such relationship has been found for the summer season.  相似文献   

11.
The nature of sea uses, the development process and industrialisation are reviewed on the long time scales of industrialisation of the global economy. Five main sectors of sea use are identified in which the industrial form of organisation is characteristic, namely, transport and communications, mineral and energy resources, biological resources, leisure and coastal engineering. Key features of each sector are highlighted and an overall assessment of the industrialisation process is set in the temporal context of the millenium.  相似文献   

12.
An analysis of the air-temperature and atmospheric-pressure fields in Western Siberia is performed based on observations in 1976–2014; a comparison of temperature and pressure variability in two temporal intervals, 1976–2005 and 1985–2014, is carried out. The estimation of contributions from such climate-forming factors as radiation and circulation is performed for the same intervals. It is revealed that an increase in the annual mean ground–air temperature in the investigated region of Western Siberia was still taking place in the period of 1985–2014; however, the warming process was less active than in the 1976–2005 period. Winter months play the largest role in decreasing the temperature growth rate; during these months, the warming process was replaced by a cooling one in the second time interval. It is shown that the circulation factors, that is, the mechanisms described by indices of global circulation, played the dominant role in the period from 1985 to 2014.  相似文献   

13.
The results of numerical experiments with a coupled atmosphere-ocean general circulation model on the reproduction of climate changes during the 20th century and on the simulation of possible climate changes during the 21st–22nd centuries according to three IPCC scenarios of variations in the concentrations of greenhouse and other gases, as well as the results of the experiments with the doubled and quadruple concentrations of CO2, are considered. An increase in the near-surface air temperature during the 20th century and the features of the observed climate changes, such as warming in 1940–1950 and its slowing down in 1960–1970, are adequately reproduced in the model. According to the model, the air-temperature increase during the 22nd century (as compared to the end of the 20th century) varies from 2 K for the most moderate scenario to 5 K for the warmest scenario. This estimate is somewhat lower than the expected warming averaged over the data of all models presented in the third IPCC report. According to model data, in the 22nd century, under all scenarios, at the end of summer, a complete or almost complete sea-ice melting will occur in the Arctic. According to the model, by the year 2200, the sea level will vary by 20 to 45 cm as compared to the level at the end of the 20th century.  相似文献   

14.
15.
齐庆华  蔡榕硕 《海洋学报》2017,39(11):37-48
气候变暖背景下,全球平均海洋变暖和海平面上升显著,为人类社会的可持续发展带来巨大挑战。上层海洋热力状况是海平面变化的主导因子之一。本文围绕"21世纪海上丝绸之路"途经海区(文中简称为丝路海区)上层海洋热含量异常的区域性时空特征,分析探讨了丝路海区热比容海平面异常的时空变化、演变特征及可能影响,以期为"21世纪海上丝绸之路"海洋环境安全保障提供服务支撑。结果表明,自20世纪70年代中后期,丝路海区上层(0~700 m)海洋已明显变暖,尤其20世纪90年代中后期增暖幅度显著加大。近60年来,在丝路海区热带海洋中,西太平洋的北赤道流区及以北海域、东海黑潮流域以及南海北部和南部海区、阿拉伯海西北部海域、马来西亚西北部海域及南印度洋部分海域具有长期增暖趋势。热带西太平洋暖池区整体增暖不明显,主要与印度洋中部海域呈反位相变化,且明显受到季节和年际变化的调制。长江口附近沿岸、南海北部沿岸、中南半岛南部沿岸以及阿拉伯海西北部沿岸的近岸海域长期增暖明显,自20世纪90年代中后期,中南半岛东部和西部沿海、澳大利亚西部沿海以及我国东南沿海热比容海平面上升明显。近岸热比容海平面的季节演变对沿海地区社会和经济发展会造成一定影响。此外,东亚夏季风与东海、黄海和渤海热比容海平面的上升显著相关,同时,ENSO、太平洋年代际振荡和印度洋偶极子的发生也均与我国东南沿海和印度洋西部沿海热比容海平面上升明显关联。特别是,气候变暖情形下,各种区域性致灾因子和气候变率的协同影响会对丝路海区海岸带和沿海地区的防灾减灾与社会经济发展带来较大挑战,开展海岸带和沿海地区全球变化综合风险研究成为当前首要任务。  相似文献   

16.
The study focused on the evaluation of probable changes in the severity of sea ice conditions occurring in 3 selected areas of the Baltic Sea: the Gulf of Bothnia, Gulf of Finland and the Southern Baltic Sea up to the year 2100. The areas have been chosen due to the high intensity of marine traffic (the Gulfs??of Bothnia and of Finland) and due to differences in sea ice conditions; winters in the Gulf of Bothnia were characterized as the most severe, whereas in the Southern Baltic were classified as the mildest ones. Consequently, three scenarios were taken into account in the study: A2 (slow rate of global economic development, market scenario), A1B (regional scenario, rapid economic development, with ecological priorities), B1 (sustainable, median economic development with strong ecological priorities), all three constructed on the basis of Special Report on Emissions Scenarios (SRES models of greenhouse gas emission). The probable changes of sea ice conditions expressed as severity index S were calculated from these models. The main results of the investigation are as follows, the variety of sea ice conditions occurring in specific regions of the Baltic will remain stable (i.e. the most severe winter conditions will still occur in Gulf of Bothnia, while the mildest in the Southern Baltic Sea). The most significant changes are likely to occur in the Southern Baltic, where some winters without ice cover in the Vistula Lagoon may happen. Nonetheless, some extremely severe winters will occur and also within specific seasons more winters with a lower number of days with ice will occur.  相似文献   

17.
Cascades of dense water around the world ocean   总被引:1,自引:0,他引:1  
Dense water overflow off continental shelves (cascading) is one of the contributing processes of shelf-deep ocean exchange, and of topical interest to climate studies and nutrient fluxes. Dense water originating from cooling, evaporation, freezing and salinization on a shallow shelf spills over the shelf edge and may develop as near-bottom gravity current or an intermediate-depth intrusion. It is difficult to observe in nature due to its intermittent character.This paper provides an extensive inventory of observed cases of water cascades around the World Ocean, summarises their locations and individual properties, and provides statistics of the identified cases. The search for cascading was carried out using oceanographic databases and a literature review. This study identified 61 confirmed cases world-wide, including 25 cases in the Arctic seas, 12 at mid-latitudes, seven in sub-tropical and tropical regions, and 17 off the Antarctic shelves. Eighteen cascades had not been reported before. We analyze a set of numerical parameters of dense water cascades, allowing us to quantify, compare and contrast the properties of water cascades. The overall average density contrast between the confirmed cascades and ambient water is 0.37 (kg/m3); it can be as much as 2 (kg/m3) on some Arctic shelves. Frequently initiated by strong cooling at the surface, cascades often remain colder through the descent, thus supplying the deep ocean with colder and fresher water. In non-dimensional variables, the data from all climate zones fit well to a unique curve, which represents a relationship between a cascade’s internal structure and the parameters describing its forcing. On average, the down-slope volumetric flux provided by dense water cascades is estimated as 0.05 to 0.08 Sv per 100 km of shelf edge.Regional terms: Arctic, Antarctic, North Atlantic Ocean, Barents Sea, Mediterranean Sea, Skagerrak, Tasman Sea, Sea of Okhotsk  相似文献   

18.
Principal regularities of the evolution of the Arctic coasts of Eurasia in the 21st century related to the climate warming and sea level rise are assessed. It is stated that the most significant changes may be expected in the most ice-covered seas of the Arctic Ocean, where the area of the ice cover may significantly decrease while the duration of the ice-free periods will grow. Thermoabrasive coasts will be the most subjected to the changes; the rate of their recession will increase 1.5–2.5 fold. The further development of accumulative coasts in the Arctic seas will proceed against the background of a transgression; meanwhile, in the 21st century, one can expect no catastrophic changes such as washing away of coastal accumulative features.  相似文献   

19.
A theoretical model is contrived that describes the propagation of internal waves under ice cover. According to the results obtained in the study, the flexures of the ice surface with a frequency close to but smaller than the Brunt-Väisälä frequency can gain amplitudes sufficient for recording internal waves. A comparison of the theory with observations showed a satisfactory agreement.  相似文献   

20.
本文利用大洋环流模式POP研究RCP4.5情景下21世纪格陵兰冰川不同的融化速率对全球及区域海平面变化的影响。结果显示:当格陵兰冰川的融化速率以每年1%增加时,全球大部分海域的动力和比容海平面变化基本不变,主要是由于格陵兰冰川在低速融化时并不会导致大西洋经向翻转流减弱。当格陵兰冰川的融化速率以每年3%和每年7%增加时,动力海平面在北大西洋副极地、大西洋热带、南大西洋副热带和北冰洋海域呈现出显著的上升趋势,这是因为格陵兰冰川快速融化导致大量的淡水输入附近海域,造成该上层海洋层化加强和深对流减弱,导致大西洋经向翻转流显著减弱;与此同时,热比容海平面在北冰洋、格陵兰岛南部海域和大西洋副热带海域显著下降,而在热带大西洋和湾流海域明显上升;此时盐比容海平面的变化与热比容海平面是反相的,这是由于大量的低温低盐水的输入,造成北大西洋副极地海域变冷变淡、大西洋经向翻转流和热盐环流显著减弱,引起了太平洋向北冰洋的热通量和淡水通量减少,导致了北冰洋海水变冷变淡,同时热带大西洋滞留了更多的高温高盐水,随着湾流被带到北大西洋,北大西洋副极地海域低温低盐的海水,被风生环流输运到副热带海域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号